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Abstract

This paper presents a new approach to the an-
cient scripts decipherment problem based on
combinatorial optimisation and coupled simu-
lated annealing, an advanced non-convex op-
timisation procedure. Solutions are encoded
by using k-permutations allowing for null, one-
to-many, and many-to-one mappings between
signs. The proposed system is able to pro-
duce enhanced results in cognate identification
when compared to the state-of-the-art systems
on standard evaluation benchmarks used in lit-
erature.

1 Introduction

There are still a number of undeciphered scripts in
the world and most of them date back thousands
of years. The lack of an appropriate amount of in-
scriptions, the lack of known language descendants
written using these scripts or even any certainty
whether the symbols actually constitute a writing
system made the decipherment of such scripts re-
ally challenging. In the Aegean area, for example,
we can count at least three syllabic scripts that
have not been deciphered yet, namely the Linear A
script, Cretan Hieroglyphs and the Cypro-Minoan
script. They are scripts strictly connected from a
historical point of view, but no one has yet been
able to solve these decipherment puzzles. In this
work we deal with general decipherment problems,
but we are mainly interested in investigating these
undeciphered scripts from the Aegean area.

Deciphering an ancient script is, in general, a
very complex task; the solution of this problem has
been often split into different subproblems in order
to obtain specific answers or to simplify the task by
decomposing it into simpler problems. In the litera-
ture, we can find various contributions dealing with
all these subproblems and propose computational
methods for solving them in some way, often in
relation to one specific script. In order, we have to
(a) decide if a set of symbols actually represent a

writing system, then (b) we have to devise appro-
priate procedures to isolate or segment the stream
of symbols into a sequence of single signs and then
(c) reduce the set of signs to the minimal set for the
given writing system forming the alphabet (or syl-
labary, or whatever inventory of signs), identifying
all the allographs. Once we have such a minimal,
but complete, set of symbols, we can start (d) as-
signing to them phonetic/orthographic values and,
finally, (e) trying to match phonetic/orthographic
transcriptions to a specific language. Here we are
interested in studying and discussing steps (d) and
(e).

2 Related Works

Any modern attempt to decipher lost scripts using
computational tools, a field that has been gaining
more and more interest in NLP in the last years
(Knight and Sproat, 2009), is based on the compari-
son of a lost script/language wordlist with words of
a known deciphered script/language. These com-
putational approaches have to address two main
problems: the first regards the possibility that
the two scripts do not correspond. In this case
the phonological values of the lost symbols could
also be unknown and the matching between the
two wordlists must be preceded by some match-
ing between scripts; then, the two wordlists must
be matched in some way searching for “cognate”
words, i.e. words in different languages that can
share an etymological ancestor in a common parent
language.

Some scholarly works focus only on cognate de-
tection within the same script (Bouchard-Côté et al.,
2009) or directly using the International Phonetic
Alphabet sound representations (Hall and Klein,
2010). In both cases the tested languages were
typologically very similar.

Conversely, the most advanced recent studies on
the automatic decipherment of lost languages pro-
posed systems producing both signs mappings be-
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tween different scripts and mapping of words into
their corresponding cognates (e.g. Snyder et al.,
2010; Berg-Kirkpatrick and Klein, 2011; Luo et al.,
2019, 2021). These studies share a common view
on the computational approach: they structured the
algorithm as a two-step procedure, taking inspi-
ration from the Expectation–Maximization (EM)
algorithm. The first step proposes a temporary
matching between the two “alphabets”1, and the
second step, by relying on the script-matching, tries
to match the two word lists proposing possible cog-
nates. At the beginning of the process the scripts
matching will be almost random, and so will the
cognate matching, but, after several iterations the
whole process should converge proposing both a
script-matching and a list of possible cognates. The
key point hinges on finding an appropriate func-
tion, to be optimised by this iterative process, rep-
resenting in an optimal way the concept of match-
ing between words, including also some linguistic
constraints regarding scripts, words and possibly
sounds. Let us review the most recent and relevant
analyses, in our view, which tackle the decipher-
ment problem in an automatic way, all following
the general scheme just discussed.

Snyder et al. (2010) presented the first paper
which adopts the modern approach to the compu-
tational decipherment problem: their method re-
quires a non-parallel corpus in a known related
language and produces both alphabetic mappings
and translations of words into their corresponding
cognates, employing a non-parametric Bayesian
framework to simultaneously capture both low-
level sign mappings and high-level morphemic cor-
respondences. They tested this method on Ugaritic,
an ancient Semitic language, comparing it with old
Hebrew: the model correctly maps 29 of 30 signs
to their old Hebrew counterparts, and deduces the
correct Hebrew cognate for 60% of the Ugaritic
words that have cognates in Old Hebrew.

Berg-Kirkpatrick and Klein (2011) took a dif-
ferent approach: they devised an objective func-
tion that, when optimised, yields accurate solutions
to both decipherment and cognate pair identifica-
tion problems. Their system requires only a list of
words in both languages as input. The proposed
solution is both simple and elegant: binary vari-
ables govern both the matching between signs in
the two scripts and the matching between the two

1With the term “alphabet”, we indicate a generic notion of
inventory of signs, glyphs, etc. used as a writing system.

lexica. By applying an integer combinatorial opti-
misation procedure, their system was able to obtain
good results on the same problem introduced by
Snyder et al. (2010) and on a new matching task on
Romance languages.

Luo et al. (2019) present a novel neural approach
that defines the state-of-the-art for the automatic
decipherment of lost languages producing the high-
est matching performance. To compensate for the
lack of strong supervision information, their model
is designed to include known patterns in language
change documented by historical linguistics. The
mapping between signs is carried out by a bidirec-
tional recurrent neural network while the procedure
for matching cognates is formalised as a minimum-
cost flow problem. They applied this method to the
same problem presented in Snyder et al. (2010), a
sort of benchmark in this field, and on a brand new
dataset that included Linear B and ancient Myce-
naean Greek lexica obtaining very good mapping
results.

In a subsequent paper by Luo et al. (2021), the
authors faced a more difficult hurdle considering
scripts that are not fully segmented into words and
contexts in which the closest known language is
not determined. By building on rich linguistic con-
straints reflecting consistent patterns in historical
sound change, they were able to capture natural
phonetic geometry by learning character embed-
dings based on the International Phonetic Alphabet.
The resulting generative framework jointly mod-
els word segmentation and cognate alignment, in-
formed by phonetic/phonological constraints. They
tested their method on both deciphered languages,
namely Gothic and Ugaritic, and on an undeci-
phered one, Iberian, showing that incorporating
phonetic geometry leads to consistent gains.

The two studies from Berg-Kirkpatrick and
Klein (2011) and Luo et al. (2019) are the main
works with which to compare our proposal.

Berg-Kirkpatrick and Klein (2011) proposed an
approach that inspires our work, namely the pos-
sibility of tackling the decipherment problem as a
pure function optimisation problem, but their re-
sults do not represent the state-of-the-art because
they have been superseded by subsequent works.

The work from Luo et al. (2019), on the con-
trary, presents a system able to obtain very good
results, but it is not as flexible as we need. With
this respect, the mapping between lost and known
signs is realised by a recurrent neural network (NN)
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and, despite the positive facts that context could
be taken into account, it does not allow any further
flexibility. In practical decipherment situations we
have to face two problems that cannot be easily
solved by the approach from Luo et al. (2019): the
first regards the fact that very often paleographers
have a partial knowledge about the mapping of
some signs and this information must be injected
into the system and taken into account; the second
problem concerns the fact that very often real in-
scriptions are broken or damaged and some signs
cannot be read, thus some kind of uncertainty must
be included into the system, for example by using
wildcards or other special symbols. These special
treatments are very hard to implement into a recur-
rent NN. Moreover, deep NNs typically require a
lot of data in order to be properly trained and this
is often not the case in real situations.

As we said before, we are interested in studying
some undeciphered scripts from Aegean and we
definitely need a more flexible system that allows
partial readings and fixed knowledge to be included
as well as being able to work on limited amounts
of data.

3 Reference Benchmarks and other
Datasets

Various datasets have been used in past studies and
became standard benchmarks for evaluating the
performance of any computational tool aiming at
helping scholars in the decipherment process.

3.1 Ugaritic/Old Hebrew - U/OH

Ugaritic is an ancient Semitic language closely re-
lated to Old Hebrew. This dataset has been intro-
duced by Snyder et al. (2010) for testing their sys-
tem and became a common benchmark in the field.
Following Berg-Kirkpatrick and Klein (2011), we
evaluate our system on 2214 cognates pairs in the
two lexica.

3.2 Linear B/Mycenaean Greek - LB/MG

Linear B is a syllabic writing system used to write
Mycenaean Greek dating back to around 1450BC.
Luo et al. (2019) introduced a new dataset extract-
ing pairs of Linear B and Greek words from a com-
piled lexicon and removing some uncertain transla-
tions obtaining 919 pairs of cognates. This is a very
interesting benchmark for us as we are primarily
interested in working on syllabic scripts from the
Aegean area. On the LB side, we defined the signs

inventory as the original set of signs defined in LB
while for Greek, given the syllabic nature of the
mapping, we included complex signs formed by
all open syllables excluding those marking vowel
quantity (syllables ending in η or ω) to reduce the
signs inventory dimension on the Greek side.

The same authors introduced also a more chal-
lenging benchmark, more realistic from the paleo-
graphic point of view, considering the same LB lex-
icon and compare it with a reduced Greek lexicon
containing only proper nouns (LB/MG-names).

3.3 Cypriot Syllabary/Arcadocypriot Greek -
CS/AG

Given our primary interests, it seemed reasonable
to introduce a new dataset to be used as reference
for the decipherment of syllabic scripts from the
same area. The Cypriot Syllabary is a right-to-
left syllabic script used in Iron Age Cyprus. It is
descended from the Cypro-Minoan syllabary, in
turn, a derivative of Linear A. Most texts using this
script are in the Arcadocypriot dialect of Greek.

Relying on the alphabetic-syllabic index in
Hintze (1993), we compiled a new dataset con-
sisting of 693 pairs of cognates, the first written
using the CS and the second the Greek alphabet
from which we removed any diacritic following
the same procedure applied in Luo et al. (2019) for
creating the LB/MG dataset. With regard to Greek,
we considered only the open syllables as for the
previous dataset.

4 The Proposed Method

The proposed approach to the decipherment prob-
lem is configured as a global optimisation proce-
dure taking inspiration from the work proposed in
Berg-Kirkpatrick and Klein (2011). We will intro-
duce a flexible encoding of possible solutions and
an ‘energy function’ able to capture the goodness
of a single solution, both from the point of view of
signs matching and lexica matchings; by minimis-
ing the energy function, we will search for suitable
solutions to a decipherment problem.

Let us introduce some notation useful in the next
sections: Ls and Ks are two linearly ordered sets2

containing respectively the signs in the lost and
known languages (with |Ls| and |Ks| their cardi-
nality and li, kj respectively the i-th and j-th ele-
ment in the ordered sets), while Llex and Klex are

2A linearly ordered set is a set with a total order on it. Here,
it is useful only for indexing the set elements.

84



Figure 1: Two simple examples of solution coding. a)
M = 1 then the first |Ks| cells contain the mapping
MapS (shown on the right) for the known signs to
the lost signs. Note that using k-permutations of size
N · |Ls| allows for one-to-many mappings from lost
to known signs (see also the definition MapS in 4.1).
b) M = 2, then we have two k-permutations allowing
for one-to-many assignments from known to lost signs.
In both cases it could happen that a lost sign does not
receive any assignment (not shown in the picture).

the two lexica and |Llex| and |Klex| their respective
number of words.

4.1 Solution Coding

The basic tool for encoding a problem solution is
the k-permutation without repetition. Let p1, ..., pn
be n objects. Let s1,...,sk be k (where k ≤ n) slots
to which k of the n objects can be assigned. A k-
permutation of n objects is one of the possible ways
to choose k objects and place them into the k slots
respecting the order. Each object can be chosen
only once. The number of possible k-permutations
is Pn,k = n!/(n − k)!. Here we consider the k-
permutation of the first n integer numbers.

In order to find a suitable sign assignment be-
tween lost language and known language, a generic
solution σ must have the possibility to express mul-
tiple assignments in both directions but paying at-
tention to the combinatorial explosion problem.

Let us start considering the case |Ls| ≤ |Ks|:
in this situation some lost signs must be mapped
to more than one known sign and we can easily
encode this fact with a single k-permutation σ with
n = N · |Ls| and k = |Ks|, N = 2, 3, ... Each
known sign kj being in position j, with j ≤ k,
of the k-permutation σ = ⟨σ1, ..., σk, ..., σn⟩ is
then mapped to a set of lost signs by the function

MapSσ : Ks → P(Ls),

MapSσ(kj) = lσj mod |Ls|

where P(Ls) is the power set of Ls.
In the other case with |Ls| > |Ks| we can de-

fine a solution σ formed by M k-permutations,
M = 2, 3, ..., concatenated one after the others,
each managed exactly in the same way as before,
but now N can also be equal to 1.

By defining the structure of possible solutions
σ in this way, each sign in the lost language can
receive from 0 to a maximum of N ×M possible
assignments of known signs, allowing a very high
level of flexibility in signs matching. Given that in
the definition of k-permutations k ≤ n, N controls
the well-formedness of the basic structure support-
ing solution definition ensuring that every known
sign will be assigned to at least one lost sign and
managing the different situations that occur when
|Ls| ≤ |Ks|. Moreover, M controls the number
of times a known sign will be assigned to a lost
sign. N and M are not completely independent
parameters as they interact in a complex way for
governing the number of multiple assignments in
both directions.

Figure 1 shows two small examples of the pro-
posed schema for encoding solutions.

As an added value, k-permutations exhibit an
interesting property: we can build an isomorphism
between k-permutations and the natural numbers
(Patel, 2022), thus each solution encoded by using
our schema can be mapped into M integers and,
for reasonable problems with M ≤ 2, fragments
of the search space can be visualised and inspected
using a 2D/3D graph.

4.2 Energy function

The second fundamental ingredient used in the pro-
posed method regards the design of an appropriate
energy function able to measure the goodness of a
given solution for a decipherment problem.

As we said before, Luo et al. (2019) broke the op-
timisation process into two separate steps repeated
iteratively: the first computes the best match be-
tween signs given a lexicon match and, after having
fixed the signs match, the second computes the best
match between lexica. We adopted a different ap-
proach taking inspiration from Berg-Kirkpatrick
and Klein (2011) and designed an energy func-
tion that measures the goodness of both aspects
together.
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4.2.1 Lost Words Expansion and
Transliteration

In order to transliterate the lost lexicon we
need to define the inverse function of MapS,
invMapSσ : Ls → P(Ks), that associates each
lost sign to the set of known signs mapped to it, as

invMapSσ(li) = {kj |li ∈ MapSσ(kj)} .

By building on this definition, we can in-
troduce the transliteration and expansion
function TrExpσ for a given lost word
lW = ⟨lW1, ..., lWn⟩, with lW1, ..., lWn the
sequence of signs forming lW , as

TrExpσ(lW ) = { tW | tW = ⟨q1, ..., qn⟩,
qj ∈ invMapSσ(lWj) }.

T rExp transliterates each lost word into the known
alphabet and associates to it a set of transliterated
words formed by any combination of known signs
allowed by the mapping invMapS. This way of
proceeding could potentially produce a combina-
torial explosion, but, given that N and M are typi-
cally very small integers (almost always ≤ 3), this
problem will not be particularly severe. Table 1
shows an example of this process.

li invMapSσ(li) lW TrExpσ(lW )

A {Z,X} AA {ZZ,ZX,XZ,XX}
B {W,Z} BC {WX,WY,ZX,ZY}
C {X,Y} ABC {ZWX,ZWY,ZZX,

ZZY,XWX,XWY,
XZX,XZY}

Table 1: Transliteration and expansion example over the
same sets of signs used in Figure 1 (b).

4.2.2 Word Matching
A standard way to compare strings makes use of
the so called edit distance - ED (a.k.a. Leven-
shtein distance). We used this measure to com-
pare the expanded transliterations of lost words to
known words. The standard definition of the ED
involves counting the number of sign insertions,
deletions and substitutions to transform the first
string into the second. We modified the standard
definition, following the ideas in Wang et al. (2021),
for adding two wildcards that could be very useful
in real settings. Very often real inscriptions are
broken and/or some signs cannot be reliably distin-
guished; in these situation it might be preferable

to process these data maintaining the reading prob-
lems. For these reasons, we included the special
sign ‘?’ to indicate a single unreadable sign and
‘*’ to indicate multiple unreadable signs both al-
lowed only in lost words. Let X = ⟨x1, ...xn⟩ and
Y = ⟨y1, ...ym⟩ two words to be compared, with
n and m their respective lengths, then the ED with
wildcards used in this study, EDWX,Y (n,m), has
been defined as in Figure 2.

The edit distance in general, and also our varia-
tion including wildcards, does not take into account
word lengths and it is not suitable for comparing
the distance between sets of words. For this reason,
most studies introduced a kind of normalisation for
ED values. Given the interesting properties (Fis-
man et al., 2022) of the Generalised Edit Distance
proposed by Li and Liu (2007)3, we normalised
EDW as

EDWX,Y =
2 · EDWX,Y

|X|+ |Y |+ EDWX,Y

where | · | represents the word length.
We used EDW to compare the transliterated

and expanded lost lexicon, created by applying the
TrExp function to every word in Llex, with the
known words in Klex (see next Section).

We implemented the EDW function in a fast
code that also works on GPUs4.

4.2.3 Lexica Matching
The datasets presented in Section 3, as produced
by the cited works, associate each lost word with
one or more cognates in the known language. In
order to adhere to this view and to perform a correct
evaluation, we introduced a specific variant of the
standard Linear Sum Assignment - LSA - problem
(a.k.a. Hungarian algorithm) for matching lexica:
instead of matching single words, we match groups
of words both on the lost side and on the known
side. On the lost language side, this accounts for
different transliteration of the same lost word due to
multiple assignments to the same lost sign (see the
definitions of functions invMapS and TrExp),
while, on the known language side, this accounts
for the sets of cognates considered in the cited
benchmarks.

In order to introduce our modified version
of the LSA algorithm, let us define a partition

3Generalised Edit Distance is a metric, its upper bound is
1 and it does not escalate repetitions remaining simple and
quick to calculate.

4https://github.com/ftamburin/EditDistanceWild
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EDWX,Y (i, j) =





max(i, j), min(i, j) = 0

min





EDWX,Y (i− 1, j) + wD

EDWX,Y (i, j − 1) + wI

EDWX,Y (i− 1, j − 1) + S(xi, yj) · wS
min(i, j) ̸= 0, xi ̸= ‘*’

min





EDWX,Y (i− 1, j)

EDWX,Y (i, j − 1)

EDWX,Y (i− 1, j − 1)

min(i, j) ̸= 0, xi = ‘*’

S(x, y) =

{
0 x = y or x = ‘?’
1 otherwise

Figure 2: Edit Distance with Wildcards definition. wD, wI and wS represents the weight penalisations respectively
for sign deletion, insertion and substitution and, for this study, they have been all fixed to 1.

KlexG = K1
lexG, ...,K

G
lexG of Klex where Kj

lexG

represents a set of known cognates in the dataset;
we can then introduce the variables Ai,j ∈ {0, 1}
representing the lexica alignment obtained by the
LSA algorithm (with Ai,j = 1 iff lW i is assigned
to Kj

lexG), configure the LSA problem to be solved
as

min

|Llex|∑

i=1

|KlexG|∑

j=1

Ai,j ·


 min
X∈TrExpσ(lW i)

Y ∈Kj
lexG

EDWX,Y




s.t.
∑

i

Ai,j = 1, j = 1, 2, ..., |KlexG|
∑

j

Ai,j = 1, i = 1, 2, ..., |Llex|

and, once solved the LSA and fixed the values
for the As matching variables, we can define the
Energy function E for a given problem solution σ
as

E(σ) =

|Llex|∑

i=1

|KlexG|∑

j=1

Ai,j ·


 min
X∈TrExpσ(lW i)

Y ∈Kj
lexG

EDWX,Y




(1)
See Figure 3 for an example of the lexica match-

ing process.
It seems important to note that the computation

of the energy function E for a given solution σ
strictly derives from the solution itself, first by con-
verting the solution coding into signs assignments
by using the function TrExp and then matching
the two lexica by the LSA procedure described
above.

4.2.4 Penalty factors
In order to regularise the entire process and help
the optimisation procedure to find reliable solu-
tions, we introduced some regularisation factors
into the energy function E. Given that our method
relies on a flexible assignment schema allowing
no assignments to lost signs and multiple assign-
ments of known signs, we have to guarantee that
the optimisation procedure does not abuse of these
instruments. In general, no assignments to lost
signs rarely produces a good solution as well as
exaggerating in including multiple assignments of
known signs. In order to discourage solutions with
these characteristics, we introduced two penalisa-
tion factors: if we define #UA(σ) the number of
lost signs without any assignment and #MA(σ)
the number of known signs with multiple assign-
ments for a given solution σ, then the final energy
function to be minimised is

E′(σ) = E(σ)+λ·(#UA(σ)+#MA(σ)) . (2)

To strongly discourage these potentially degenerate
solutions we set λ = 4.

4.3 Energy Optimisation using Coupled
Simulated Annealing

Having configured our problem as a general global
optimisation procedure led us to minimise the en-
ergy function E′ defined before by using any meta-
heuristic proposed in the literature, e.g. tabu-search,
genetic and evolutionary methods, ant colony opti-
misation, simulated annealing, etc.

Coupled Simulated Annealing - CSA (de Souza
et al., 2010) is a method for global optimisation
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Llex Klex

lW TrExp WX WW XX XWY XWZ
AA ZZ 2 2 2 3 2

ZX 1 2 1 3 3
XZ 2 2 1 2 1
XX 1 2 0 2 2

BC WX 0 1 1 2 2
WY 1 1 2 1 2
ZX 1 2 1 3 3
ZY 2 2 2 2 3

ABC ZWX 1 2 2 2 2
ZWY 2 2 3 1 2
ZZX 2 3 2 3 3
ZZY 3 3 3 2 3
XWX 1 2 1 1 1
XWY 2 2 2 0 1
XZX 2 3 1 2 2
XZY 3 3 2 1 2

Figure 3: A simple example of the lexica matching
process. The lost lexicon is identical to that in Table
1, while the known lexicon is formed by five words
grouped into three set of cognates. On the top, we have
the cost matrix computed by using the edit distance (we
did not use the normalised version for readability) and
the values surrounded by a box indicate the minimum
considering two respective groups. At the bottom, these
minimal values represent the costs for a LSA problem
that finds the min-cost matching (thick lines) between
the two lexica respecting the groupings in the lost and
known lexica.

based on Simulated Annealing (SA). CSA is char-
acterised by a set of parallel standard SA processes
(with #Anns defining the number of annealers)
coupled by their acceptance probabilities. The cou-
pling is performed by a term in the acceptance prob-
ability function that is a function of the energies
of the current states of all SA processes creating
a cooperative behaviour via information exchange
between the parallel annealing processes. Coupling
can also provide information that can be used to
drive the overall optimisation process towards the
global optimum. The authors of the original work
present a system able to use the acceptance tem-
perature to control the variance of the acceptance
probabilities with a simple control scheme (called
‘CSA-MwVC’ in the original paper). This leads
to a much better optimisation efficiency because it
reduces the sensitivity of the algorithm to initiali-
sation parameters while guiding the optimisation
process towards quasi-optimal states.

After some attempt with other techniques, we
decided to adopt CSA mainly for two reasons: (a)
it is a method that can be easily parallelised on a
multicore CPU allowing for heavily parallel com-
putations with a minimal exchange of information
and (b) the control mechanism over the variance of
the acceptance probabilities automatically governs
the annealing process avoiding the introduction of
complex annealing schemas that often have to be
tuned for a specific dataset.

For the implementation of CSA we relied on a
code specifically developed for problems based on
permutations5 configuring it to employ 16 parallel
annealers.

The generic SA algorithm is quite simple: given
a solution, we have to perturb it obtaining a new
solution in its neighbourhood that is accepted, or
not, depending on a stochastic decision based on
the new solution energy and the global current sys-
tem temperature. Selecting a neighbouring solution
perturbing the current is a delicate step as we have
to ensure an appropriate sampling of the solution
space. Luckily, Tian et al. (1999) made an in depth
study regarding the most promising ‘moves’ for
solutions based on permutations and the swapping
of two items in the permutation is considered the
best move for assignment problems. In order to
help the system to avoid getting stuck in a local
minimum, we further introduced a random k-swap
perturbation with probability 0.1 with k decaying

5https://github.com/structurely/csa.
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Algorithm 1 CSA_OptMatcher

Data: Ls,Ks, Llex,Klex, N,M,#Anns
Result: the optimised solution best_σ
• Init one solution σj for each annealer j
• Init annealing and generation temperatures
Ta and Tg

for iter = 1, ... do
• Generate #Anns perturbed solutions σ′

j

by swapping two indices in each of them
• Compute E′(σ′

j), j = 1, ...,#Anns using
equations (1) and (2)

for j = 1, ...,#Anns do
if E′(σ′

j) ≤ E′(σj) then
• σj = σ′

j

else
• Accept σ′

j following the
CSA-MwVC algorithm

end if
end for
• Decrease Ta and Tg according to

CSA-MwVC temperature schedules
• best_σ = minj E

′(σj)
end for

with the generation temperature governed by the
CSA schedule.

See Algorithm 1 for a general picture of the
entire optimisation process.

4.4 Evaluation

With regard to evaluation, we stick to the same
procedure introduced in previous literature and, in
particular, in Luo et al. (2019) and measured the
system Accuracy in finding pairs of lost and known
cognates as listed in the considered dataset.

The influential paper from Reimers and
Gurevych (2017) makes clear to the community
that reporting a single score for each session could
be heavily affected by the system random initiali-
sation and we should instead report the mean and
standard deviation of various runs, with the same
setting, in order to get a more accurate picture of
the real systems performance and make more reli-
able comparisons between them. For these reasons,
any new result proposed in this paper is presented
as the mean and standard deviation of system Ac-
curacy over 4 runs with different random initialisa-
tions. In this way, we should give a real picture of
our system performances.

5 Results

The two parameters N and M for solution shap-
ing described in Section 4.1 could be considered
hyperparameters for the proposed method as they
can give more power to the possible solutions at
the price of more parameters to be fixed and thus
slower convergence. We decided to avoid any op-
timisation of these parameters in our experiments
and fix them using a very simple rule: N = 1,
M = 2 if |Ls| > |Ks| and N = 2, M = 1 other-
wise.

Table 2 shows the results of our experiments
compared with the reference literature. Our system
is able to produce better Accuracy than any other
work on all considered benchmark datasets with
a large margin. If we consider the fact that our
results are presented as the mean and std. deviation
of more runs and not as the maximum Accuracy
achieved by the system, the results are even more
relevant.

6 Discussion and Conclusions

We presented a new approach to the ancient scripts
decipherment able to produce very good results
in cognate identification w.r.t. the state-of-the-art.
All the hyperparameters were not optimised at all
and it seems reasonable that increasing N and/or
M even better results can be reached. We plan to
perform more experiments in that direction.

Another system feature worth of mention regards
its ability to converge to reasonable solution for any
simulation; even during the development phase,
the proposed system never got trapped into very
poor sub-optimal solutions. Simulations took a
relevant time to converge, but they always con-
verged without any need to restart the process, a
common technique for this kind of methods (see
e.g. Berg-Kirkpatrick and Klein 2013), confirm-
ing the strength of CSA as a function optimisation
technique.

There are other approaches to the problem in
the literature that we have not explicitly discussed
in Section 2 because not strictly devoted to the
decipherment of ancient scripts, but address the
problem of deciphering substitution or homophonic
codes like the famous Zodiac-408 cipher or the
Beale cipher (e.g. Ravi and Knight, 2011; Nuhn
et al., 2013, 2014). For example Ravi and Knight
(2011) proposed a stochastic model taking into ac-
count both token n-grams and dictionaries. Know-
ing for certain the target language, they can esti-
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Benchmark Dataset
U/OH LB/MG LB/MG CS/AG

System names
(Berg-Kirkpatrick and Klein, 2011) 90.4 - - -
(Luo et al., 2019) 93.5 84.7 67.3 -
This work (CSA_OptMatcher) 95.5±0.83 89.4±1.81 83.4±2.50 86.3±1.73

max 96.3 max 91.0 max 87.0 max 87.9

Table 2: Accuracy results in cognate identification compared with the reference literature.

mate a language model (LM) using a large set of
data, even artificially generated, and can take advan-
tage of complete lexica and frequency information
for the known language. Unfortunately, when using
these methods to solve the decipherment problems
on ancient languages often the target language is
not known for certain, maybe it is a language from
the same area sharing the same data scarcity as the
lost one and thus it is not possible to build use-
ful LMs or rely on a complete dictionary. On the
contrary, everything is only partially known or unre-
liable: phonetic values, signs mappings, frequency
information and the true underlying language. This
facts make it very difficult to use methods like the
one proposed by these authors.

Our very promising results in the decipherment
of ancient scripts might suggest that these tools can
solve all the unsolved problems, of palaeographic,
epigraphic and linguistic nature, debated for years
by experts. This is naturally not the case. These
techniques, even if very promising, also present a
large number of problems when applied in real de-
cipherment attempts: (a) first of all, segmented and
clean corpora are needed. Building a corpus for an
ancient undeciphered script, even in the case where
we have already solved the segmentation problems
and were able to collect single sign images and
sign/word sequences, is not an easy task. Most
inscriptions are damaged and many signs are not
readable. Broken words and/or partial sentences
are also frequent; (b) an extensive cognate list must
be available, but in most real cases we only have
two word lists that must be matched without any
guarantee that lost language cognates are really
present in the known language lexicon; (c) in NLP
we have to make evaluation on well-known test
beds and all the studies we discussed before worked
on well known correspondences to prove the sys-
tem effectiveness. It is an entirely different matter
to test the same systems on real cases when we
have to deal with unknown writing systems and

their corresponding languages.
In the light of these considerations, we agree

with Sproat (2020) who suggested that these tools
can help paleographers shed light on the decipher-
ment process, but we cannot rely on them only for
providing a complete solution to our real problems
without any human intervention for guiding the
process and interpreting the results. However, our
future plans regard the application of the proposed
system to undeciphered scripts from the Aegean
area, hoping to shed some light on problems unre-
solved for centuries.

Codes and all datasets for reproducing the exper-
iments are available on github6.
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