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Abstract

To gain a better understanding of the linguistic
information encoded in character-based
language models, we probe the multilingual
contextual CANINE model. We design a
range of phonetic probing tasks in six Nordic
languages, including Faroese as an additional
zero-shot instance. We observe that some
phonetic information is indeed encoded in the
character representations, as consonants and
vowels can be well distinguished using a linear
classifier. Furthermore, results for the Danish
and Norwegian language seem to be worse for
the consonant/vowel distinction in comparison
to other languages. The information encoded
in these representations can also be learned
in a zero-shot scenario, as Faroese shows a
reasonably good performance in the same
vowel/consonant distinction task.

1 Introduction

Subword and character sequence information is cru-
cial in state-of-the-art neural language models (Sen-
nrich et al., 2016; Kudo, 2018) because it improves
their generalization and robustness capabilities
(Xue et al., 2022; Tay et al., 2021). Additionally,
character-level features are beneficial for morpho-
logically rich and low-resource languages (Papay
et al., 2018; Riabi et al., 2021). However, there is a
lack of interpretability methods for character-based
models. Only a few approaches have tried to
understand the linguistic information encoded in
character embeddings and cross-lingual approaches
must be evaluated more rigorously by considering
typology and linguistic distance (Artetxe et al.,
2020). Therefore, in this work, we analyze how
much phonetic information is encoded in contex-
tualized multilingual character embeddings from
the CANINE language model (Clark et al., 2022).

Based on six Nordic languages, we extract
phonetic features for characters in context through
unsupervised grapheme-to-phoneme alignment

and design a set of probing tasks. We explore the
character representations in two different evaluation
scenarios, a traditional train/test split scenario and a
leave-one-letter-out scenario. We find that phonetic
information on a global level (e.g., vowel and
consonant detection) is encoded accurately in the
character representations and more mixed results
are achieved on lower-level probing tasks such as
consonant voicing and manner, or vowel height
and roundness. We also see that this information
is transferred to the related zero-shot language
Faroese. Our code is available online1.

2 Related Work

We discuss previous work in this area by focusing
on existing multilingual character language models
and the interpretability of these models.

Building Character-Level Models Subword and
character-level information is exhibiting great ben-
efits for computational language models (Bostrom
and Durrett, 2020; Zhang et al., 2021). With the rise
of multilingual models, pre-trained simultaneously
on 100+ languages, these are also being adapted
for and augmented with character-level information
(Xue et al., 2022; Tay et al., 2021). We choose
to work with the CANINE model by Clark et al.
(2022), because it is a strongly performing neural
encoder which operates directly on character
sequences, i.e., without explicit tokenization or
vocabulary, and incorporates a pre-training strategy
operating directly on characters.

Understanding Character-Level Models Be-
cause of their popularity and lack of interpretability,
many researchers have attempted to understand
what is behind word and letter representations.
A number of probing tasks have been employed
to extract knowledge from contextualized word
representations (e.g. Liu et al. 2019). For character

1https://github.com/manexagirrezabal/
hidden_folk_repository
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Figure 1: This figure represents how we process our
textual data. The alignment between graphs and phones
is done using m2m-aligner (1). We extract the phones
from Wikipron (2). We obtain the Canine embeddings
(768 dimension representation) (3). Finally, we get
the phonemic information of letters using the ipapy
package from Python (4).

representations, there are works in which the
authors attempt to interpret the individual character-
level hidden state contributions (Pinter et al., 2019;
Kementchedjhieva and Lopez, 2018). In our case,
though, we employ probing as the mechanism to
interpret the representations. Recent work probes
word-level representation with respect to their
knowledge about characters. For instance, Kaushal
and Mahowald (2022) predict the presence of a par-
ticular character in a token showing that large mod-
els robustly encode this information across various
scripts. Additionally, Itzhak and Levy (2021) test
the "spelling abilities" of language models showing
that the embedding layers of RoBERTa and GPT-2
learn the internal character composition of whole
words to a surprising extent, without seeing the
characters coupled with the tokens during training.

Specifically on character-level models, Boldsen
et al. (2022) compare perceptual representations to
character embeddings. Their cross-lingual analysis
shows that character representations correlate with
phonological representations for languages using an
alphabetic script and implies a relationship between
the information encoded in the embeddings and
the orthographic transparency of the languages.
Furthermore, Hahn and Baroni (2019) probe
character models in a cognitively realistic task on
data with removed word boundaries showing that
recurrent LMs learn morphological, syntactic and
semantic aspects even on unsegmented text. These
findings encourage the exploration of character and
phoneme-level learning.

3 Contextualized Character Embeddings

We extract character embeddings (in the context
of full words) from the CANINE model. In this
section, we present the multilingual data and the
embedding extraction.

Data Since character-level features are impor-
tant for morphologically rich and low-resource
languages (Lauscher et al., 2020; Garrette and
Baldridge, 2013), we choose a set of six Nordic lan-
guages for our experiments: Danish (da), Swedish
(sv), Norwegian (nb), Finnish (fi), Icelandic (is)
and Faroese (fo). Five of the languages are included
in the training data of the character language
model (da sv, nb, fi and is). Additionally, we
use Faroese to test performance of multilingual
zero-shot embeddings. The starting point for
extracting character embeddings is a frequency
list for each language (see Table 1). We select the
10000 most frequent words of every language and
then randomly sample 3000 of these words and
retrieve embeddings for all characters in these 3000
words. This implies that more frequent characters
in a given language will be better represented in the
embeddings. Note that word length will affect the
number of character embeddings extracted.

Model We extract contextualized embeddings
from the CANINE model (Clark et al., 2022).
CANINE is a neural encoder which operates
directly on character-level without requiring an
explicit tokenization strategy or a pre-defined
vocabulary. We choose this model since it showed
superior performance on multilingual downstream
tasks. CANINE has been trained on data from
104 languages.2 While it performs well on NLP
tasks, it has not yet been explored which type
of linguistic information is encoded in these
pre-trained character representations. We use the
HuggingFace checkpoint of the CANINE model
with autoregressive character loss.3 We input words
to the model, and use the last hidden state of a
character in the context of the word it occurs in as
a contextualized character embedding (d = 768).

4 Phonetic Feature Extraction

In order to extract phonetic features from characters,
we need to know how a specific letter should be

2The CANINE model is pretrained on on the multilingual
Wikipedia data of mBERT.

3https://huggingface.co/google/
canine-c
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pronounced. We do that by aligning the characters
with the string of phones as given by Wikipron. As
the number of letters and phones may not match, we
align them using m2m-aligner (Jiampojamarn
et al., 2007), an unsupervised model that is based
on Expectation-Maximization. Then, we use the
ipapy toolkit to obtain phonetic features for each
phone. We describe this process below.

Pipeline We use the aligner to obtain phonetic
features for characters in all six languages. First, we
obtain a dictionary for each language from Wikipron
(Lee et al., 2020),4 and then, we align graphemes to
phones using m2m-aligner.5 Wikipron includes
both phonemic and phonetic representations of
words, which they refer to broad and narrow, respec-
tively. As the model for extracting features works
at a phonetic level, we use the phonetic representa-
tions (narrow). In the next step, we use the ipapy6

toolkit to extract phonetic features for each phone.
Finally, the IPA features are merged with the

CANINE character representations. This process
results in one dataset per language, consisting
of 6067 characters in 899 words for Danish,
700 characters in 135 words for Faroese, 4698
characterss in 745 words for Finnish, 268 characters
in 43 words for Icelandic, 302 characters in 57
words for Norwegian, and 312 character in 58
words for Swedish. The reason for the drastic
decrease in samples for some of the language is the
small size of the pronunciation dictionaries.

5 Probing

In this section, we describe the probing tasks and
the evaluation scenarios that we devise to test the
extracted character embeddings.

We design 23 tasks to investigate the phonologi-
cal knowledge encoded in the multilingual character
representations. The tasks are split into three cate-
gories: global features (e.g., is this character a vowel
or not?), consonant features (e.g., is the manner of
articulation of this consonant plosive or not?7, and
vowel features (e.g., is this vowel pronounced as a
rounded vowel?8 The probing tasks have the struc-

4Please find the size of the dictionaries in Appendix A.2.
5We evaluated the alignments of m2maligner by using

a manually aligned dictionary. This is available for the Danish
language (Juul, 2010), where ∼ 42, 000 words and their
phonetic transcriptions are aligned. Results show that the word
error rate is below < 2.5%.

6https://github.com/pettarin/ipapy
7In Danish, "b" in peber ( [’phew5]) vs. åben ( [’O:b

˚
m
"
])

8In Danish, "o" as in ballon ([b
˚
a’l2N]) (unrounded) vs. blod
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Figure 2: Weighted F1-scores for two global features:
vowel prediction (top) and consonant predictions
(bottom). Exact numbers in Appendix A.4.

tureF : X → Y , where given a set of character rep-
resentations X , we want to find the best mapping F
that relates X to a set of target features Y using a su-
pervised Logistic Regression classification model.

As discussed by Hewitt and Liang (2019), it is
important to take into account the expressivity of
a probing task, since overly expressive probes, i.e.,
too many possible mappings for F : X → Y , does
not reveal much about the internal feature represen-
tations. Therefore, we test the all probing classifiers
in two evaluation scenarios: (i) 80/20, a random
80% training and 20% test split of the data, and (ii)
LOLO, a leave-one-letter-out training and test split.
The 80/20 setup implies that the same characters (in
different contexts) can appear in the train and test
split, resulting in a simpler probing task, whereas
the LOLO setup ensures zero-shot learning for the
specific character of which all representations in
all contexts are held out during training.

6 Results

To understand the implicit phonetic information
encoded in contextual representations, we present
weighted F1-scores for a selection of features.9

Most of the individual probing tasks show F1-scores
above 0.5, which means that the models generally
perform better than a random baseline.

In Figure 2, we observe the results for two global
features, where we predict whether a character is
a vowel (top) and whether a letter is a consonant
(bottom). In each plot, we report the results of both
evaluation scenarios. Faroese performs very similar

([’b
˚
loDP])(rounded)
9See Appendix A.4 for the full results.
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Figure 3: Heatmap for global type vowel. The barplot shows the frequency of the given character.

to Danish, even though the CANINE training data
does not include any Faroese data. Furthermore,
Norwegian and Swedish are the languages with the
smallest difference between different validation
methodologies (80/20 vs. LOLO).

Figure 3 shows the LOLO performance of
each model for all characters and languages.
The models were trained to predict whether the
contextual character embedding had the label
global_type_vowel, meaning that the charac-
ter in this specific context is pronounced as a vowel.
Taking a closer look at Danish and Norwegian,
for instance, the F1-scores are relatively similar.
This was expected given the similarities between
the two languages in the written form. Although
the results are similar, if we zoom in to specific
character, we observe that the performance for
vowels is systematically worse for Danish, which is
reasonable given the complex nature of the Danish
vowel system (Trecca et al., 2018).

7 Conclusions & Future Work

In this work, we design a probing mechanism
to better understand information encoded in
contextual character representations, for which
we use two validation mechanisms. The first one,
where the training data is divided into training and
testing set, and the second one where we train one
model for each character. The reasoning behind
this is that a letter representation, even though it
occurs in a different context, would have a similar
representation and therefore, it would involve a
kind of data leakage to the testset. We can imagine
the example of the letter "a" in the words "tram" and
"gas" in English. The contexts are rather different,
but we would expect the representation of the letter
"a" to be relatively similar, as it is pronounced

similarly. Therefore, the LOLO evaluation allows
us to test the representations of a character in any
context in a zero-shot scenario.

Following this methodology, we observe that
contextual character representations encode some
phonetic information, supported by the probing
classifier performances. This result is in line
with similar works performed on less complex
representations, such as word2vec, PPMI+SVD or
an RNN encoder-decoder (Silfverberg et al., 2018),
where they found that in some languages these
representations showed distributional properties.

We use Wikipron data as linguistic knowledge
and we align graphs and phones using an automatic
aligning mechanism. We validate the aligner
for Danish on manually aligned data, but other
languages may have their own specific challenges.
We use a wide range of phonetic probing tasks to
accommodate language-specific particularities.

It is crucial that the number of positive and
negative instances is checked when probing each
phonetic feature. As expected, many pronunciation-
related features do not occur in specific languages,
and thus, this results in phonetic features with only
one class, which will not shed any light on such
phonetic properties. Hence, future research should
address the design of these probing tasks as much as
the results. Finally, since some of the datasets were
relatively small, using a grapheme-to-phoneme
model could increase the number of instances.
Besides, these analyses could be extended to more
languages to cover the full spectrum of orthographic
depth.
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A Appendix

A.1 Frequency Lists
Table 1 contains the details about the frequency lists used for each language.

Language Reference & Source

Danish DSL frequency list by Jørg Asmussen
Faroese Sosialurin corpus by Hansen et al. (2004)
Finnish Parole corpus frequency list by the Institure for the Languages of Finland
Icelandic Icelandic Corpus for Academic Words by Ólafsdóttir et al. (2022)
Norwegian Kelly List by Kilgarriff et al. (2014)
Swedish Kelly List by Kilgarriff et al. (2014)

Table 1: Data sources of the frequency lists for all six languages.

A.2 Pronunciation Dictionaries
Table 2 shows the size (word count) of the pronunciation dictionaries used in this work to train the
m2n-aligner in all six languages.

Language Words

Danish 8,219
Faroese 1,118
Finnish 80,377
Icelandic 464
Norwegian (bokmål) 604
Swedish 372

Table 2: Pronunciation dictionary size for all six languages, obtained from Lee et al. (2020).

A.3 Average word length and standard deviation
Table 3 shows the average word length and standard deviation for each language in the CANINE embeddings.

Language mean std.

Danish 7.5398 3.0756
Faroese 7.8557 3.6023
Finnish 7.7544 2.8365
Icelandic 8.4372 3.4093
Norwegian 7.0766 2.8401
Swedish 7.5166 3.3496

Table 3: Mean word length and standard deviation for each language in the CANINE embeddings.
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A.4 Full Results
Table 4 presents the LOLO results (F1 scores) for all probing tasks and all languages.

Feature no da sv fa fi is

global_type_consonant 0.88 0.81 0.95 0.83 0.86 0.82
global_type_vowel 0.87 0.81 0.91 0.81 0.89 0.86
global_type_diacritic 0.87 0.56 0.80 0.96 0.78 0.86
global_type_suprasegmental 0.82 0.92 0.71 0.86 0.77 0.81

consonant_voicing_voiced 0.57 0.64 0.59 0.43 0.43 0.67
consonant_voicing_voiceless 0.57 0.65 0.66 0.39 0.43 0.50
consonant_place_alveolar 0.46 0.74 0.63 0.58 0.69 0.66
consonant_place_bilabial 0.83 0.83 0.82 0.85 0.86 0.85
consonant_place_labio-dental 0.89 0.90 0.87 0.88 0.94 0.87
consonant_place_palatal 0.92 0.96 0.96 0.95 0.95 0.89
consonant_place_velar 0.86 0.92 0.85 0.90 0.86 0.90
consonant_manner_approximant 0.86 0.86 0.96 0.91 0.87 0.95
consonant_manner_nasal 0.72 0.78 0.83 0.69 0.73 0.84
consonant_manner_non-sibilant-fricative 0.89 0.75 0.85 0.86 0.94 0.73
consonant_manner_plosive 0.64 0.57 0.62 0.52 0.67 0.54

vowel_height_close 0.63 0.77 0.89 0.82 0.48 0.84
vowel_height_close-mid 0.81 0.72 0.74 0.90 0.92 0.83
vowel_backness_front 0.51 0.54 0.41 0.37 0.33 0.53
vowel_backness_back 0.71 0.65 0.61 0.71 0.33 0.81
vowel_roundness_rounded 0.80 0.71 0.67 0.83 0.67 0.77
vowel_roundness_unrounded 0.80 0.72 0.70 0.81 0.67 0.83

Table 4: LOLO results (F1 scores, weighted) for all probing tasks and all languages.
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