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Abstract 

Japanese writing is a complex system, and 

a large part of the complexity resides in the 

use of kanji. A single kanji character in 

modern Japanese may have multiple 

pronunciations, either as native 

vocabulary or as words borrowed from 

Chinese. This causes a problem for text-to-

speech synthesis (TTS) because the 

system has to predict which pronunciation 

of each kanji character is appropriate in the 

context. The problem is called homograph 

disambiguation. To solve the problem, this 

research provides a new annotated 

Japanese single kanji character 

pronunciation data set and describes an 

experiment using the logistic regression 

(LR) classifier. A baseline is computed to 

compare with the LR classifier accuracy. 

This experiment provides the first 

experimental research in Japanese single 

kanji homograph disambiguation. The 

annotated Japanese data is freely released 

to the public to support further work.    

1 Introduction 

Japanese uses a mixed writing system with three 

distinct scripts and one romanization. Kanji 漢字
is the writing script that borrows directly from 

Chinese characters which were introduced in 

Japan from China through Korea from the third 

century CE. There are 2,136 commonly used kanji 
characters termed Joyo kanji in present-day 

Japanese. 1  A single kanji character in modern 

Japanese may have multiple pronunciations 

derived from the linguistic history of the kanji 

characters as either native vocabulary words or as 

terms borrowed from Chinese. For instance, the 

 
1https://kanji.jitenon.jp/cat/joyo.html 

kanji character 山 ‘mountain’ can be read as either 

the native Japanese word yama or the Chinese-

derived term san. The native Japanese 

pronunciations of the kanji character 文 ‘letter, 

sentence, writings’ are humi, aya, and kaza, while 

Chinese borrowed pronunciations are bun and 

mon. Because a kanji character has multiple 

pronunciations, to predict the appropriate 

pronunciation for each kanji character, a text-to-

speech synthesis engine must select the 

appropriate reading. This is a form of homograph 

disambiguation. 

    This research is a computational study of 

Japanese kanji homograph disambiguation. 

Recent research in homograph disambiguation in 

Japanese is limited because of the lack of 

extensive data sets that include comprehensive 

pronunciations for the most commonly used kanji 

characters. The goal of this research is to fill this 

void, make new data sets to conduct the analysis 

of kanji characters with multiple pronunciations, 

and use the computational methodology to test the 

data set to lay a foundation for computational 

research on Japanese kanji homographs in the 

future. 

1.1 Japanese writing scripts 

The Japanese writing system uses three different 

scripts, Chinese characters (kanji), and two kana 

systems: hiragana and katakana, which are 

derivatives of Chinese characters. Hiragana 

resulted from the cursive style of writing Chinese 

characters, while katakana developed from the 

abbreviation of Chinese characters. Roughly 

speaking, kanji are used for content words such as 

nouns, stems of adjectives，and verbs, whereas 

hiragana is used for writing grammatical words 
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(case markers and other ‘small’ words). Katakana 

is almost exclusively used today to write foreign 

words and names such as Tennessee テネシー 

teneshii (Sproat, 2009: 47). 

    In addition to the three writing scripts that 

originate in Chinese characters, romaji is another 

phonetic writing script using the Roman 

alphabets. Thus, Japanese essentially has four 

ways to write the language. For instance, the word 

for ‘mountain’ can be written as 山 in kanji, as や

ま in hiragana, as ヤマ in katakana, and yama in 

romaji. For more details, see Zhang (2023: 4f.). 

1.2 Kanji 

The following sections introduce the kanji 

pronunciation ambiguities. 

1.2.1 On readings and kun readings 

Over time as Chinese characters were adapted to 

Japanese, the characters came to be associated with 

native Japanese words as well. For instance, the 

Chinese character for shān 山 was borrowed and 

used to write the newly created Japanese 

morpheme /san/. However, the Japanese already 

had the word yama ‘mountain’. The character 山 

was also used to write the native word yama. 

Present-day Japanese has kept both terms for 

‘mountain’ but uses them in different contexts. For 

instance, by itself, the signifier ‘mountain’ is 

usually referred to as yama, but Mt. Fuji is Fujisan. 

The kanji character 人 ‘people, person’ has two 

borrowed pronunciations: nin and jin, and one 

native Japanese pronunciation hito; the kanji 

character 者 ‘person’ has one borrowed 

pronunciation sha, and one native pronunciation 

mono. A majority of kanji characters have one or 

more Chinese-derived readings, and one or more 

native readings (Sproat et al., 2021). 2  The 

borrowed readings and native ones are known as on 

readings and kun readings, respectively. The 

readings in speech are not a problem, however, 
when given the written form first, for instance, both 

san and yama are written as 山, one must decide, 

depending on the context of each occasion, whether 

the character should be pronounced as san or yama. 

The multiple context-based pronunciations of a 

single kanji make Japanese text a challenge. 

 
2There is a kanji category called 和製漢語 wasei kango 

‘Japanese-made Chinese-character-based words’. Wasei 

kango are words that are composed of Chinese morphemes 

but were made by the Japanese rather than borrowed from 

Chinese. The items have kanji forms and most of them are 

1.2.2 Multiple on readings 

In general, a given kanji character may have 

several different Sino-Japanese readings 

reflecting the different stages at which the kanji 

character was borrowed from Chinese (Sproat, 

2009: 47; Olinsky, 2000). Many Chinese words 

were assimilated into Japanese along with their 

characters and sounds during three unique 

historical periods. Each of these three periods of 

linguistic exchange are marked by a specific 

system of pronunciation. The three systems are 

Go’on ‘Go pronunciations’, Kan’on ‘Kan 

pronunciations’, and To’on ‘To pronunciations’. 

For instance, the kanji character行 has several on 

readings: gyo, ko, and an. For more details, see 

Zhang (2023: 7f.). 

1.2.3 Multiple kun readings 

The Chinese character borrowing has experienced 

at least three booms, and the cycles of kanji 

borrowing led to multiple usages for each single 

kanji character. In other words, one kanji 

character can hold multiple Japanese native 

readings with disparate associated meanings. For 

instance, the kanji character 生 has several kun 

readings each with a different meaning: iki ‘live, 

exist’, hae ‘grass grows’, nama ‘raw’, and u ‘to 

produce, give birth to’; 生 can also be read as ha, 

o, ki, inochi, ubu, and na. 

1.2.4 Personal name readings 

Personal name readings are a reading category 

different from on readings and kun readings. 

A kanji character has diverse readings in personal 

names which are different from its on readings 

and kun readings. For instance, the kanji character 

一 has several personal name readings: i, osamu, 

ka, kazu, and katsu. For more details, see Zhang 

(2023: 9f.). 

1.2.5 Reading ambiguities 

Each single kanji character, generally, has at least 

one on and at least one kun reading. Because a 

kanji character has multiple readings, and each 

reading is used in different senses, when 

encountering a kanji character, one needs to figure 

out an appropriate contextual reading for the kanji 

character. For instance, the kanji character 行 is 

read based on the kun reading rules, e.g., 蛯 ebi ‘shrimp’, 躾 

shitsuke ‘upbringing’, and 凧 tako ‘kite’.  A few of them have 

both on reading and kun reading, e.g., 雫 da (on reading),  

shizuku (kun reading) ‘driblet’, and 鱈 setsu (on reading),  

tara (kun reading) ‘cod’. 
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pronounced gyo in 修行 shugyo ‘ascetic practices, 

training’, ko in 行動 kodo ‘action’, and an in 行

脚 angya ‘pilgrimage’. 

1.3 TTS and TTS approaches 

Text-to-speech synthesis (TTS) is a technology 

that allows written text to be output as speech. 

Because people are in fact very sensitive to both 

the words and the way they are spoken, the goals 

in building a high-quality TTS system should 

clearly get across the message and use a human-

like voice. These two goals of TTS are called 

intelligibility and naturalness (Taylor, 2009: 2-3).  

    The TTS problem is traditionally split into 

front-end and back-end systems. As one of the 

front-end system problems, the TTS system must 

predict the pronunciations of the words. For the 

in-vocabulary words with a single pronunciation, 

this requires only dictionary lookup. But for other 

types of words, for instance, homographs, because 

polysemous words are pronounced differently 

depending on the intended sense, one must 

analyze the context in which a kanji character 

occurs to select a contextually appropriate 

pronunciation (Gorman et al., 2018). This 

problem has been studied as homograph 

disambiguation, e.g., in English and a few other 

languages. A number of methods have been tried 

for several disambiguation tasks in NLP, 

including part of speech (POS) tagging and 

decision lists. Sproat et al. (1992) propose 

statistics of POS bigram or trigram to solve the 

problem and improve the disambiguation 

performance with words that have different POS 

taggers. Yarowsky (1994, 1997) presents decision 

list algorithms that combine the strengths of n-

gram taggers, Bayesian classifiers, and decision 

trees in a highly effective general-purpose 

decision procedure for lexical ambiguity 

resolution. Gorman et al. (2018) select a set of 163 

homographs for the US English experiment and 

find that hybrid systems (making use of both rules 

and machine learning) are significantly more 

accurate than either hand-written rules or machine 

learning alone.  

1.4 Japanese TTS homograph ambiguities 

Japanese writing is a complex system, and a large 

part of the complexity resides in the reading of 

kanji characters. The trick in any case is to know 

which is the right reading, which makes reading 

Japanese text a challenge for the TTS system 

(Sproat, 2009: 47). As discussed in section 1.2.1, 

the kanji character 山  ‘mountain’ could be 

pronounced either san or yama. The two 

pronunciations share the same meaning.  

However, the TTS system must do homograph 

disambiguation to find an appropriate 

pronunciation based on the contextual 

information of the kanji character. 

    Two features are also related to the Japanese 

homograph disambiguation performance: word 

boundaries and formality. Because there is no 

word-boundary delimiter in Japanese, it is hard to 

identify a word. In the word segmentation 

process, if word boundaries cannot be identified 

correctly, it may lead TTS to incorrectly 

pronounce a string (Olinsky, 2000; Ooyama et al., 

1987; Tesprasit et al., 2003). Therefore, problems 

of word boundary ambiguity and homograph 

ambiguity always occur together. Additionally, 

because Japanese writing is a combination of 

different scripts, kanji is used primarily for stems 

and hiragana is used for most inflectional endings 

and grammatical devices, word boundary 

discrimination can be simplified by detecting the 

transitions of the two different scripts. For 

instance, the string “現代の行政区分 ” ‘modern 

administrative divisions’ can be segmented at 

least into three tokens with the intervention of the 

hiragana の ‘possessive particle’ between the two 

kanji clusters: “現代 ” ‘modern time’ and “行政

区分” ‘administrative divisions’. Katakana, on 

the other hand, is used primarily for phonetic 

renderings of foreign words, further reducing 

ambiguity. Thus, kanji can be considered the 

“harder” case for word segmentation (Olinsky, 

2000).  For instance, the kanji string “米国産業

界 ” can be segmented into two separate ways. 

The first kanji character holds different meanings 

and pronunciations based on the different 

segmentations. The first segmentation is 米

国  ‘America’ 産業  ‘Industry’ 界 ‘Realm’, in 

which the first kanji character 米 is pronounced 

Bei; the second segmentation is 米 ‘Rice’ 国産 

‘Domestic production’  業界  ‘Industry’, in 

which the kanji character 米 is pronounced Kome. 

Taylor (2009: 46) discusses the homograph 

syntactic ambiguity using English sentence 

“Police help dog bite victim” which has at least 

two different possible syntactic patterns: (Police 

help dog) bite victim; and Police help (dog bite 

victim). The homograph syntactic ambiguities 

also exist in Japanese sentences. If not processed 

appropriately, it can hurt the performance of one 

of the TTS goals—intelligibility. 
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    Japanese is famous for its politeness and 

formality. Some Japanese words have both 

informal and formal forms. Formal Japanese 

forms can additionally be divided into three 

categories: 丁寧語 teinei-go ‘polite form’, 尊敬

語 sonkei-go ‘honorific form’, and 謙譲語 kenjo-

go ‘humble form’. The kanji word 今日 ‘today’ 

has two pronunciations, the informal 

pronunciation is kyo, and the formal 

pronunciation is konnichi. Therefore, given the 

kanji word 今日, the system needs to analyze the 

formality based on the contextual information and 

select an appropriate pronunciation accordingly. 

Whether the system can do the contextual 

formality analysis perfectly or not will affect the 

achievement of the other TTS goal—naturalness. 
    In addition to its importance in TTS 

applications, homograph disambiguation is 

relevant to automatic speech recognition (ASR) 

and is also a subset of word sense disambiguation 

(WSD) (Seale, 2021). Therefore, the task 

of kanji homograph disambiguation is not only 

important in improving the Japanese TTS 

performance but is also a crucial part of gaining 

high ASR and WSD accuracy. 

    However, Japanese kanji homograph 

disambiguation, to the best of the author’s 

knowledge, is not currently attested to in peer-

reviewed literature or otherwise published online. 

Also, there does not exist a well-developed data 

set that can support the research. 

1.5 Labeling in Japanese kanji homographs 

In TTS synthesis, the selection of the correct 

pronunciation of a text string occurs when a 

homograph is encountered (Seale, 2021). 

Homographs are pronounced differently depending 

on the intended sense, and the context provides 

enough clues for a homograph to select a 

contextually appropriate pronunciation (Gorman et 

al., 2018; Hearst, 1991). Yarowsky (1997) 

describes the techniques of English homograph 

disambiguation where each homograph is labeled 

originally by hand and a collection of features such 

as nearby content words. We manually label the 

pronunciations for each kanji homograph given a 

context and use machine learning methods to test 

the performance of the Japanese kanji homograph 

disambiguation. The data is released to the public 

for further experimentation by the NLP research 

community.  

1.6 Research contributions 

This research serves as the first academic work 

focused on Japanese kanji homograph 

disambiguation. Its contributions include 

publicizing the first single kanji pronunciation 

annotated data set, a typology of homographs with 

implications for both labeling and modeling and 

offering substantial language-specific resources to 

do Japanese homograph disambiguation. The data 

is released to the public for further 

experimentation by the NLP research community.   

2 Data-driven kanji homograph research 

This chapter introduces the Japanese kanji 
homograph data collecting, labeling, and 

modeling. Although very well respected at the 

current time, this research determined that the part 

of speech (POS) method is not compatible with 

Japanese homograph disambiguation. An 

explanation will be presented at the beginning of 

the chapter. 

2.1 The reason for not using POS 

With the increasing availability of annotated 

language data, several statistical part of speech 

(POS) tags have been developed which achieve 

high accuracy. Many prior work (Asahara et al., 

2000; Brants, 2000; Denis, 2009; Gorman et al., 

2018; Manning, 2011; Ratnaparkhi, 1997; Seale, 

2021; Toutanova et al., 2000) uses POS features 

for disambiguating words. However, unlike 

homographs in some languages, the readings of 

kanji are generally not disambiguated by POS 

tags: firstly, most readings of kanji characters 

correspond to the same parts of speech, for 

instance, the kanji character 山 is a noun whether 

it is read as san or yama; secondly, some kanji 

characters cannot be assigned part of speech, for 

instance, the kanji character 文 is a component of 

the nouns 文化 ‘culture’, 文法 ‘grammar’, and 文

学 ‘literature’, and the part of speech for 文 itself 

cannot be defined. Therefore, POS annotation was 

not adopted as an analyzer in this research. For 

more details, see Zhang (2023: 16f.). 

2.2 Kanji homograph data 

The goal of this research is to construct a way of 

determining an appropriate pronunciation for 

Japanese kanji homographs. For this purpose, a 

data set labeled the pronunciation of commonly 
used single kanji characters was constructed. 
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2.2.1 Data collection 

The labeled single kanji homograph data set is 

constructed using the following data: Japanese 

dictionary Jiten 3  and Universal Dependencies 

(UD) Japanese-GSD.4 Jiten is an online Japanese 

dictionary. According to Jiten, as of June 2023, 

the number of recorded kanji characters is 27,693, 

and the total number of commonly used kanji 

characters is 2,136. This research collected each 

commonly used kanji character readings, 

including on readings, kun readings, and personal 

name readings. In addition, sentences from UD 

Japanese-GSD were combed for the context of 

commonly used kanji characters. These kanji 
characters and their pronunciations were 

combined with the Jiten kanji characters. The UD 

Japanese-GSD resource consists of sentences 

from Wikipedia and sentences which have been 

automatically split into words by IBM’s word 

segmenter (Asahara et al., 2018). The data set is 

segmented into 193,654 tokens and 8,100 

sentences, and divided into training, development, 

and test sets. This research ignored the original 

splits for data collection. 

2.2.2 Kanji homograph extractions 

This research used Python libraries, data classes, 

and collections to extract the kanji homographs. 

The top 100 most commonly used kanji 
homographs in the combined UD Japanese-GSD 

data set were extracted. After this process, some 

kanji homographs were excluded. Firstly, it was 

determined that a kanji homograph with a 

frequency of 50 or more occurrences was optimal, 

because if there is not enough data for a given kanji 

homograph, we cannot build a good classifier. This 

resulted in 86 kanji homographs. Secondly, 18 

semiotic classes were excluded.  There are some 

semiotic classes, for instance, computer languages, 

email addresses, dates, times, telephone numbers, 

and postal addresses are much simpler than natural 

language, and problems will arise when we mix the 
natural language and those semiotic systems in the 

same signal and using the same characters to do so 

(Taylor, 2009: 33-34).  In Japanese, the reading of 

a kanji character inside a number or date expression 

is different from reading a kanji character that is not 

a part of one of those expressions.  For instance, the 

kanji homograph 一 ‘one’ has multiple readings.  

When 一 stands alone, the reading is ichi; when 一 

 
3https://jitenon.com/cat/common_kanji.php 
4 The treebank is licensed under the Creative Commons 

License Attribution-ShareAlike 4.0 International. 

is one part of the semiotic classes, for example, 

ichimai ‘one piece of’, ikko ‘one’, and hitotsu 

‘one’, the reading will be ichi, itsu, and hito, 

respectively, depending on the following 

characters. The third exclusion ensures that each 

pronunciation must occur more than once and be at 

least 2% overall of the annotated data.  Therefore, 

kanji homographs with only one pronunciation 

were removed so as not to bolster model scores, as 

the models would correctly pick the only 

pronunciation class available, and 36 kanji 

homographs removed due to pronunciation 

invariance. Thus, there were 32 kanji homographs 

retained.  1 kanji homograph was excluded due to 

Japanese formality.  The kanji character 私 is a 

first-person singular pronoun that has two 

pronunciations: watashi and watakushi.  There is 
only a slight difference between the two 

pronunciations, and distinguishing the two 

pronunciations requires subtle context.  Therefore, 

it was excluded to avoid confusing the system.  2 

kanji homographs were removed due to automatic 

kanji homograph extraction errors. 5   Data for a 

further 3 kanji homographs were removed because 

the number of examples that can be labeled was 

very small.6  For more details, see Zhang (2023: 

18f.). After removing 74 kanji homographs, the 

remaining UD Japanese-GSD homograph data 

contains 26 unique homographs, and the 26 kanji 

homographs were modeled.  

2.2.3 Kanji homograph pronunciation class 

size 

Each kanji homograph in the data set has at least 

two pronunciations. 77% of the kanji homographs 

have two pronunciations, and 23% have three or 

four pronunciations. 70% of the kanji homographs 

with two pronunciations have one commonly used 

pronunciation, and the commonly used 

pronunciation is greater than or equal to 40% of 
the available data. One kanji homograph has the 

largest difference in pronunciation class size, with 

a ratio of 4:96, and one has a ratio of 49:51. On 

the other hand, four kanji homographs with more 

than two pronunciations have two commonly used 

pronunciations. Those two pronunciations 

accounted for around 90% of the available data 

and the ratio of the two is very close.   

 

 

 

5The kanji homographs are見 and 出. 
6The kanji homographs are 名, 位, and 次. 
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いつ も 、 人 が 沢山 い ます 。 

                              t − 2    t − 1      t     t + 1      t + 2 

 Table 1: Example of n-gram features for the ambiguous kanji character 人 ‘people, person’.  

 

 

 

 

 

2.2.4 Data split redistribution 

The total number of examples for the 26 kanji 

homographs in the data set is 1,903. These samples 

were split into 80% train, 10% dev, and 10% test. 

Stratified sampling was used as the default to 

maintain pronunciation class distribution among 

the splits. The stratified sampling method could be 

advantageous to sample each kanji homograph 

pronunciation category independently.  

2.2.5 Data release 

The new data sets were released for general use 

with the hope of helping to advance future 

research in Japanese and cross-lingual 

homographs. The data sets were released in two 
parts. First, 2,136 commonly used kanji 

homographs with their readings and reading types 

were released in a tab-separated values (TSV) 

file.7 Readings for each kanji homograph include 

on readings, kun readings, and personal name 

readings. An annotated UD Japanese-GSD—a 

data set of kanji homograph readings in context 

was also released.8 It includes sentences in which 

the target kanji homograph has been found. 

2.3 Modeling 

As the task of homograph disambiguation is to 

select a contextually appropriate pronunciation 

for a homograph, a logistic regression classifier 

was developed to make pronunciation predictions, 

and a baseline was computed to compare it 

against. While a baseline makes predictions that 

ignore the input features, the logistic regression 

classifier derives the input features from the 

homographs and the context surrounding them.  

 

 

 
7https://github.com/wenzhang0222/thesis 
8https://github.com/wenzhang0222/thesis 

 

 

 

 

 

2.3.1 Baseline 

A baseline was computed using the most frequent 

class label for each homograph, and then it was 

compared to the logistic regression classifier 

accuracy. 

2.3.2 Logistic regression classifier 

As the main task of homograph disambiguation is 

to select an appropriate pronunciation for a 

homograph given the context, a logistic regression 

(henceforth, LR) classifier was developed which 

considers the contextual features. In the 

development of the LR classifier, one LR 

classifier per-kanji was trained with the following 

n-gram features: tokens indexed one and two 

before and behind the homograph token, bigrams 

indexed immediately before and after the 

homograph token, and a skip-gram, the 

constituents of which surround the homograph 

token.9 Table 1 displays one example of the kanji 

homograph n-gram features: t shows the position 

of the target kanji homograph; t − 2 “も” and t − 

1 “、” are the left two tokens, while t + 1   “が ” 

and t + 2 “沢山 ” are the right two tokens.  Each 

unigram t − 2, t − 1, t + 1, and t + 2; the previous 

bigram t − 2 and t − 1; the following bigram t + 1 

and t + 2; and the skip-gram bigram t − 1 and t + 

1 were extracted as the target token features. 

2.4 Evaluation and analysis 

Per-class accuracy of one of the models from the 

most performant model type is reviewed, and 

error analysis is done for all models. 

 

 

 

 

 

 

 

 

 

9Writing script categories (kanji, hiragana, and katakana) for 

n-grams were also checked but not selected as one of the 

features because they did not help the overall performance. 
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Figure 1: Baseline and LR accuracy for each kanji homograph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

2.4.1 Evaluation procedures 

A baseline and LR classifier were trained and 

evaluated on the test set. Randomness can play a  

major role in the outcome of experiments and 

common sequence tagging tasks, the seed value for 

the random number generator can result in 

statistically significant differences for state-of-the-

art systems (Reimers et al., 2017). Because 

randomness is inherent in the model, different 

results will be obtained if it is run multiple times. 

To protect against the human selection of metrics 

from a particularly good run, the reported metrics 

were taken from the model with the median 

balanced accuracy from each set of five models’ 
performances. Hyperparameters were adjusted 

during training: L1 regularization, LIBLINEAR 

solver, and hyperparameter C = 10. Separate 

models were trained for each kanji homograph. In 

addition, development of the models was done 

using the train and dev splits, and metrics were 

reported on the test split. 

2.4.2 Metrics 

The accuracy of a model provides a measure of its 

predictions’ proximity to the correct values. 

Accuracy is determined in the range between 0  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 1. The performance of the models was 

evaluated using micro accuracy and macro 

accuracy. 

2.4.3 Model performance 

The micro and macro accuracies for the baseline 

and the LR classifier trained in this research are 

recorded in Table 2 — they show, on average, an 

increase between baseline and the non-baseline 

accuracies. The reasons are, firstly, logistic 

regression is famous for handling classification 

problems; secondly, L1 regularization was applied 

in the LR classifier, and it can handle both dense 

and sparse input. 

2.4.4 Per-kanji homograph performance 

Figure 1 shows the accuracies for each kanji 
homograph: the baseline accuracy is represented 

by light blue histograms and the LR accuracy is 

shown in dark blue histograms. While the baseline 

accuracies range from .43 to .86, the LR 

accuracies range from 0.57 to 1.00. Overall, the 

LR accuracies outperform baseline accuracies. 

For more details, see Zhang (2023: 29f.). 

2.4.5 Error analysis 

The following sections report error analysis based 

on the errors made by the baseline and the LR 

classifier. 

 

Kanji geographical feature error analysis 

Reading a kanji character in some place names is 

a problem due to many kanji characters in those 

place names do not follow the default or general 

reading rules (Jones et al., 2022). Most parts of 

Model Micro acc. Macro acc. 

baseline .67 .67 

LR .83 .83 

 

Table 2: 26 kanji models’ micro and macro accuracy. 
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Japan have their own dialects that can be used for 

colloquial interactions.  As a result, kanji reading 

in place names are sometime following local 

traditions or dialects. In this research, there is one 

kanji character that reflects the Japanese kanji 

geographical features. The kanji character is 町 

‘town’. 町 has two pronunciations: the on reading 

cho and the kun reading machi. The reading of 町 

seems casual and it is largely influenced by its 

geographical location. Both 町 ’s baseline and LR 

accuracy are .67. For more details, see Zhang 

(2023: 31f.). 

Fixed expression error analysis 

 

Most kanji characters have a commonly used on 

reading and a commonly used kun reading. 

Generally, when on reading and kun reading share 

the same meaning, the context will select a 

reading based on the n-gram features and 

sentential formality. While kun reading is casual, 

on reading is more formal. However, in some 

fixed expressions, due to history and/or 

geographical reasons, on reading and kun reading 

will no longer be distinguished, and there is only 

one reading. For instance, the kanji character 生 

has two commonly used pronunciations: one is the 

on reading sei, the other is the kun reading nama. 

When 生 means ‘live’, it can only be read as nama 

instead of sei. The LR classifier predicts 50% 

incorrectly in this case. Other examples can be 

found in Zhang (2023: 34f.).  

 

Formality error analysis 

 

The Japanese honorific system is well-developed, 

ranging from pronouncing a single kanji character 

in a specific context to choosing sentence patterns 

and expressions. We retained a mild formality 

kanji homograph to test whether the model can 

learn, and to what extent formality can be learned 

during training. The kanji character is 他 ‘others’. 

他 can combine with the hiragana phrase その  

‘that’ to make a fixed expression その他  ‘the 

others’, and it has two pronunciations in the 

combination: hoka and ta. The only difference 

between the pronunciations sonohoka and sonota 

is that sonohoka sounds more casual, which can 

be used in daily life conversations; sonata is 

formal, can be found in business expressions and 

official documents. The LR accuracy of the kanji 

character 他  is .82, and all the incorrect 

predictions are about the formality pronunciations 

of 他 in the combination その他. This indicates 

that the LR classifier was not able to differentiate 

the Japanese formality robustly.  

 

Pronunciation class size imbalanced error 

analysis 

 

There are two kanji characters that each of which 

has four pronunciations, one is the kanji character 

家  ‘home, house, family’ and one is the kanji 

character 後  ‘later, back’. The character 家  ’s 

pronunciations are: ka, ke, ie, and ya. Among the 

105 examples of the kanji character 家 , the 

pronunciation ka counts for 62%, ke is 19%, ie is  

17%, and ya only counts for 2%. The LR classifier 

could not distinguish the two commonly used 
pronunciations: ka and ke and predicted all the ke 

to ka. LR also predicted ya to ka. Because the ratio 

of the pronunciation ya is very low, it can be 

assumed that features of the pronunciation ya 

were not fully learned by the LR classifier during 

training, and the LR classifier used the most 

frequent pronunciation ka to predict it. Other 

examples can be found in Zhang (2023: 35f.) 

3 Discussion and conclusion 

This research has been motivated by providing the 

first annotated Japanese single kanji 
pronunciation data set to solve Japanese kanji 

reading ambiguities. Although the pronunciation 

of Japanese kanji characters is a bottleneck on 

TTS performance, it has not been studied 

seriously due to the lack of reliable publicly 

available data. At the beginning of Chapter 2, this 

research addressed weaknesses in the use of part 

of speech (POS) as a mean of Japanese kanji 
homograph disambiguation and expounded on the 

source and methods of obtaining and processing 

the data. Some Japanese characteristics, for 

instance, rendaku, formality, and geographical 

features were taken in account when processing 

data. 

    Baseline and logistic regression (LR) classifier 

were used to examine the data performance. 

While the baseline can only obtain 67% prediction 

accuracy, the LR classifier, with the help of the n-

gram feature extractions, effective statistical 

analysis and regularization, improved the 

prediction accuracy to 83%. The following 

sections provide information about the known 

limitations of this research and directions for 

future research. 
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3.1 Known limitations and future research 

As mentioned in Chapter 2, since data is annotated 

by the author in person, it may include some human 

error in labeling. However, this can be resolved 

through a review of the labels and the publication 

of an amended version. In addition, the sentence 

data is obtained from the Universal Dependencies 

(UD) Japanese-GSD data set, this is just one of 

eight UD Japanese corpora and other ones could be 

used to expand the data set. Also, this research 

treats the single kanji homographs as the target, and 

the work could undoubtedly be improved by 

expanding the research to kanji combinations. As 

discussed in Chapter 1, Japanese is one of the 

languages that lack word boundaries. Therefore, 

the first interesting point will be that when a kanji 
homograph is in a kanji combination or phrase, 

which kanji homographs will tie together to make 

a word to create a word boundary with other kanji 
homographs. Then the second point is how the new 

kanji combination can affect the pronunciation 

selection of those kanji homographs. 

    An anonymous reviewer suggests that we 

compare against the kanji disambiguation system 

embedded in MeCab. However, we leave this 

comparison for future work.  

    Finally, due to time constraints, this research 

extracts n-gram features for the target kanji 
homographs. There will be other features that help 

analyze the context to improve the model 

performance. 

3.2 Conclusion 

This research has pioneered labeling for the task 

of Japanese kanji homograph disambiguation in 

text-to-speech applications. It contributes to 

providing the first public free kanji homograph 

annotated data. New data sets are offered to the 

research community to provide further research 

on this work. This research also provides a 

typology of homographs based on specific 

language features. The direction is set for future 

research in Japanese homograph studies and can 

be extended to research on the writing system of 

Chinese characters. 
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