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Introduction

We are pleased to bring you these Proceedings of the Workshop on Computation and Written Language
(CAWL), held in Toronto on July 14, 2023. We received 17 paper submissions, of which 11 were chosen
to appear in the workshop. Additionally, we include a position paper from organizers and the abstracts
of our two invited talks.

Most work on NLP focuses on language in its canonical written form. This has often led researchers
to ignore the differences between written and spoken language or, worse, to conflate the two. Instan-
ces of conflation are statements like “Chinese is a logographic language” or “Persian is a right-to-left
language”, variants of which can be found frequently in the ACL anthology. These statements confuse
properties of the language with properties of its writing system. Ignoring differences between written
and spoken language leads, among other things, to conflating different words that are spelled the same,
or treating as different, words that have multiple spellings.

Furthermore, methods for dealing with written language issues (e.g., various kinds of normalization or
conversion) or for recognizing text input (e.g., OCR & handwriting recognition or text entry methods)
are often regarded as precursors to NLP rather than as fundamental parts of the enterprise, despite the
fact that most NLP methods rely centrally on representations derived from text rather than (spoken) lan-
guage. This general lack of consideration of writing has led to much of the research on such topics to
largely appear outside of ACL venues, in conferences or journals of neighboring fields such as speech
technology (e.g., text normalization) or human-computer interaction (e.g., text entry).

We are excited to bring together researchers working on various aspects of these topics, and hope that
this might be the means for creating a persistant community within ACL focused on these topics.

We would like to thank the members of the Program Committee for completing their reviews promptly,
and for providing useful feedback for deciding on the program and preparing the final versions of the
papers. Special thanks to Nizar Habash for helping with organizational issues. Thanks also to our invited
speakers, Mark Aronoff and Amalia Gnanadesikan, and to the authors of the interesting papers we are
presenting in this volume.

Kyle Gorman, Brian Roark, and Richard Sproat
Organizers of the workshop
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Invited Talks

Paradise Lost: How the Alphabet Fell from Perfection

Mark Aronoff
Stony Brook University

Abstract: The original alphabet, devised by Semitic speakers in Egypt ca. 1800 BCE, was a perfect 1-1
mapping between individual letters and individual sounds. All alphabets and similar systems are descen-
ded from this original invention. Very few alphabets today retain a perfect 1-1 mapping. How far have
alphabets diverged from perfection since? Modern alphabetic systems have letter-to-phoneme mappings
of up to 4-1. These included Italian (one of the most regular) and English (perhaps the least regular).
English also shows a high number of mappings to single morphs (stems and affixes). Korean, the only
alphabetic system that groups letters into syllables, shows an interaction between morphemes and sylla-
bic grouping.

How Linguistic are Writing Systems?

Amalia Gnanadesikan
University of Maryland

Abstract: Theoretical linguists have long denied that writing is language, while NLP research has tended
to conflate writing and spoken language. The truth is more complex than either view. Writing imposes
a linguistic analysis on spoken language, dividing a continuous speech stream into segments, syllables,
morphemes and/or words. These elements are not simply representational. Writing systems impose their
own linguistic structure, for example by requiring syllables to meet well-formedness conditions even
when the spoken syllables violate these conditions. Writing systems also include linguistic categories
that are not used in the languages for which they are designed, such as graphic classifiers used in writing
non-classifier languages or graphic inflectional morphology used for languages with virtually no inflec-
tional morphology.
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Myths about writing systems in speech & language technology

Kyle Gorman∗† and Richard Sproat†
∗CUNY Graduate Center

†Google LLC

Abstract

Natural language processing is largely fo-
cused on written text processing. How-
ever, many computational linguists tacitly
endorse myths about the nature of writ-
ing. We highlight two of these myths—
the conflation of language and writing, and
the notion that Chinese, Japanese, and Ko-
rean writing is ideographic—and suggest
how the community can dispel them.

1 Introduction
For a variety of historical and sociological rea-
sons, natural language processing usually de-
notes the processing of written text, with work
on spoken and signed language—as well as
“multimodal” research—largely consigned to
other venues. This largely unacknowledged fo-
cus on written language affects how computa-
tional linguists understand the nature of lan-
guage itself. In this position paper, we argue
that the field of natural language processing is
beholden to certain misconceptions about the
nature of writing and its relationship to other
forms of language. We then make concrete
suggestions as to how authors and editors can
respond to these myths. We recognize that at
least some of the issues we discuss may be ob-
vious to the reader. If that is the case, we beg
the reader’s forgiveness. However, we think
what we have to say here needs to be said.

2 Writing as a technology
Human language is notoriously hard to define,
but we adopt a standard “cognitive” defini-
tion: the ability to learn and use systems of
conventionalized externalized mental proposi-
tions. This ability is acquired, more or less ef-
fortlessly, by all typically developing humans
barring gross sensory or motor impairments,
and evolved sometime in the early prehistory

of man. Writing, in contrast, is not a cognitive
ability per se, but rather a technology which al-
lows for the creation of durable visible records
of language (Gelb, 1963, 11f.). Use of this tech-
nology can only be mastered by conscious, de-
termined study1 and has developed indepen-
dently only a few times—in Mesopotamia and
Egypt, China, and Central America—and in
each case represents the dawn of human his-
tory in that region.

A writing system is, at its base, a linguis-
tic analysis of the language it is used to write.
(Indeed, the scribes of ancient Mesopotamia
and Egypt are history’s first linguists.) These
analyses may seem quite naïve to the trained
linguist, but the design of even the earliest
writing systems hinge on sophisticated insights
that presage the comparatively recent discov-
eries of the phoneme, mora, and morpheme.2
For this reason, typologies of writing systems
(e.g., Sproat, 2000; Rogers, 2005) are largely
oriented around what types of linguistic units
underlie the writing system’s analysis.

3 Conflation and confusion

Language and writing may be ontologically in-
commensurate objects, but all known forms of
writing are parasitic on spoken language. This
is contrary to standard language ideologies (in
the sense of Lippi-Green, 1997) which tend

1See, for example, Dehaene (2009) for an in-depth
discussion of how parts of the brain which evolved for
other purposes are co-opted in reading.

2Neural networks that process raw text—codepoint
by codepoint or byte by byte—are sometimes said to
work from scratch (e.g. Collobert et al., 2011). The im-
plication seems to be that by doing away with explicit
tokenization and related preprocessing steps, one has
eliminated the need for linguistic analysis altogether.
But since writing itself is a vernacular form of linguis-
tic analysis, these could be said to work from characters
or from bytes (e.g. Gillick et al., 2016; Li et al., 2019),
but they certainly do not work from scratch.
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to value written over spoken language, but it
seems an unavoidable conclusion.

NLP researchers commonly conflate a lan-
guage and the writing system(s) used to write
it. Consider the following quotations, all taken
from papers hosted on the ACL Anthology.3

“Right-to-left” As is well-known, Arabic,
Hebrew, and Persian are written and read
right-to-left.

…right to left languages such as Ara-
bic and Hebrew…

Since Persian is a right-to-left lan-
guage…

However, there is nothing about the lan-
guages themselves that is right-to-left. Fur-
thermore, note that in Unicode, the right-to-
left property of these scripts is purely an issue
for text entry and rendering engines, since the
codepoints are in the same logical order as text
written left-to-right.

“Consonantal” Every language has conso-
nants, so presumably the author below is refer-
ring to the consonantal alphabetic (or abjad)
script used to write Arabic.

One more idiosyncrasy of the Arabic
language is that it is a consonantal
language…

One does not ordinarily indicate short vowels
in Arabic, except in certain pedagogical and
religious texts. While the templatic word for-
mation processes in Semitic languages might
make them uniquely suited for this type of “de-
fective” writing, many languages which lack
this property—including Persian, Urdu, and
until 1928, Turkish—are or were written using
an Arabic-based consonantal script without
great difficulty. This alone shows that there is
nothing particularly “consonantal” about the
Arabic language.

“Syllabic” Much like the presence of conso-
nants, division of spoken language into sylla-
bles seems to be a linguistic universal, so it is
not clear why the authors quoted below have
chosen to highlight this property.

3We deliberately omit citations for these quotations.
We do not wish to draw undue negative attention
to particular authors, but simply to illustrate how
widespread this confusion is within our community.

…French is a syllabic language…

…Linear B, a syllabic language…

Mandarin is a tonal and syllabic lan-
guage…

Punjabi is a syllabic language…

Indeed, Punjabi is notable for having two
major—and rather different—writing systems,
the Gurmukhi alphasyllabary (or abugida) and
the Shahmukhi consonantal alphabet. Neither
of these systems use the phonological sylla-
ble as an orthographic unit, though alphasyl-
labaries have been characterized as using so-
called orthographic syllables.

Chinese Finally, one can find a number of
conflicting statements about the nature of Chi-
nese in the ACL Anthology.

Chinese is a morphemic language.

Chinese is a logographic language…

…Chinese is ideographic

It’s well known that Chinese is an
ideographic language…

…Chinese, Japanese and other
ideographic languages.

We now turn to the question of what kind of
writing system Chinese really is.

4 Ideography and CJK
We acknowledge that there exist many sym-
bol systems which are purely ideographic (or
semasiographic), without any direct reference
to spoken language (Sproat, 2023). However,
DeFrancis (1989, ch. 2) shows that these fail
to satisfy any reasonable definition of writing.
There have also been heroic attempts to de-
velop purely ideographic writing systems, most
notably Blissymbolics (Bliss, 1965). While
carefully designed, such systems struggle with
encoding categories like:

• colors; e.g., chartreuse, royal blue

• proper names; e.g., Kyle, Richard, Park
Slope, Shibuya

• non-imageable predicates; e.g., imagine,
consternation
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• subtle connotative differences; e.g., salt
vs. sodium chloride vs. NaCl.

Dependency on spoken language appears to
be inherent to the design of writing. Despite
this, it is very common to find statements
in the literature that suggest that some writ-
ing systems, especially those used for Chinese,
Japanese, or Korean, are ideographic. We
demonstrate this with a survey of the litera-
ture in subsection 4.4, but first we present a
brief synopsis of how Chinese, Japanese and
Korean writing actually work.

4.1 Chinese writing
As argued by DeFrancis (1989, ch. 3), Chi-
nese writing is best described as morphosyl-
labic. With only rare exceptions, each Chi-
nese character represents a single phonolog-
ical syllable, and in most cases corresponds
to a single morpheme as well. Some charac-
ters, such as 人 rén ‘person’ are nondecom-
posable in that they represent the respective
morpheme, and cannot be broken down into
parts that have any meaning on their own.
However most characters that have ever been
invented—roughly 90%, by some estimates—
are semantic-phonetic compounds that can be
decomposed into a portion that represents
something about the meaning and another por-
tion that represents something about the pro-
nunciation. For example, 鯉 lǐ ‘carp’, can be
broken down into 魚, meaning ‘fish’ and 里,
which here is being used for its pronunciation
lǐ.4 In most cases the pronunciation hint pro-
vided by the phonetic component is not nearly
as good as in the case of 鯉, but the crucial
point is that despite the common myth that
Chinese writing is ideographic, in fact it de-
pends heavily on phonology.

4.2 Japanese writing
The adaptation of Chinese writing to Japanese
is more complex. In Japanese, kanji are used
both to represent words or morphemes of Chi-
nese origin, as well as native words. In the
former case, the same semantic-phonetic prin-
ciples carry over in that the phonetic compo-

4There are also quite a few characters that are
decomposable into two or more bits that represent
the meaning, but unlike semantic-phonetic compounds,
these have not been a major source of new characters
in the last few millennia.

nent serves the purpose of hinting at the (Sino-
Japanese) reading of the morpheme. In the
latter case, the Chinese phonetic component
is generally useless. For example the read-
ing of 鯉 ‘carp’ in Japanese is koi. In such
cases, the kanji comes unanalyzable, like 人
‘person’ in Chinese, in that there is no pho-
netic cue to the reading (though the semantic
component still has some function): 鯉 is just
used as a whole to represent the morpheme koi.
But notice that the unit represented is still
a linguistic unit—a morpheme—not an idea
(cf. Joyce, 2011). Apart from kanji, a large
portion of Japanese writing is covered by hi-
ragana and katakana, two (moraic) syllabaries
that were historically derived from using Chi-
nese characters purely for their pronunciation,
and are now reasonably transparent, phone-
mic systems. That said, there are cases where
the Japanese use of kanji is nearly semasio-
graphic. One case is where different kanji are
used to spell different senses of the same ety-
mon. For example 泊まる tomaru ‘stay, stop
at a lodging’ is probably the same word as
止まる tomaru ‘stop, come to a halt’, but the
two spellings reflect different senses. Another
case involves jukujikun, native Japanese words
that are written with multiple kanji purely for
their meaning. For example sanma ‘Pacific
saury’, has a kanji spelling 秋刀魚 whose in-
dividual kanji convey the meaning ‘autumn
sword fish’. Since saury are long silver fish
usually caught in the autumn, this spelling
certainly evokes the meaning, but none of the
kanji individually correspond to any linguistic
unit. However, this reflects a small portion of
the writing system, and the vast majority of
Japanese writing can still be characterized as
phonological or morphological.

4.3 Korean writing
Chinese characters were used widely in the his-
tory of Korean. Adaptations of Chinese writ-
ing to Korean were very similar to what one
finds in Modern Japanese; see Handel (2019)
for an in-depth discussion. In contrast, Mod-
ern Korean makes very sparing use of Chinese
characters, and then only for morphemes of
Chinese origin; e.g., 男 nam ‘male’ and 女 yeo
‘female’ on bathroom signs, or小 so ‘small’,中
jung ‘medium’, and 大 dae ‘large’ for serving
sizes in restaurants. Nearly all Korean text
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nowadays is written in hangul, the alphabetic
writing system developed in the 15th century
under King Sejong. Korean writing is thus es-
sentially phonological.

4.4 Methods
Since the ideography myth is so pervasive in
the speech and language processing commu-
nity, it seems useful to try to understand
what authors wish to convey when they incor-
rectly describe a language or writing system
as ideographic. Therefore, we conducted an
exhaustive survey of the ACL Anthology5 for
the words ideograph, idiograph [sic], and ideo-
graphic. There is little speech processing work
published in the Anthology, and there is no sin-
gle central repository for research on this topic.
To survey speech research, the search terms
“ideographic” “speech recognition” and “ideo-
graphic” “speech synthesis” were entered into
Google Scholar.6 As anticipated, this proce-
dure retrieved examples from the proceedings
of conferences like ICASSP, INTERSPEECH,
and ASRU, and journals like Computer Speech
& Language. ACL Anthology papers were ex-
cluded from this latter sample.

50 papers, all published 2003–2022, were se-
lected randomly from each of the two samples.
We then examined the surrounding context in
which ideography is mentioned, and manually
coded the following:

• which languages and/or writing systems
this term refers to,

• whether or not language and writing is
conflated, and

• the authors’ apparent reason for mention-
ing ideography.

One author [KG] coded the Anthology sample,
and another [RS] coded the Scholar sample.

4.5 Results
Three general trends emerge. First, as shown
in Table 1, Chinese and Japanese are by far
the most common languages to be described as
ideographic. Three sources described Korean
as ideographic. As we noted above (subsec-
tion 4.3), modern Korean writing makes lim-
ited use of Chinese characters, but it is not

5https://aclanthology.org/
6https://scholar.google.com

Anthology Scholar
Chinese 31 37
Japanese 20 21
(others) 8 1

Table 1: The counts of languages and/or writing
systems described as “ideographic” (etc.) in a sam-
ple of 100 speech & language processing papers,
published 2003–2022 in either the ACL Anthology
or in speech research venues via Google Scholar.

clear why this is qualitatively different than,
for example, English’s ideographic use of the
dollar and pound signs in currency expressions
like $4.20. Akkadian cuneiform and Egyptian
hieroglyphs are both mentioned; these would
probably be regarded as mixed writing sys-
tems, (cf. Hermalin this volume and Sproat
and Gutkin 2021 for recent attempts to quan-
titatively characterize such scripts).

More bafflingly, the undeciphered Proto-
Elamite script, known to us from Early Bronze
Age inscriptions in Iran, is similarly described,
as is Dutch, and the entire Indo-Aryan lan-
guage family. Secondly, 23 of the 100 pa-
pers are quite explicit in incorrectly conflat-
ing writing and language (i.e., describing Chi-
nese as an ideographic language). Third, 69
of the 100 papers which mention ideography
appear to do so as a means to describe—or
simply introduce—the Han characters used in
Chinese, Japanese, and Korean. However, we
note some correctly describe symbols such as
$, &, and Arabic numbers as ideographic.

5 Conclusions
We have shown that researchers in speech
and language processing frequently conflate
writing and language, a mistake that is of-
ten accompanied by misunderstandings about
the nature of writing itself or misinformation
about the nature of specific writing systems.

We recognize that many researchers may
lack the necessary background in writing sys-
tems, and this is unsurprising given that the
history and structure of writing is not widely
taught, at least at North American universi-
ties. For researchers who wish to learn more
about writing systems, we recommend two
texts: Rogers (2005) provides an accessible
introduction to the typology of writing sys-
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tems, and Gnanadesikan (2009) gives an easy-
to-read introduction to the history of writing.

Editors and reviewers should pay more at-
tention the use of inappropriate terminology
used to describe writing systems as a simple
matter of scientific communication. Describ-
ing the Arabic and Chinese languages as right-
to-left or ideographic wrongly conflates of writ-
ing and language; these are the sort of mis-
takes that simply should not be made by spe-
cialists in our field.

We conclude with one concrete suggestion:
we recommend the Unicode Consortium re-
move incorrect uses of the term ideograph in
the standard (Unicode Consortium, 2021). As
the they admit in their FAQ on CJK lan-
guages, this term does not accurately reflect
the nature of these characters, but they claim
the “term is now so pervasive in the standard
that it cannot be abandoned or replaced.”7

However, we submit that the standard’s de-
scription of Han characters as CJK Unified
Ideographs is perhaps the primary channel by
which the myth has been propagated amongst
technologists, and a correction and mea culpa
would do much to publicize the issue and dis-
pel this myth. Handel (2019), for instance,
proposes the term sinographs, and there are
other sensible alternatives.
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Abstract

To gain a better understanding of the linguistic
information encoded in character-based
language models, we probe the multilingual
contextual CANINE model. We design a
range of phonetic probing tasks in six Nordic
languages, including Faroese as an additional
zero-shot instance. We observe that some
phonetic information is indeed encoded in the
character representations, as consonants and
vowels can be well distinguished using a linear
classifier. Furthermore, results for the Danish
and Norwegian language seem to be worse for
the consonant/vowel distinction in comparison
to other languages. The information encoded
in these representations can also be learned
in a zero-shot scenario, as Faroese shows a
reasonably good performance in the same
vowel/consonant distinction task.

1 Introduction

Subword and character sequence information is cru-
cial in state-of-the-art neural language models (Sen-
nrich et al., 2016; Kudo, 2018) because it improves
their generalization and robustness capabilities
(Xue et al., 2022; Tay et al., 2021). Additionally,
character-level features are beneficial for morpho-
logically rich and low-resource languages (Papay
et al., 2018; Riabi et al., 2021). However, there is a
lack of interpretability methods for character-based
models. Only a few approaches have tried to
understand the linguistic information encoded in
character embeddings and cross-lingual approaches
must be evaluated more rigorously by considering
typology and linguistic distance (Artetxe et al.,
2020). Therefore, in this work, we analyze how
much phonetic information is encoded in contex-
tualized multilingual character embeddings from
the CANINE language model (Clark et al., 2022).

Based on six Nordic languages, we extract
phonetic features for characters in context through
unsupervised grapheme-to-phoneme alignment

and design a set of probing tasks. We explore the
character representations in two different evaluation
scenarios, a traditional train/test split scenario and a
leave-one-letter-out scenario. We find that phonetic
information on a global level (e.g., vowel and
consonant detection) is encoded accurately in the
character representations and more mixed results
are achieved on lower-level probing tasks such as
consonant voicing and manner, or vowel height
and roundness. We also see that this information
is transferred to the related zero-shot language
Faroese. Our code is available online1.

2 Related Work

We discuss previous work in this area by focusing
on existing multilingual character language models
and the interpretability of these models.

Building Character-Level Models Subword and
character-level information is exhibiting great ben-
efits for computational language models (Bostrom
and Durrett, 2020; Zhang et al., 2021). With the rise
of multilingual models, pre-trained simultaneously
on 100+ languages, these are also being adapted
for and augmented with character-level information
(Xue et al., 2022; Tay et al., 2021). We choose
to work with the CANINE model by Clark et al.
(2022), because it is a strongly performing neural
encoder which operates directly on character
sequences, i.e., without explicit tokenization or
vocabulary, and incorporates a pre-training strategy
operating directly on characters.

Understanding Character-Level Models Be-
cause of their popularity and lack of interpretability,
many researchers have attempted to understand
what is behind word and letter representations.
A number of probing tasks have been employed
to extract knowledge from contextualized word
representations (e.g. Liu et al. 2019). For character

1https://github.com/manexagirrezabal/
hidden_folk_repository
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Figure 1: This figure represents how we process our
textual data. The alignment between graphs and phones
is done using m2m-aligner (1). We extract the phones
from Wikipron (2). We obtain the Canine embeddings
(768 dimension representation) (3). Finally, we get
the phonemic information of letters using the ipapy
package from Python (4).

representations, there are works in which the
authors attempt to interpret the individual character-
level hidden state contributions (Pinter et al., 2019;
Kementchedjhieva and Lopez, 2018). In our case,
though, we employ probing as the mechanism to
interpret the representations. Recent work probes
word-level representation with respect to their
knowledge about characters. For instance, Kaushal
and Mahowald (2022) predict the presence of a par-
ticular character in a token showing that large mod-
els robustly encode this information across various
scripts. Additionally, Itzhak and Levy (2021) test
the "spelling abilities" of language models showing
that the embedding layers of RoBERTa and GPT-2
learn the internal character composition of whole
words to a surprising extent, without seeing the
characters coupled with the tokens during training.

Specifically on character-level models, Boldsen
et al. (2022) compare perceptual representations to
character embeddings. Their cross-lingual analysis
shows that character representations correlate with
phonological representations for languages using an
alphabetic script and implies a relationship between
the information encoded in the embeddings and
the orthographic transparency of the languages.
Furthermore, Hahn and Baroni (2019) probe
character models in a cognitively realistic task on
data with removed word boundaries showing that
recurrent LMs learn morphological, syntactic and
semantic aspects even on unsegmented text. These
findings encourage the exploration of character and
phoneme-level learning.

3 Contextualized Character Embeddings

We extract character embeddings (in the context
of full words) from the CANINE model. In this
section, we present the multilingual data and the
embedding extraction.

Data Since character-level features are impor-
tant for morphologically rich and low-resource
languages (Lauscher et al., 2020; Garrette and
Baldridge, 2013), we choose a set of six Nordic lan-
guages for our experiments: Danish (da), Swedish
(sv), Norwegian (nb), Finnish (fi), Icelandic (is)
and Faroese (fo). Five of the languages are included
in the training data of the character language
model (da sv, nb, fi and is). Additionally, we
use Faroese to test performance of multilingual
zero-shot embeddings. The starting point for
extracting character embeddings is a frequency
list for each language (see Table 1). We select the
10000 most frequent words of every language and
then randomly sample 3000 of these words and
retrieve embeddings for all characters in these 3000
words. This implies that more frequent characters
in a given language will be better represented in the
embeddings. Note that word length will affect the
number of character embeddings extracted.

Model We extract contextualized embeddings
from the CANINE model (Clark et al., 2022).
CANINE is a neural encoder which operates
directly on character-level without requiring an
explicit tokenization strategy or a pre-defined
vocabulary. We choose this model since it showed
superior performance on multilingual downstream
tasks. CANINE has been trained on data from
104 languages.2 While it performs well on NLP
tasks, it has not yet been explored which type
of linguistic information is encoded in these
pre-trained character representations. We use the
HuggingFace checkpoint of the CANINE model
with autoregressive character loss.3 We input words
to the model, and use the last hidden state of a
character in the context of the word it occurs in as
a contextualized character embedding (d = 768).

4 Phonetic Feature Extraction

In order to extract phonetic features from characters,
we need to know how a specific letter should be

2The CANINE model is pretrained on on the multilingual
Wikipedia data of mBERT.

3https://huggingface.co/google/
canine-c
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pronounced. We do that by aligning the characters
with the string of phones as given by Wikipron. As
the number of letters and phones may not match, we
align them using m2m-aligner (Jiampojamarn
et al., 2007), an unsupervised model that is based
on Expectation-Maximization. Then, we use the
ipapy toolkit to obtain phonetic features for each
phone. We describe this process below.

Pipeline We use the aligner to obtain phonetic
features for characters in all six languages. First, we
obtain a dictionary for each language from Wikipron
(Lee et al., 2020),4 and then, we align graphemes to
phones using m2m-aligner.5 Wikipron includes
both phonemic and phonetic representations of
words, which they refer to broad and narrow, respec-
tively. As the model for extracting features works
at a phonetic level, we use the phonetic representa-
tions (narrow). In the next step, we use the ipapy6

toolkit to extract phonetic features for each phone.
Finally, the IPA features are merged with the

CANINE character representations. This process
results in one dataset per language, consisting
of 6067 characters in 899 words for Danish,
700 characters in 135 words for Faroese, 4698
characterss in 745 words for Finnish, 268 characters
in 43 words for Icelandic, 302 characters in 57
words for Norwegian, and 312 character in 58
words for Swedish. The reason for the drastic
decrease in samples for some of the language is the
small size of the pronunciation dictionaries.

5 Probing

In this section, we describe the probing tasks and
the evaluation scenarios that we devise to test the
extracted character embeddings.

We design 23 tasks to investigate the phonologi-
cal knowledge encoded in the multilingual character
representations. The tasks are split into three cate-
gories: global features (e.g., is this character a vowel
or not?), consonant features (e.g., is the manner of
articulation of this consonant plosive or not?7, and
vowel features (e.g., is this vowel pronounced as a
rounded vowel?8 The probing tasks have the struc-

4Please find the size of the dictionaries in Appendix A.2.
5We evaluated the alignments of m2maligner by using

a manually aligned dictionary. This is available for the Danish
language (Juul, 2010), where ∼ 42, 000 words and their
phonetic transcriptions are aligned. Results show that the word
error rate is below < 2.5%.

6https://github.com/pettarin/ipapy
7In Danish, "b" in peber ( [’phew5]) vs. åben ( [’O:b

˚
m
"
])

8In Danish, "o" as in ballon ([b
˚
a’l2N]) (unrounded) vs. blod
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Figure 2: Weighted F1-scores for two global features:
vowel prediction (top) and consonant predictions
(bottom). Exact numbers in Appendix A.4.

tureF : X → Y , where given a set of character rep-
resentations X , we want to find the best mapping F
that relates X to a set of target features Y using a su-
pervised Logistic Regression classification model.

As discussed by Hewitt and Liang (2019), it is
important to take into account the expressivity of
a probing task, since overly expressive probes, i.e.,
too many possible mappings for F : X → Y , does
not reveal much about the internal feature represen-
tations. Therefore, we test the all probing classifiers
in two evaluation scenarios: (i) 80/20, a random
80% training and 20% test split of the data, and (ii)
LOLO, a leave-one-letter-out training and test split.
The 80/20 setup implies that the same characters (in
different contexts) can appear in the train and test
split, resulting in a simpler probing task, whereas
the LOLO setup ensures zero-shot learning for the
specific character of which all representations in
all contexts are held out during training.

6 Results

To understand the implicit phonetic information
encoded in contextual representations, we present
weighted F1-scores for a selection of features.9

Most of the individual probing tasks show F1-scores
above 0.5, which means that the models generally
perform better than a random baseline.

In Figure 2, we observe the results for two global
features, where we predict whether a character is
a vowel (top) and whether a letter is a consonant
(bottom). In each plot, we report the results of both
evaluation scenarios. Faroese performs very similar

([’b
˚
loDP])(rounded)
9See Appendix A.4 for the full results.
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Figure 3: Heatmap for global type vowel. The barplot shows the frequency of the given character.

to Danish, even though the CANINE training data
does not include any Faroese data. Furthermore,
Norwegian and Swedish are the languages with the
smallest difference between different validation
methodologies (80/20 vs. LOLO).

Figure 3 shows the LOLO performance of
each model for all characters and languages.
The models were trained to predict whether the
contextual character embedding had the label
global_type_vowel, meaning that the charac-
ter in this specific context is pronounced as a vowel.
Taking a closer look at Danish and Norwegian,
for instance, the F1-scores are relatively similar.
This was expected given the similarities between
the two languages in the written form. Although
the results are similar, if we zoom in to specific
character, we observe that the performance for
vowels is systematically worse for Danish, which is
reasonable given the complex nature of the Danish
vowel system (Trecca et al., 2018).

7 Conclusions & Future Work

In this work, we design a probing mechanism
to better understand information encoded in
contextual character representations, for which
we use two validation mechanisms. The first one,
where the training data is divided into training and
testing set, and the second one where we train one
model for each character. The reasoning behind
this is that a letter representation, even though it
occurs in a different context, would have a similar
representation and therefore, it would involve a
kind of data leakage to the testset. We can imagine
the example of the letter "a" in the words "tram" and
"gas" in English. The contexts are rather different,
but we would expect the representation of the letter
"a" to be relatively similar, as it is pronounced

similarly. Therefore, the LOLO evaluation allows
us to test the representations of a character in any
context in a zero-shot scenario.

Following this methodology, we observe that
contextual character representations encode some
phonetic information, supported by the probing
classifier performances. This result is in line
with similar works performed on less complex
representations, such as word2vec, PPMI+SVD or
an RNN encoder-decoder (Silfverberg et al., 2018),
where they found that in some languages these
representations showed distributional properties.

We use Wikipron data as linguistic knowledge
and we align graphs and phones using an automatic
aligning mechanism. We validate the aligner
for Danish on manually aligned data, but other
languages may have their own specific challenges.
We use a wide range of phonetic probing tasks to
accommodate language-specific particularities.

It is crucial that the number of positive and
negative instances is checked when probing each
phonetic feature. As expected, many pronunciation-
related features do not occur in specific languages,
and thus, this results in phonetic features with only
one class, which will not shed any light on such
phonetic properties. Hence, future research should
address the design of these probing tasks as much as
the results. Finally, since some of the datasets were
relatively small, using a grapheme-to-phoneme
model could increase the number of instances.
Besides, these analyses could be extended to more
languages to cover the full spectrum of orthographic
depth.

9



References
Mikel Artetxe, Sebastian Ruder, Dani Yogatama, Gorka

Labaka, and Eneko Agirre. 2020. A call for more rigor
in unsupervised cross-lingual learning. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7375–7388, Online.
Association for Computational Linguistics.

Sidsel Boldsen, Manex Agirrezabal, and Nora Hollen-
stein. 2022. Interpreting character embeddings with
perceptual representations: The case of shape, sound,
and color. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 6819–6836, Dublin,
Ireland. Association for Computational Linguistics.

Kaj Bostrom and Greg Durrett. 2020. Byte pair encoding
is suboptimal for language model pretraining. In
Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4617–4624, Online.
Association for Computational Linguistics.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representation.
Transactions of the Association for Computational
Linguistics, 10:73–91.

Dan Garrette and Jason Baldridge. 2013. Learning a
part-of-speech tagger from two hours of annotation.
In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 138–147, Atlanta, Georgia. Association for
Computational Linguistics.

Michael Hahn and Marco Baroni. 2019. Tabula
nearly rasa: Probing the linguistic knowledge of
character-level neural language models trained on
unsegmented text. Transactions of the Association
for Computational Linguistics, 7:467–484.

Zakaris Svabo Hansen, Heini Justinussen, and Mortan
Ólason. 2004. Marking av teldutøkum tekstsavni
[tagging of a digital text corpus]. URL http://ark.
axeltra. com/index. php.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

Itay Itzhak and Omer Levy. 2021. Models in a
spelling bee: Language models implicitly learn the
character composition of tokens. arXiv preprint
arXiv:2108.11193.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden markov models to letter-to-phoneme con-
version. In Human Language Technologies 2007: The

Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics; Proceedings of
the Main Conference, pages 372–379, Rochester, New
York. Association for Computational Linguistics.

Holger Juul. 2010. K-a-tt-e-p-i-n-er: om komplekse
bogstav-lyd-forbindelser i danske ord. NyS,
39:10–32.

Ayush Kaushal and Kyle Mahowald. 2022. What do
tokens know about their characters and how do they
know it? arXiv preprint arXiv:2206.02608.

Yova Kementchedjhieva and Adam Lopez. 2018.
‘indicatements’ that character language models learn
English morpho-syntactic units and regularities.
In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 145–153, Brussels, Belgium.
Association for Computational Linguistics.

Adam Kilgarriff, Frieda Charalabopoulou, Maria
Gavrilidou, Janne Bondi Johannessen, Saussan
Khalil, Sofie Johansson Kokkinakis, Robert Lew,
Serge Sharoff, Ravikiran Vadlapudi, and Elena
Volodina. 2014. Corpus-based vocabulary lists for
language learners for nine languages. Language
resources and evaluation, 48(1):121–163.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple
subword candidates. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
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A Appendix

A.1 Frequency Lists
Table 1 contains the details about the frequency lists used for each language.

Language Reference & Source

Danish DSL frequency list by Jørg Asmussen
Faroese Sosialurin corpus by Hansen et al. (2004)
Finnish Parole corpus frequency list by the Institure for the Languages of Finland
Icelandic Icelandic Corpus for Academic Words by Ólafsdóttir et al. (2022)
Norwegian Kelly List by Kilgarriff et al. (2014)
Swedish Kelly List by Kilgarriff et al. (2014)

Table 1: Data sources of the frequency lists for all six languages.

A.2 Pronunciation Dictionaries
Table 2 shows the size (word count) of the pronunciation dictionaries used in this work to train the
m2n-aligner in all six languages.

Language Words

Danish 8,219
Faroese 1,118
Finnish 80,377
Icelandic 464
Norwegian (bokmål) 604
Swedish 372

Table 2: Pronunciation dictionary size for all six languages, obtained from Lee et al. (2020).

A.3 Average word length and standard deviation
Table 3 shows the average word length and standard deviation for each language in the CANINE embeddings.

Language mean std.

Danish 7.5398 3.0756
Faroese 7.8557 3.6023
Finnish 7.7544 2.8365
Icelandic 8.4372 3.4093
Norwegian 7.0766 2.8401
Swedish 7.5166 3.3496

Table 3: Mean word length and standard deviation for each language in the CANINE embeddings.
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A.4 Full Results
Table 4 presents the LOLO results (F1 scores) for all probing tasks and all languages.

Feature no da sv fa fi is

global_type_consonant 0.88 0.81 0.95 0.83 0.86 0.82
global_type_vowel 0.87 0.81 0.91 0.81 0.89 0.86
global_type_diacritic 0.87 0.56 0.80 0.96 0.78 0.86
global_type_suprasegmental 0.82 0.92 0.71 0.86 0.77 0.81

consonant_voicing_voiced 0.57 0.64 0.59 0.43 0.43 0.67
consonant_voicing_voiceless 0.57 0.65 0.66 0.39 0.43 0.50
consonant_place_alveolar 0.46 0.74 0.63 0.58 0.69 0.66
consonant_place_bilabial 0.83 0.83 0.82 0.85 0.86 0.85
consonant_place_labio-dental 0.89 0.90 0.87 0.88 0.94 0.87
consonant_place_palatal 0.92 0.96 0.96 0.95 0.95 0.89
consonant_place_velar 0.86 0.92 0.85 0.90 0.86 0.90
consonant_manner_approximant 0.86 0.86 0.96 0.91 0.87 0.95
consonant_manner_nasal 0.72 0.78 0.83 0.69 0.73 0.84
consonant_manner_non-sibilant-fricative 0.89 0.75 0.85 0.86 0.94 0.73
consonant_manner_plosive 0.64 0.57 0.62 0.52 0.67 0.54

vowel_height_close 0.63 0.77 0.89 0.82 0.48 0.84
vowel_height_close-mid 0.81 0.72 0.74 0.90 0.92 0.83
vowel_backness_front 0.51 0.54 0.41 0.37 0.33 0.53
vowel_backness_back 0.71 0.65 0.61 0.71 0.33 0.81
vowel_roundness_rounded 0.80 0.71 0.67 0.83 0.67 0.77
vowel_roundness_unrounded 0.80 0.72 0.70 0.81 0.67 0.83

Table 4: LOLO results (F1 scores, weighted) for all probing tasks and all languages.
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Abstract
Handwritten texts produced by young learn-
ers often contain orthographic features
like spelling errors, capitalization errors,
punctuation errors, and impurities such as
strikethroughs, inserts, and smudges. All
of those are typically normalized or ignored
in existing transcriptions. For applications
like handwriting recognition with the goal of
automatically analyzing a learner’s language
performance, however, retaining such features
would be necessary. To address this, we
present transcription guidelines that retain the
features addressed above. Our guidelines were
developed iteratively and include numerous
example images to illustrate the various issues.
On a subset of about 90 double-transcribed
texts, we compute inter-annotator agreement
and show that our guidelines can be applied
with high levels of percentage agreement
of about .98. Overall, we transcribed 1,350
learner texts, which is about the same size as
the widely adopted handwriting recognition
datasets IAM (1,500 pages) and CVL (1,600
pages). Our final corpus can be used to
train a handwriting recognition system that
transcribes closely to the real productions by
young learners. Such a system is a prerequisite
for applying automatic orthography feedback
systems to handwritten texts in the future.

1 Introduction
When looking at the educational landscape, particu-
larly with children, handwriting remains a prevalent
mode of writing. As shown in Figure 2, handwritten
texts contain various features such as strikethroughs,
inserts, spelling errors, and smudges, which can pro-
vide additional information beyond the actual text
about the writing process and the writer’s skills.

When handwritten texts are transcribed, e.g. to make
them accessible to digital analysis, there is always a
loss of information involved, as we need to abstract
from the source depending on the intended use. Differ-
ent applications may require different levels of abstrac-
tion, depending on the focus of the analysis. This is
similar to the transcription of spoken language, where

depending on the application it may or may not be nec-
essary to retain e.g. filler words or pauses.

In the case of handwriting, a quite common abstrac-
tion is the normalization of orthographic errors. For
example, if the texts are analyzed for aspects like vo-
cabulary, thematic coherence, or reader-orientedness
(Grabowski et al., 2014), retaining spelling errors in
the transcripts is not necessary and may even ham-
per the analyses. In contrast, preserving spelling er-
rors in the transcripts would be crucial to assess ortho-
graphic competence and yet other analyses may require
even more information from the handwriting, e.g. what
pieces of information were added to a sentence after
it was finished (see Figure 2 for examples of such in-
serts). Another task with special requirements concern-
ing the transcripts is handwriting recognition (HWR).
To achieve accurate HWR, it is crucial to have reliable
training data that closely resembles real handwriting
transcriptions which are directly linked to the corre-
sponding image.

The requirements of the different tasks may be con-
flicting. For example, for analyzing text coherence, in-
serted pieces of text should be transcribed where the
writer intended them to appear. In contrast, to serve
as training data for HWR, the inserts have to be tran-
scribed at the position where they were written in the
text. Furthermore, transcribers often need to make de-
cisions that affect later analyses. See for example Fig-
ure 1, where two letters are written on top of each other
(‘S’ and ‘s’, where Schüler ‘student’ with a captial ‘S’
would be the correct spelling).

Figure 1: Handwriting sample of the word ‘Schüler’
with two letters written over each other.

This may be a self-correction or the writer was un-
sure about the correct form and provided both simul-
taneously. It may be viewed as an error in the context
of assessing spelling competence or normalized for the
purpose of analyzing a learner’s vocabulary. Once the
transcriber decided for a variant, information about the
uncertainty is lost.
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Transcripts of handwritten texts are often produced
in the context of a particular project with specific goals.
However, it is a very time-consuming task requiring a
lot of manual effort. It would be much more sustainable
to provide a transcript that is broad enough to cover
multiple use-cases.

Contribution In this paper, we present transcrip-
tion guidelines for handwritten learner texts that retain
various properties of the handwriting and are general
enough to be used for at least two purposes: a) creating
training data for HWR and b) analyzing the continuous
text written by a learner with the possibility of retaining
or discarding features such as strikethroughs or uncer-
tainties which letter was written. We apply these guide-
lines to 1,350 pages of the FD-LEX (Becker-Mrotzek
and Grabowski, 2018) dataset and show that a high
agreement between two transcribers can be achieved.
Furthermore, we discuss how the transcripts can be
converted to two formats: a) to be suitable for HWR
and b) for general text analysis. While our transcription
of the FD-LEX dataset cannot be published, we pub-
lish the guidelines and the converter to foster further
research.1 A practical use-case for the HWR-converted
transcripts with orthographic features present can be
found in our succeeding work (Gold et al., 2023).

2 Related Work

Over the last years, numerous datasets of texts pro-
duced by language learners have been compiled. For
example, some datasets aim to provide authentic
records that do not normalize orthographic deviations,
especially if the frequency of these deviations is neg-
ligible. Others aim at normalizing orthographic devia-
tions to facilitate semantic analysis of the texts.

A good illustration of the approach to preserving the
authenticity of handwritten manuscripts can be found
in the transcription guidelines outlined in Bohnenkamp
et al. (2019), which serves as a (comprehensive) ex-
emplary model for the transcription of historical docu-
ments. The guidelines prioritize a detailed transcrip-
tion of the handwriting, without any amendments to
obvious errors in spelling or punctuation that might re-
sult in changes to the meaning. The detailed and time-
consuming nature of these guidelines allows the preser-
vation of a significant amount of information. Further-
more, they enable the creation of a transcript that can
be analyzed with a focus on specific aspects, such as
the differentiation between comments from individual
authors or the use of different writing tools.

For handwritten learner content, the Grow in Gram-
mar (GIG) Corpus, which is documented in Durrant
and Brenchley (2018), comes with transcripts and a de-
tailed transcription manual. Although not focusing on
HWR, the main goal was to create an authentic record

1https://github.com/catalpa-cl/
learner-handwriting-recognition

of what the learner wrote. However, annotations are of-
ten not precise enough to be usable for HWR. For ex-
ample, in the case of strikethroughs, the complete sen-
tence was flagged instead of indicating the exact posi-
tion of the crossed-out words. Furthermore, the image
data is not available.

Becker-Mrotzek and Grabowski (2018) released the
FD-LEX dataset comprising images and their corre-
sponding transcripts, i.e. the two key components for
HWR. However, the transcripts have been orthographi-
cally normalized to focus on diagnosing and promoting
sub-components of writing competence.

In a recent work (Kerz et al., 2020), the datasets GIG
and FD-LEX were both comparably used to analyze the
development of writing in English and German chil-
dren across school grades. Although these extensive
datasets were created, as orthographical errors were not
present in both data, a deeper analysis of these differ-
ences could not be made.

In contrast to these datasets, several datasets target-
ing HWR exist. IAM (Marti and Bunke, 2002) and
CVL (Kleber et al., 2013) are widely adopted in the
HWR community and are frequently utilized for com-
paring recognition performance across various meth-
ods. They consist of image data with different seg-
mentation levels such as text-line or word level and
align with the corresponding transcripts. However,
these datasets are non-learner datasets, as the texts were
written by skilled writers and merely transcribed from
provided texts, resulting in minimal amounts of ortho-
graphic errors.

None of the datasets had all three components - im-
age data, a properly aligned transcript, and a transcript
that retained orthographic errors - available, despite the
wide range of datasets that were examined.

3 Handwritten Learner Data
For our objective of exploiting a Learner Handwritten
Dataset for HWR, as described in Gold et al. (2023),
we choose the dataset of FD-LEX (Becker-Mrotzek and
Grabowski, 2018). The data set consists of texts from
two different German school types (Gymnasium and In-
tegrierte Gesamtschule)2 at two different learner levels
(5th and 9th grade). The FD-LEX corpus consists of
5,628 texts from 938 learners (i.e. on average 6 texts
per student). Table 1 provides a detailed breakdown of
attendees per system and grade. The text lengths dif-
fer from a few up to 250 words with an average of 66
words and sum up to about 373,600.

The images in FD-LEX are colored scans of white
DIN-A4 paper with ruled lines and a header that
includes the writer’s ID. This layout is consistent
throughout the entire dataset, with only a few excep-

2The German Gymnasium is the highest of the three
types of German secondary schools while the Integrierte
Gesamtschule is a comprehensive school. The school type
Gymnasium will be abbreviated with ‘GYM’ and the com-
prehensive school with ‘IGS’.

15

https://github.com/catalpa-cl/learner-handwriting-recognition
https://github.com/catalpa-cl/learner-handwriting-recognition


Date
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Figure 2: Handwriting sample from FD-LEX with non-normative writing practices present.

Set GYM 5 GYM 9 IGS 5 IGS 9 Sum
1 144 90 84 72 390
2 102 96 84 108 390
3 132 138 114 60 444
4 120 138 90 90 438
5 156 132 72 84 444
6 162 120 96 114 492
7 168 144 132 120 564
8 150 132 120 120 522
9 138 144 126 114 522

10 138 144 132 132 546
11 150 120 108 90 468
12 144 84 108 72 408

Test Set 91 Total: 5628
Annotator 1 168
Annotator 2 1092

Table 1: The number of texts from the FD-LEX dataset
used in our transcription process. Green cells indicate
the subsets used for the test set which were double-
transcribed, while dark orange and blue cells represent-
ing transcripts completed by Annotator 1 and Annota-
tor 2, respectively.

tions such as rare writings on the backside or a blank
white page. Figure 2 shows an example scan from this
dataset.

The data from FD-LEX were collected in compliance
with the relevant data protection regulations. Thus, the
data were processed in such a way that the privacy and
anonymity of the participating schools, classes, and
students were preserved. No individual or group can

be identified from the processed data, except for the
fact that certain cases belong to the same school class
or educational level.

The anonymized transcripts provided by Becker-
Mrotzek and Grabowski (2018) normalize ortho-
graphic errors so that they cannot be directly used
for our purposes. We thus had to re-transcribe the
data according to our developed guidelines (preserv-
ing spelling errors, punctuation errors, and other ortho-
graphic peculiarities) as described in the next section.

4 Transcription Guidelines
The main goal of the guidelines is to ensure that the
transcription reflects exactly what is written by the
learner – i.e. orthography is not corrected – and where.
In cases of doubt, it is necessary to reconcile what the
child has written or intended to write with what a ma-
chine transcription would read. This involves careful
consideration of the context and a deep understanding
of the learner’s level of proficiency. The transcription
process should prioritize preserving the integrity of the
original text and capturing the nuances of the learner’s
writing style, while also ensuring that the final output
is legible for the handwriting recognition task.

In order to ensure consistency in the transcription
process, transcribers are required to write the transcrip-
tion in Excel. It is mandatory to turn off automatic error
correction and automatic capitalization correction for
the beginning of a text. The transcript should contain
the following columns: name of the image, line num-
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d) strikethrough

f) tally markse1) direct insert e2) indirect insert

a) indistinct b) spelling error c) spacing

j) smiley & emoticon k) time

i) irregularh) overlayg) separation

Figure 3: Examples from the FD-LEX dataset highlighting special cases of the transcription guidelines.

ber, status, content, and comment. The status column
should be set to either ‘ok’, ‘dis’ (discussion), or ‘err’
(error). The ‘dis’ status indicates that the transcription
requires further review, while the ‘err’ status indicates
that the line should be disregarded.

Next, we will provide more specific guidelines on
how to transcribe certain elements which are accompa-
nied by examples in Figure 3:

Indistinct Character / Inaccuracy If a letter is writ-
ten indistinctively, it is set inside of curly brackets:
“{n}”. (Example a: mei{n}em)

Spelling Error We have not corrected or tagged
any types of spelling errors. Thus, they are directly
transcribed as the learner wrote them. (Example b:
{Ebendfalls} instead of Ebenfalls)

Spacing Inexperienced learners often struggle with
producing consistent spacing in their writing. It is not
uncommon to find instances where a particular letter
is spaced differently from the rest of the word, neces-
sitating the use of curly brackets for the transcription.
Moreover, it is crucial to identify whether the letter is
at the beginning or end of the word. This is represented
by placing a space character within the curly brack-
ets too. Compounding words can present further chal-
lenges, as learners may inadvertently leave excessive
gaps between the constituent words or use insufficient
spacing. (Example c: Undzwar)

Strikethrough If learners did not want a particu-
lar part of their content evaluated, they crossed it
out. These strikethrough elements are transcribed with
hashes (#). In the transcript, the number of hashes rep-
resents approximately the number of letters that were
struck through. (Example d: ###### #...)

Insert When a learner wanted to add content after-
wards, the person used inserts. A small number of
words or letters to be inserted are usually located at
the targeted position and are transcribed in curly brack-
ets with a “less than” symbol on the left of the con-
tent (example e1: weil {<er} zu). If an insert is
dislocated, the targeted location is tagged using the
word “insert” in curly brackets, followed by the num-
ber of the indirect insert on the page and the signal-
ing character (often asterisks are used), if there is one
({insert1}). The insertion content is tagged like-
wise with the preceding insert1 and if present, a
signaling character. (Example e2: Sep.{insert1}
ein Unfall passierte {insert1 wie})

Regular Punctuation Mark In accordance with
grammatical rules, regular punctuation marks such as
stops (.), commas (,), and exclamation marks (!) are
placed directly adjacent to the last written word. How-
ever, it should be noted that learners may sometimes
place them differently, e.g. with more spacing, which
is then ignored.

Tally Marks In some cases, the learner had to count
the written words and marked them with tally marks
‘|’. These are transcribed in curly brackets according to
the direction of the stroke, followed by an ampersand.
(Example f: nur {/&} das)

Separation of a Word into two Words One type of
correction made by the writer is adding a separator be-
tween two words that were originally written together
because the learner intended them to be separate af-
terwards. Both words are transcribed separately and a
separation sequence ‘|-’ is placed into curly brackets.
(Example g: zu {|-} sehen)
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Overlay Another correction made by a learner is the
overlaying of letters. In this case, both letters are
placed in curly brackets and connected by a plus sign:
{F+f}. The correct letter is written to the left of the
plus and to the right is the incorrect one. (Examples h:
{F+f}enster; au{f+e}; Auß{ß+ss}erdem)

Irregular Letter We found some special letters like
letters with additional artifacts or even unusual versions
of letters. These are transcribed with a plus sign to the
right within curly brackets like: {D+}. (Examples i:
{D+}ie; {E+}s)

Emoticon / Smiley Despite a large number of differ-
ent emoticons, we decided to transcribe every emoti-
con in curly brackets with the same icon: (‘U+1F642’).
(First example j) Certain combinations of characters
can be meant as smileys. These are transcribed as they
appear. (Second example j: (-:-))

Drawing A few learners put down larger drawings
extending over several lines. If there is text before as
well as after the drawing, each of the drawn lines are
given an error status, and they are transcribed as three
hashes (###) and a comment with a reference to the
drawing. In the same style, if no text follows below the
drawing, only one line is added to the transcript.

Time & Date In most cases, the information on time
and date is transcribed as it appears. However, in some
cases, the minutes are underlined, which is then ig-
nored in the transcript. (Examples k: 1900; 23:00
Uhr)

4.1 Format Conversion
We developed two converters to process the transcribed
text: 1) to preprocess it for use in HWR and 2) to ex-
tract the continuous text for an assessment of e.g. the
content of the text. In Figure 4 we can see the tran-
scripts and converted variants of the example page in
Figure 2.

To prepare the text for HWR, the converter removes
curly brackets and all indicator signs (e.g. ‘&’ for a
tally mark, ‘<’ for a direct insert, or ‘-’ for separation).
The converted version from (1) can be seen (1a) in Fig-
ure 4.

While indirect inserts were transcribed where they
appear on the page, which is necessary for the HWR,
the converter for extracting the continuous text inserts
them at the position where they were intended to be
(see (1b) in Figure 4). The converter also removes line
breaks, which is not desirable for the HWR converter.
Furthermore, strikethroughs are removed and in case
of uncertainties which letter was meant, only the one
that the transcriber indicated as most probable (the first
named) is retained. Our current version of the converter
does not include a spelling correction mechanism, al-
though it could be a possible future extension. The
highlighted words in (1b) show where the output of this
converter differs from the original FD-LEX transcript,

IAA Accuracy Kappa #
A1/A2 w w/o {} w w/o {} chars (texts)

GYM-5 1 .95 .99 .94 .98 15,700 (36)
GYM-9 1 .90 .99 .90 .98 15,000 (19)
IGS-5 4 .85 .97 .84 .97 6,300 (18)
IGS-9 4 .86 .98 .85 .98 6,900 (18)
All .89 .98 .89 .98 43,900 (91)

Table 2: Comparison of percentage agreement and
Kappa scores with and without curly brackets { } be-
tween two annotators with number of texts and number
of characters.

which is shown in (2) in Figure 4. We can see that be-
sides the line breaks, the main difference is that in our
transcript, spelling and grammar errors are retained.

Both converters, along with the transcription guide-
lines, are hosted on GitHub3.

5 Transcription Analysis

In this transcription project, a total of 1,350 handwrit-
ten learner pages were transcribed, resulting in about
13,300 lines of text in total. A subset of about 90 pages
was transcribed by two annotators and a gold transcrip-
tion was created by an adjudicator for improved accu-
racy.

5.1 Inter-Annotator Agreement

We computed the inter-annotator agreement (IAA) to
ensure that the guidelines allow for consistent tran-
scriptions. We utilized the Python library LingPy (List
and Forkel, 2019) to align the two transcripts character-
wise and computed in how many cases both annota-
tors used the same character. We report both percent-
age agreement and Cohen’s Kappa but given the high
number of different characters to choose from, chance
agreement is very low, so the two values are very simi-
lar.

In order to ensure ongoing high consistency be-
tween the two annotators, we continually monitored
and checked the agreement between their transcriptions
over time, which resulted in 4 subsets. Table 2 shows
a high level of agreement between the two annotators,
with a percentage agreement of approximately 89%.

To account for the difficulty of deciphering some
characters in the texts, our guidelines allow for the use
of curly brackets to mark cases where the character was
indistinct or difficult to read. Because the interpreta-
tion of these characters can vary depending on the an-
notator’s individual perception and understanding, it is
somewhat subjective. Therefore, we also calculated the
agreement when curly brackets are ignored. This re-
sulted in a very high agreement score of 98%, showing
that most of the disagreements resulted just from mark-
ing incertainty.

3https://github.com/catalpa-cl/
learner-handwriting-recognition
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Originaltext-GYM-9_1-057.png      1    ok    Am 21.11.2014, um 13:45 Uhr, ereignete
Originaltext-GYM-9_1-057.png      2    ok    sich ein Autounfall an der {E}c{k}e Sonnenweg
Originaltext-GYM-9_1-057.png      3    ok    zur Wilhelm-Busch-Straße.
Originaltext-GYM-9_1-057.png      4    ok    ### Ein {<Schwarzge{k}leideter} F{a}hrra{d}fahre{r} ### {<wollte}
Originaltext-GYM-9_1-057.png      5    ok    #### {d}ie belebte Straße überqueren. 
Originaltext-GYM-9_1-057.png      6    err    ###    
Originaltext-GYM-9_1-057.png      7    ok    ###### ###### ##### {E}r musste ### # den roten
Originaltext-GYM-9_1-057.png      8    ok    VW mit der {U}e{n}{n}zeichennummer, das auf ih{n} {z}uraste,
Originaltext-GYM-9_1-057.png      9    ok    nicht gesehen haben, denn nur
Originaltext-GYM-9_1-057.png    10    ok    im letzten Moment wich das rote Auto {a}us,
Originaltext-GYM-9_1-057.png    11    ok    wechselte {d}{a}bei {d}ie Spur und f{u}hr in einen
Originaltext-GYM-9_1-057.png    12    ok    bla{u}en Merzedes mi{r} dem {U}ennzeichen SSSSSS.
Originaltext-GYM-9_1-057.png    13    ok    Beide Fahrer # mussten Schwerverletzt {i}ns
Originaltext-GYM-9_1-057.png    14    ok    {K}rankenhaus eingeliefert werden, in dem

     Sie {insert1} {b}is {insert1 nach meinem wissens}
Originaltext-GYM-9_1-057.png    15    ok    jetzt noch immer l{i}egen.
Originaltext-GYM-9_1-057.png    16    ok    {<Weitere} Zeugen {d}es Vorfalls sollen sic{h} außerdem
Originaltext-GYM-9_1-057.png    17    ok    bei der Polizei unter 110 melden. 

Am 21.11.2014, um 13:45 Uhr, ereignete sich ein Autounfall an der Ecke Sonnenweg zur Wilhelm-
Busch-Straße. Ein Schwarzgekleideter Fahrradfahrer wollte die belebte Straße
überqueren. Er musste den roten VW mit der Uennzeichennummer,
das auf ihn zuraste, nicht gesehen haben, denn nur im letzten Moment wich
das rote Auto aus, wechselte dabei die Spur und fuhr in einen blauen Merzedes mir dem
Uennzeichen SSSSSS. Beide Fahrer mussten Schwerverletzt ins Krankenhaus eingeliefert werden,
in dem Sie nach meinem wissens bis jetzt noch immer liegen. Weitere Zeugen des Vorfalls sollen
sich außerdem bei der Polizei unter 110 melden. 
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Originaltext-GYM-9_1-057.png      6    err    ###    
Originaltext-GYM-9_1-057.png      7    ok    ###### ###### ##### Er musste ### # den roten    
Originaltext-GYM-9_1-057.png      8    ok    VW mit der Uennzeichennummer, das auf ihn zuraste,    
Originaltext-GYM-9_1-057.png      9    ok    nicht gesehen haben, denn nur    
Originaltext-GYM-9_1-057.png    10    ok    im letzten Moment wich das rote Auto aus,    
Originaltext-GYM-9_1-057.png    11    ok    wechselte dabei die Spur und fuhr in einen    
Originaltext-GYM-9_1-057.png    12    ok    blauen Merzedes mir dem Uennzeichen SSSSSS.    
Originaltext-GYM-9_1-057.png    13    ok    Beide Fahrer # mussten Schwerveletzt ins    
Originaltext-GYM-9_1-057.png    14    ok    Krankenhaus eingeliefert werden, in dem Sie  bis nach meinem wissens    
Originaltext-GYM-9_1-057.png    15    ok    jetzt noch immer liegen.    
Originaltext-GYM-9_1-057.png    16    ok    Weitere Zeugen des Vorfalls sollen sich außerdem    
Originaltext-GYM-9_1-057.png    17    ok    bei der Polizei unter 110 melden.

Am 21.11.2014, um 13:45 Uhr, ereignete
sich ein Autounfall an der Ecke Sonnenweg
zur Wilhelm-Busch-Straße.
Ein schwarz gekleideter Fahrradfahrer wollte
die belebte Straße überqueren.
Er musste den roten
VW mit der Kennzeichennummer, das auf ihn zuraste,
nicht gesehen haben, denn nur
im letzten Moment wich das rote Auto aus,
wechselte dabei die Spur und fuhr in einen
blauen Mercedes mit dem Kennzeichen SSSSSS.
Beide Fahrer mussten schwerverletzt ins
Krankenhaus eingeliefert werden, in dem sie nach meinem Wissens bis jetzt noch immer liegen.
Weitere Zeugen des Vorfalls sollen sich außerdem
bei der Polizei unter 110 melden.

FD-LEX
Transcript

Our Transcript

Converted for
HWR

Converted
Continuous Text

(1)

(1a)

(1b)

(2)

C
on

ve
rte

r

Figure 4: Our transcript (1) from the example page in Figure 2, the converted variants for HWR (1a) and continuous
text (1b), and the original transcript of FD-LEX (2). Highlighted words in (1b) show the difference to (2).
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IAA Accuracy Kappa
Anno. <>Gold Anno. w w/o w w/o

GYM-5 1
Set 1 - 17 pages

A1
A2

.93

.96
.98
.99

.93

.96
.98
.97

GYM-5 1
Set 2 - 19 pages

A1
A2

.97

.98
.99
1.0

.96

.98
.99
1.0

GYM-9 1 A1
A2

.91

.98
.98
1.0

.90

.98
.98
1.0

IGS-5 4 A1
A2

.87

.96
.98
1.0

.87

.95
.97
1.0

IGS-9 4 A1
A2

.87

.96
.98
.99

.87

.96
.98
.99

Average
A1
A2
Both

.91

.97

.94

.98

.99

.98

.91
1.0
.94

.98

.99

.99

Table 3: Performance evaluation of annotators A1 and
A2 compared to gold label with and without curly
brackets {}.

Addressed Issue Frequency

unclear characters 25,420
strikethrough (word) 1,511
strikethrough (char in word) 1,631
overlay 809
direct inserts 458
indirect inserts 149
tally marks 31
separator 19
emoji 15

Table 4: Breakdown of the frequency of various non-
normative writing practices in 1,350 pages, as identi-
fied by our transcription guidelines. These practices in-
clude unclear characters, inserts, strikethroughs, emo-
jis, tally marks, separators, and overlays.

To create a single version that represents the most
accurate transcription of the content, the two versions
were merged into a gold-standard version by an adju-
dicator. We then evaluated the performance of both an-
notators, A1 and A2, by comparing their transcriptions
to the gold standard using the same evaluation metrics
as before. The results, presented in Table 3, show that
on average, A1 had a slightly lower level of agreement
with the gold standard than A2. Nevertheless, the over-
all level of agreement between the two annotators and
the gold label was high, with a score of 94% and 99%
without curly brackets.

5.2 Dataset Statistics
The transcriptions mark particular features of hand-
writing. The frequency of these can be seen in Table 4.
One of the most notable features was the presence
of a significant number of unclear characters, which
amounted to over 25,400 instances within the whole
transcribes dataset. Another notable feature is the pres-

ence of over 1,500 instances of strikethrough words,
and about 1,600 single characters were struck out.

Furthermore, there were 800 instances of overlays,
which occurred when the writer wrote over a previ-
ously written text. These overlays made it difficult
to discern the intended characters or words, and re-
quired the annotators to carefully examine the image
and use their best judgment to transcribe the correct
characters. The most frequent overlays are upper and
lower case variants like ‘S+s’, ‘A+a’, ‘M+m’, ‘E+e’,
and ’F+f’. Additionally, there were over 450 direct in-
serts and about 150 indirect inserts, which required the
annotators to transcribe the insert location and the cor-
responding content separately. 15 instances of emojis
were found throughout the transcription.

6 Summary and Related Research
Findings

In order to make handwritten texts available to auto-
matic analyses such as an automatic feedback system
for spelling errors, the texts need to be transcribed first,
whereby all necessary features such as spelling errors
need to be retained. A HWR system that automates
such transcriptions needs images and corresponding
transcripts as training data. Since no such dataset yet
existed, we manually re-transcribed 1,350 pages of
the learner dataset FD-LEX, while maintaining the au-
thenticity of the handwritten texts and preserving non-
normative writing practices. We developed compre-
hensive transcription guidelines to address issues such
as spelling errors, indistinct characters, word separa-
tion, drawings, and special signs like tally marks. The
transcription process resulted in a corpus that can be
transformed using two converters into a version for
HWR and a continuous text for content assessment.
To ensure consistency, about 90 pages were double-
transcribed, yielding a high IAA of about .98 at the
character level.

We also investigated the frequency of certain non-
normative writing practices and highlighted the benefit
of having an authentic record of young learners’ texts.

Based on this work, we were able to investigate
handwriting recgonition of learner texts when ortho-
graphical errors are supposed to be retained (Gold
et al., 2023). In this subsequent study, we used 1,350 of
the transcribed pages of the FD-LEX dataset for train-
ing a handwriting recognizer and tested it on the gold
transcription of the double-transcribed pages. By in-
corporating a language model and a dictionary that we
automatically enriched with possible spelling errors,
we were able to improve the recognition performance
and to retain spelling errors in the transcripts.

7 Limitations

Our transcription guidelines occupy a certain position
in the continuum between completely preserving the
authenticity of learner handwriting and completely ig-

20



noring it. This position is motivated by our aim of cap-
turing mainly orthographic features, which comes at
the expense of other (e.g. readability, comprehension,
and cohesiveness) features of the text.

In the course of this study, we only applied the
guidelines to German texts. While we are quite cer-
tain that they generalize to other alphabetic languages
(especially closely related ones), it cannot be ruled
out that we missed some language-specific phenomena.
However, these could be mitigated by augmenting the
guidelines accordingly. Our guidelines are not directly
applicable to other, e.g. logographic, writing systems.

8 Ethics Statement
In our work, we are using handwritten texts from
the FD-LEX dataset (Becker-Mrotzek and Grabowski,
2018) which have already undergone anonymization
protecting the children in the study. First, the children
were instructed not to provide any personal data such
as their names, schools, or addresses. Second, addi-
tional anonymization was performed by deleting image
information and replacing it with the background color.

However, since our guidelines were not exclusively
tailored towards FD-LEX and were designed to be ap-
plicable to a wide range of texts containing ortho-
graphic errors, we specifically address anonymization
in the annotation guidelines.

To create the transcripts, we hired two annotators
which were paid above the local minimum-wage stan-
dards.

Our transcripts (retaining orthographic errors) might
be used to build technology assisting learners by pro-
viding automated feedback on orthographic errors. By
doing so, we might also uncover learning disorders like
dyslexia, which would in most cases be beneficial for
better treatment, but might also have stigmatizing ef-
fects especially in cases where the system malfunc-
tioned.
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Abstract
Multilingual models such as mBERT have
been demonstrated to exhibit impressive cross-
lingual transfer for a number of languages. De-
spite this, the performance drops for lower-
resourced languages, especially when they are
not part of the pre-training setup and when
there are script differences. In this work we
consider Maltese, a low-resource language of
Arabic and Romance origins written in Latin
script. Specifically, we investigate the impact
of transliterating Maltese into Arabic scipt on
a number of downstream tasks: Part-of-Speech
Tagging, Dependency Parsing, and Sentiment
Analysis. We compare multiple transliteration
pipelines ranging from deterministic character
maps to more sophisticated alternatives, includ-
ing manually annotated word mappings and
non-deterministic character mappings. For the
latter, we show that selection techniques using
n-gram language models of Tunisian Arabic,
the dialect with the highest degree of mutual
intelligibility to Maltese, yield better results on
downstream tasks. Moreover, our experiments
highlight that the use of an Arabic pre-trained
model paired with transliteration outperforms
mBERT. Overall, our results show that translit-
erating Maltese can be considered an option to
improve the cross-lingual transfer capabilities.

1 Introduction

The availability of multilingual models has facili-
tated the development of NLP tools for many low-
resource languages. Their appeal not only comes
from this universal language representation but also
through leveraging data from related languages
(Kondratyuk and Straka, 2019; Wu and Dredze,
2019; Conneau et al., 2020). Despite this, multi-
lingual models may fall short especially for lower-
resourced languages (Wu and Dredze, 2020; Muller

et al., 2021). In particular, Muller et al. (2021) show
that the cross-lingual transfer capabilities are ham-
pered due to script differences between the target
language and the related language which is part of
the multilingual model pre-training. However, they
show that performance is dramatically improved
by transliterating the target language to the same
script as the related language. Unlike translation,
transliteration is a relatively cheap process which
maps characters in a given script to another.

In this work, we focus on Maltese, a low-
resource hybrid/mixed language of Semitic origin
but written in Latin script. Although it retains a
strong Semitic, specifically Arabic, component in
its grammar, it borrows heavily from Romance
(Italian) and English. This motivates us to explore
the impact that transliterating Maltese into Ara-
bic script could have on a number of downstream
tasks. Besides using large language models based
on Arabic text, this experimental setup opens up
interesting research questions about the impact of
high ambiguity from Arabic orthographic choices,
such as dropping diacritics which may lower out-
of-vocabulary, but also increase ambiguity.

Despite its Arabic roots, transliterating Maltese
to Arabic script is not trivial because of the strong
non-Arabic influences on Maltese and its evolu-
tion independent of the Arab world for a signifi-
cant number of years (Sutcliffe, 1936; Borg and
Azzopardi-Alexander, 1997). That said, Arabic-
transliterated Maltese can be deemed as an Ara-
bic dialect with a higher degree of Italian code-
switching. As such, unlike Muller et al. (2021), we
do not just rely on multilingual language models
for cross-lingual transfer, but also make use of Ara-
bic language models, specifically CAMeLBERT
(Inoue et al., 2021). We compare its performance
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to multilingual BERT (Devlin et al., 2019) and
monolingual Maltese BERT (Micallef et al., 2022).
Empirically, we show that there are differences
in the cross-lingual transfer capabilities of Arabic
models and multilingual models for Maltese.

The main contributions of this work are as fol-
lows. We present various transliteration pipelines
from Maltese to Arabic script ranging from simple
one-to-one character maps to more sophisticated
alternatives that explore multiple possibilities or
make use of manually annotated linguistic construc-
tions. We show that the sophisticated systems are
consistently better than simpler systems, quantita-
tively and qualitatively. We also show that despite
its hybrid nature, transliterating Maltese can be con-
sidered as an option to improve the cross-lingual
transfer capabilities.

The rest of the paper is organized as follows. We
present a discussion of motivating linguistic back-
ground (Section 2) followed by our approach for
transliterating Maltese to Arabic script (Section 3).
We present our evaluation in Sections 4 and 5.

2 Linguistic Background

2.1 Arabic and Maltese

Arabic and Maltese are closely related Semitic lan-
guages. Arabic is the national language of ∼360
million people across 22 countries (Eberhard et al.,
2022), while Maltese is the national language of
Malta and is spoken by ∼500,000 people (Rosner
and Borg, 2022).

The Arabic language is a collection of coexist-
ing varieties. While Classical Arabic (CA) still
survives in Muslim religious ceremonies, Modern
Standard Arabic (MSA) is the official national lan-
guage of the media and formal education, but nei-
ther CA nor MSA is the mother tongue of Arabs
today. A number of dialectal Arabic (DA) varieties
are primary spoken (and increasingly informally
written varieties). The coexistence of MSA and DA
is described as diglossia (Ferguson, 1959). Foreign
languages, particularly French (in the Maghreb)
and English (in the Middle East) have a strong pres-
ence in DA and result in common code-switching
(Hamed et al., 2020).

The Maltese language traces its origins to me-
dieval Sicilian Arabic. In its current form, Mal-
tese contains elements from Arabic, Italian, and
most recently English. This reflects its geography
and history: the Mediterranean island of Malta is
halfway between Tunisia and Italy, and historically

it was under Arab rule from 870 to 1090 CE. Being
the language of a Christian nation, Maltese has no
CA influences, unlike other Arabic dialects with
diglossia (Sutcliffe, 1936; Borg and Azzopardi-
Alexander, 1997). In some simplifying respects,
Maltese can be seen linguistically as a dialect of
Arabic with a higher degree of code-switching to
Italian. Čéplö et al. (2016) reports that mutual intel-
ligibility between Maltese, Tunisian Arabic (TA),
and Libyan Arabic (LA) ranges between 30% and
40%, with TA having the highest level of mutual
intelligibility with either of the other two varieties.

2.2 Script and Orthography

The most important difference between Arabic and
Maltese is the use of Arabic and Latin scripts, re-
spectively. Furthermore, the two languages use
different orthographic philosophies in how to map
linguistic features (phonology and morphology) to
script letters. Given the topic of this paper and to
facilitate the presentation of the remaining sections,
we will start with a discussion of the two scripts
and the orthographic philosophies they use.

The Arabic script is used to write a number of
languages from different language families, e.g.
Arabic (Semitic), Persian (Indo-European), and
Uyghur (Turkic). The Arabic script is mostly used
as an Abjad where diacritical marks represent short
vowels and consonantal doubling, although there
are exceptions such as Uyghur’s Arabic alphabet.
Since most diacritics are optionally written in the
context of the Arabic language (Abjad) (Habash,
2010), this leads to a high degree of ambiguity.
It should be noted, however, that initial vowels
are always marked by having a word initial Alif
@ A as a diacritic carrier; and final vowels typi-
cally reflect some deeper morphological feature
of the word such as a weak verbal root radical
or a nominal feminine ending. Arabic effectively
relies on its strong templatic morphology that al-
lows readers to limit the ambiguity space. Arabic
orthography also tends toward morphophonemic
spelling which abstracts away from allomorphy,
e.g. the Arabic definite determiner proclitic È@ Al
has a number of allomorphs that assimilate with
word-initial coronal consonants (so-called Sun Let-
ters) but is always written in the morphemic form:
�Ò ��Ë@ Al+šms /aš+šams/ ‘the+sun’. Finally, while
MSA has standard rules for orthography, DAs do
not. Arabic NLP researchers have developed con-
ventions for writing DA to allow studying spelling
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(a) (b) (c) (d) (e) (f) (g)
(i) Min ma jġarrabx il-ħażin ma jafx it-tajjeb

who not he-experiences-not the-bad not he-knows-not the-good
AR AR AR AR* AR AR* AR
He who has not experienced what is bad cannot know the worth of what is good

(ii) Il-bnedmin kollha jitwieldu ħielsa u ugwali fid-dinjità u d-drittijiet

the-humans all they-are-born free and equal in-the-dignity and the-rights
AR AR AR* AR* AR IT AR IT AR IT*

All human beings are born free and equal in dignity and rights

Maltese

Arabic

Gloss
Origin
English

Maltese

Arabic

Gloss
Origin
English

��� �� ����� ا����� �� ��� ا����

ا����د��� ���� ���ا��وا ����� وا��ا�� �������� وا��ر����ت

myn mA yjrb$ AlHzyn mA yf$ AlTyb

AlbnAdmyn klhA ytwAldwA xAlSp wAjwAly fAldnytA wAldrytyAt

Table 1: Two Maltese examples paired with their idealized Arabic script orthography. Example (i) is a traditional
proverb, and example (ii) is the first sentence in the Universal Declaration of Human Rights. The tags in Origin
are AR=Arabic, IT=Italian, and *=modified. Arabic is presented from left to right to align with Maltese. Arabic
Romanization is in the Buckwalter scheme (Habash et al., 2007).

varieties (Zribi et al., 2014; Habash et al., 2018).

The Maltese script is based on the Latin script
with some extension ns (ċ, ġ, h̄, and ż). The Mal-
tese orthographic philosophy is in some way dia-
metrically opposed to Arabic’s more abstracting
orthographic philosophy: Maltese tries as much
as possible to reflect the phonological form of the
words. There are a few exceptions to this principle,
which are felicitous for our task. First, Maltese
marks the form of the definite determiner with a
hyphen. The number of determiner variants is quite
large (∼150) due to allomorphy from phonetic as-
similation and proclitics, e.g., il-, l-, ix-, x-, is-, s-,
it-, t-, id-, d-, are just a few forms of the definite
determiner, all of which map to Arabic È@ Al; this
is in addition to many cliticized forms such as lill-,
lix-, lis-, lit-, lid- (all with the preposition lil ‘for’)
or tal-, tax-, tas-, tat-, tad- (all with the preposition
ta’ ‘of’) (Sutcliffe, 1936). Second, Maltese writes
some consonants to reflect their etymological link
to Arabic, e.g. gh̄ which is mostly silent and cor-
responds to Arabic ¨/

	̈
E/g (Fabri et al., 2014).

Third, Maltese spells the commonly used conjunc-
tion u ‘and’ separately from the word, whereas
Arabic attaches it to the following word. Finally,
Maltese has access to capital letters, a concept that
has no parallel in Arabic script. Capital letters are
used in Maltese in similar ways to English, marking
proper nouns. We leave the use of capitalization as
an additional modeling feature to future work.

2.3 Phonological Differences

Maltese lost many Arabic phonological features.
These include all emphatic consonants (Walter,
2006), e.g. the s letters in Maltese sejf ‘dagger’ and
sajf ‘summer’, correspond to two letters in their
Arabic cognates, 	J
� sayf and 	J
� Sayf. Other
examples include the Arabic voiced pharyngeal
(¨ E) and voiced uvular (

	̈
g) merging into Mal-

tese gh̄; and the voiceless versions of both (h H and

p x) merging into Maltese h̄, among others. Many
of the Arabic cognates in Maltese with the Qaf con-
sonantal variable �� q are spelled in Maltese with q
although pronounced as a glottal stop (as in Urban
Levantine and Egyptian Arabic), e.g. Maltese triq
‘street’ ��K
Q£ Tryq. Due to Italian influences, the
Maltese phonetic inventory has acquired a number
of non-Arabic sounds such as p, and v.

Maltese has six vowels (a, e, i, o, u, ie), the first
five of which may be shortened in some contexts.
Standard Arabic has three short and three long vow-
els; while most dialects expand the set to five short
and long. Arabic short vowels are generally written
with diacritical marks with exceptions due to un-
derlying derivation, or word position (initial/final)
(Habash et al., 2018).

2.4 Morphological Differences

Maltese morphology shares a lot of features with
Maghreb Arabic morphology, and Arabic/Semitic
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morphology in general. This include a rich inflec-
tional space (person, gender, number, aspect) and
many clitics that both Arabic and Maltese write
as part of the word form. For example, Maltese
dar ‘house’, a cognate of Arabic P@X dAr, can be
inflected into id-dar ‘the house’, tad-dar ‘of the
house’, f’dar ‘in a house’, and darha ‘her house’
which correspond to Arabic P@YË@ AldAr, P@YË@ ¨A�K
tAE AldAr, P@Y 	̄ fdAr, and AëP@X dArhA, respectively.
While Maltese marks the determiner with a hyphen,
which provides a strong morphological signal (Sec-
tion 2.2), it does not mark pronominal clitics or
negation particles similarly. In this paper, we do not
use any morphological analysis and disambigua-
tion tools to help in transliteration. We leave this
direction to future work.

2.5 Lexical Differences

While there are many shared words between Mal-
tese and Arabic (especially Maghreb and Tunisian
Arabic), there are important differences. Table 1
highlights some examples of both kinds, but these
can be further broken down. First are words that
undergo a major phonological shift, e.g. jafx ‘does
not know’ comes from Arabic �� 	̄QªK
 yErf$. Sec-
ond are words that went through a semantic shift,
e.g. h̄ażin ‘bad’ is related to Arabic 	áK
 	Qk Hzyn
‘sad’. Thirdly, Maltese has many univerbation
constructions which Arabic generally avoids, e.g.
Maltese waranofsinhar ‘afternoon’ corresponds to
three Arabic cognate words PAî 	DË @ � 	® 	K @Pð wrA
nfS AlnhAr ‘after middle [of] the day’. Finally,
Italian-origin words are all distinct from Arabic,
although in some cases they may have cognates in
the dialects, e.g. kċina ‘kitchen’ corresponds to TA
é 	JJ
k. ñ» kwjynh (Aquilina, 1987, 1990).

2.6 NLP Conventions in Arabic and Maltese

NLP research conventions have developed indepen-
dently in Arabic and Maltese, posing challenges to
working on them jointly. For example, basic tok-
enization in the Universal Dependency Treebanks
for Arabic follows a relatively deep morphologi-
cal tokenization that separates all clitics (except
the determiner), and normalizes the form of the
baseword (Nivre et al., 2017; Taji et al., 2017). In
contrast, Maltese tokenizes the determiner but not
much more, leaving all other enclitics attached to
the word and proclitics attached to the determiner
(Čéplö, 2018). We follow the Maltese decisions
here to simplify our training and evaluation.

3 Our Transliteration System

We present a Maltese-to-Arabic transliteration sys-
tem with a number of variants that we evaluate in
Sections 4 and 5. The transliteration system con-
tains two operations: mapping and ranking. Mal-
tese text tokens and characters are mapped from
Latin script to one or more alternatives in Arabic
script (Section 3.2). Then, a separate component
ranks the choices or uses a deterministic hardcoded
baseline (Section 3.3).

3.1 Preprocessing

As discussed in Section 2.6, we operate on tok-
enized Maltese to allow us to maintain label align-
ments from the training data of the downstream
tasks. As such, Maltese texts are first tokenized
using the MLRS tokenizer.1 Next, all Maltese
texts are lower-cased, since there is no casing in-
formation in Arabic; and all Latin script diacritics
are removed, excluding those relevant to Maltese,
namely: ċ, ġ, h̄, and ż. For example, soċjetà ‘so-
ciety’, which is a remnant of Italian, is mapped to
soċjeta, reflecting a common form of spelling such
words in standard Maltese.

3.2 Character and Token Mappings

Character Mappings We list all of the Maltese-
to-Arabic character mappings we consider in Ta-
ble 2. Most are letter-to-letter mappings such as k
to ¼ k, but also include the Maltese multi-character
letters ie and gh̄. The Basic column indicates the
most expected letter mapping based on our observa-
tions considering etymology, phonology, and Ara-
bic letter frequencies. The additional columns in
the table indicate conditional mappings as well as
non-deterministic additional mappings. For vow-
els, we include word-initial and word-final condi-
tional mappings; and for consonants, the second of
doubled letters may be mapped to a Shadda (Ara-
bic gemination diacritic). All Arabic diacritics are
deleted after the mapping step since they are often
absent in the language model training data (Habash,
2010). We use the character mappings in two ways:
(a) deterministic mappings using only the Basic
column and its associated Doubling column in Ta-
ble 2, and (b) non-deterministic mappings using
all the columns in Table 2. Our deterministic map-
ping does not apply context specific word-initial
and word-final rules.

1https://mlrs.research.um.edu.mt/

25

https://mlrs.research.um.edu.mt/


 ا
◌َ ا ا ، آ ا ، ى ، ة ، ه
◌َ ا ي ا
◌ِ ي ي ا
◌ُ و و ا
◌ُ و و ، وا ، ه ا

ع غ
ع
ب ◌ّ

تش ◌ّ
ك ◌ّ
د ذ، ض، ظ ◌ّ
ف ◌ّ
ج ◌ّ
ج ◌ّ
ه ◌ّ
ح خ ◌ّ
ي ◌ّ
ك ◌ّ
ل ◌ّ
م ◌ّ
ن ◌ّ
ب ◌ّ
ق ◌ّ
ر ◌ّ
س ص ◌ّ
ت ط ◌ّ
ف ◌ّ
و ◌ّ
ش ◌ّ
ي ◌ّ
ز ◌ّ
دز ◌ّ

Vowels
Maltese Basic Additional Word Initial Word Final

a
e
i
o
u

Consonants
Maltese Basic Additional Doubling

'
b
ċ
c
d
f
ġ
g
h
ħ
j
k
l

m
n
p
q
r
s
t
v
w
x
y
ż
z

ie

għ

A
a A A , | A , Y , p , h
a A A y
i y A y
u w A w
u w A w , wA , h

E g
E
b ~
t$ ~
k ~
d *, D, Z ~
f ~
j ~
j ~
h ~
H x ~
y ~
k ~
l ~
m ~
n ~
b ~
q ~
r ~
s S ~
t T ~
f ~
w ~
$ ~
y ~
z ~

dz ~

Table 2: Maltese to Arabic Character Mappings
( shaded regions are romanizations in the Buckwalter
scheme (Habash et al., 2007)). Additional, Word Initial,
and Word Final are the conditional alternatives consid-
ered for the non-deterministic mappings.

Token Mappings We augment the character-
level mappings with closed class token-level map-
pings that exploit known features of Maltese or-
thography such as the spelling of the definite deter-
miner, as well as the Zipfian head distribution of
closed class words which we expect to help transfer
learning in downstream tasks. In the settings where
they are used, the token mappings take precedence
over the character mappings since they match a
token exactly.

We extracted all the closed class tokens from
the training set portion of the MLRS POS data
(Gatt and Čéplö, 2013), by filtering over the part-
of-speech tag. For each of these tokens, a man-
ual transliteration is performed by native Arabic
speakers following a consistent interpretation of
the Conventional Orthography for Dialectal Arabic
(CODA) guidelines (Habash et al., 2018). To facili-

tate the interpretation of the token, annotators were
provided with the POS tag, the IPA transcription
(extracted using a grapheme-to-phoneme system by
Borg et al. (2014)), and a sample sentence where
the token is used. Native Maltese speakers were
consulted for ambiguous cases.

In total, we have 691 mappings (henceforth,
Full closed-class).2 Examples include fuq PREP
‘over’, ftit QUAN ‘some’, kellu VERB_PSEU ‘he had’,
and mhux PRON_PERS_NEG ‘he is not’, which map
to ��ñ 	̄ fwq, �I�
�J 	̄ ftyt, éË 	àA¿ kAn lh, and ��ñëAÓ
mAhw$, respectively. Additionally, we consider a
subset of 135 mappings (henceforth, Small closed-
class) which we restrict to the tokens containing -
and/or ’, such as il- ‘the’, fis- ‘in the’, and t’ ‘of’,
which map to È@ Al, ÈA 	̄ fAl, and ¨A�K tAE, respec-
tively. We designate not using the token mappings
as None.

3.3 Ranking Techniques

While token mappings are essentially determinis-
tic, character mappings produce a large lattice of
combinations, e.g. Maltese h̄ielsa ‘free’ results in
20 forms, including �é�ËA 	g xAlSp, úæ�ËAg HAlSY,

A�ËA 	g xAlsA, é�ËAg HAlSh, and �Êg Hls. In this
section we present various ranking techniques used
to select one of the alternatives for a given input.

Deterministic The use of deterministic character
mappings yields a single alternative for each word,
thereby not requiring any ranking.

Random A random choice is made by selecting
the first alphabetically sorted token from the list of
combinations. We sort to keep this technique stable
across different runs.

Sub-Token Count The BERT-based language
models used in the downstream task may split a
given word into multiple sub-tokens (Devlin et al.,
2019). We choose the mapping combination with
fewer resulting sub-tokens. This idea is based on
the evidence that a tokenizer that splits tokens into
fewer sub-tokens correlates with better downstream
performance (Rust et al., 2021).

2We do not use the part-of-speech information in the actual
mapping process. Although there are a number of tokens that
appear with different part-of-speech tags, only one of these
tokens (m’) resulted in different transliterations: NEG AÓ mA,
COMP 	áÓ mn, and PREP ©Ó mE. Since the NEG reading is the
most common in our data by far, we ignore the other two.
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N-gram Language Model Scores We use the
word and character n-gram language models from
Baimukan et al. (2022) to get word-level and
character-level scores on each generated token,
respectively. As highlighted in Section 2.1, due
to the similarity with Maltese, we consider both
the country-level Tunisian (TUN) and region-level
Maghrebi (MAG) models, ending up with two sets
of scores.

Some of these scores are bound to produce ties,
occasionally ranking more than one token in first
place. In our analysis, the word n-gram model
tends to produce ties whenever the word is out
of vocabulary while the sub-token count model is
much more sporadic with ties. We observed that
the character n-gram score almost never produced
ties on the data, and so we used it as a fallback to
resolve ties. Ties can further be resolved randomly
if need be.

3.4 Implementation

The various mapping settings we consider in the
rest of the paper select for a token-mapping setup
and a ranking setup. Conceptually, putting together
all of these components results in a pipeline where
a token is mapped using the closed-class token
mappings, backing off to the character mappings
whenever the token is not found in the token map-
pings. This is followed by a ranking step which
selects among the various options produced by the
mapping component.

We implement all mappings from Section 3.2
using finite-state machinery in Pynini (Gorman,
2016). The seven basic FSTs we implement are the
following: full token mappings, small token map-
pings, non-deterministic and deterministic multi-
character mappings,3 non-deterministic and deter-
ministic single character mappings, and dediacriti-
zation mappings. These are then composed in suc-
cession on the fly, based on the experimental setup
being used.

The generated alternatives are ranked as de-
scribed in Section 3.3. The sub-token count met-
ric is implemented using the Transformers library
(Wolf et al., 2020) while the n-gram language
model scores are obtained using KenLM (Heafield,
2011).

We make the code publicly available.4

3This includes multi-character letters (ie and gh̄) along
with geminates (Doubling), and Word Initial and Word Final
vowels from Table 2.

4https://github.com/MLRS/malti_arabi_fst

4 Downstream Task Evaluation

The transliteration system is evaluated on three
downstream tasks: Part-of-Speech Tagging
(XPOS),5 Dependency Parsing (DP), and Senti-
ment Analysis (SA). Input tokens in the datasets are
transliterated as discussed in Section 3, with their
corresponding labels/tags remaining unchanged.
Further details on the dastaset sources and process-
ing is given in Section 4.1.

We consider three setups of token mappings, all
of which use the character mappings as described
in Section 3.2: the entire set of the full closed-class
mappings (Full), the small closed-class mappings
(Small), and no token mappings (None). For each
of these setups, we use the ranking techniques from
Section 3.3. This creates 24 distinct translitera-
tion pipelines (3 mapping options by 8 ranking
techniques), which we explore in this Section. Ev-
ery dataset is transliterated through each of these
pipelines, which are then used to fine-tune the lan-
guage model following the setup used by Micallef
et al. (2022). Each fine-tuned model is evaluated
on the corresponding transliterated test set.

We systematically compare the pipelines on
CAMeLBERT-Mix (Inoue et al., 2021) due to
its training on dialectal data. We also fine-tune
BERTu, a monolingual Maltese model (Micallef
et al., 2022), and multilingual BERT (mBERT)
(Devlin et al., 2019) on the datasets in the original
script (untransliterated). Additionally, we consider
another setup for mBERT where it is fine-tuned
on transliterated Maltese. We report accuracy for
XPOS Tagging, Labelled Attachment Score (LAS)
for DP, and macro-averaged F1 for SA.

4.1 Datasets

We use the MUDT (Čéplö, 2018) dataset as is for
the DP task. For the XPOS task, we use the MLRS
POS dataset (Gatt and Čéplö, 2013), but with dif-
ferent splits from Micallef et al. (2022) to ensure
that the instances overlapping with the MUDT data
are in the same splits.

The SA dataset used (Martínez-García et al.,
2021) is preprocessed and tokenized using the
MLRS tokenizer. Although this task involves clas-
sifying a whole sentence, this preprocessing is done
because the transliteration system operates on to-
kens rather than sentences. Once each token is
transliterated these are joined back as a single text,

5XPOS refers to the language-specific tagset as opposed
to UPOS, the universal tagset (Nivre et al., 2017).
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Task Dataset Training Validation Testing
XPOS MLRS POS 4,935 616 616
DP MUDT 1,123 518 433
SA Sentiment 595 85 171

Table 3: Dataset sizes in terms of sentences

separated by spaces. Admittedly, this results in
different spacing compared to the source sentence,
particularly for tokens with determiners and punc-
tuation symbols in general. However, we fine-tune
the baselines which use the original Latin script
with this same pre-processing strategy.

The tokens in the MUDT and MLRS POS
datasets are kept as is since these are consistent
with the MLRS tokenizer. A summary of the
dataset sizes is given in Table 3. To address the dis-
crepancy in the data sizes, we also consider a lower-
resourced setup where the training and validation
(but not test) sets of each tasks are reduced to the
smallest dataset size used in this evaluation (SA).
This allows us to control for size when analysing
the cross-lingual transfer capabilities.

4.2 Results

The results shown in Table 4 highlight that a com-
bination of the full closed-class mappings and any
of the non-deterministic systems achieve the best
performance across all tasks. As expected, the
deterministic system without any token mappings
performs the worse, generally. Analysing the token
and character mappings as different dimensions,
reveals some interesting trends.

Token Mappings The inclusion of closed-class
mappings consistently yields improvements over
using no token mappings in all scenarios. In the
deterministic case, the full token mappings are ben-
eficial to surpass the non-deterministic counterpart
with random ranking, in the DP and SA tasks, and
are competitive against the other non-deterministic
non-random scores in all tasks. The small closed-
class mappings also generally improve over using
no token mappings, although this is slightly detri-
mental in a few cases. Inspecting further the re-
lationship between the full, small, and no token
mappings, it is evident that the jumps in perfor-
mance are more pronounced in the lower-resourced
setup compared to the whole data setup. These
findings indicate that while linguistic annotations
are generally helpful, they are most useful in setups
when data is scarcer.

Ranking Techniques The random ranking per-
forms the worst of all the techniques considered for
the non-deterministic character mappings but does
better than the deterministic counterpart in cases
where no additional tokens are present. All tech-
niques, apart from random, perform comparably,
with the word language model ranker achieving the
best scores on the syntactic tasks while the char-
acter model and sub-token rankers give the best
results in the semantic task.

Ranking with the Tunisian word model scores
yielded the best result in 3 out of 5 task-data setups.
This is likely due to the high degree of mutual in-
telligibility between Maltese and Tunisian Arabic
as detailed in Section 2.1. Moreover, this ranking
tends to give significant boosts in performance just
by using the small token mappings as evidenced
by the similar results obtained by the system with
the full token mappings. Conversely, the Maghrebi
models tend to give worse scores without any token
mappings and gave a worse result than the deter-
ministic system in one particular case in SA.

Pre-trained LMs and Transliteration Compar-
ing the best result from each task and data size
setup from Table 4 against the baselines shown
in Table 5, it is evident that mBERT fine-tuned
without transliteration is only better than the best
transliteration pipeline in XPOS when the entire
data is used. For SA and lower-resourced DP, the
difference between mBERT and the best translit-
eration pipeline on CAMeLBERT is found to be
statistically significant, using a 1-tailed t-test with
a p-value of < 0.05.

In Table 5, we compare transliteration with the
Tunisian word model ranking with full token map-
pings. It is clear that fine-tuning BERTu with the
original (untransliterated) data yields the best per-
formance overall, owing to the Maltese corpora
that this model is pre-trained on. Inspecting the
results obtained for mBERT, transliteration does
not always improve performance compared to un-
transliterated fine-tuning, and can result in signif-
icant degradations as evidenced in the SA task.
Since, this is counter to what Muller et al. (2021)
reported, it could be attributed to the hybrid nature
of Maltese. However, we posit that this is also due
to the fact the mBERT was solely pre-trained on
MSA. Conversely, CAMeLBERT-Mix was trained
on 5.8 billion DA data, making up around a third of
the entire pre-training corpus (Inoue et al., 2021).
In fact, when fine-tuning with transliterated Mal-
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XPOS DP SA

Large Training Small Training Large Training Small Training Small Training
LM Mapping None Small Full None Small Full None Small Full None Small Full None Small Full

N/A
Deterministic
Random

TUN
Char Model 72.4
Word Model 96.1 92.6 72.4
Sub-Tokens 77.5

MAG
Char Model 69.7
Word Model
Sub-Tokens

94.4 94.2 95.2 89.8 89.7 91.5 68.8 69.7 76.4 63.4 64.3 70.9 62.7 61.2 67.0
95.6 95.6 95.9 90.7 91.0 91.8 74.0 75.1 76.0 67.2 69.0 70.3 64.3 64.2 64.7
95.5 95.7 95.9 91.1 91.7 92.4 75.1 76.1 77.3 69.5 70.5 64.5 63.9 65.5
95.6 96.0 91.3 92.5 75.1 76.5 77.3 68.8 71.5 64.0 65.9 66.7
95.6 95.6 95.9 91.0 91.5 92.3 75.2 76.4 69.0 70.7 72.0 66.3 67.6 67.3
95.5 95.5 95.9 90.7 91.3 92.4 74.9 75.6 76.7 68.6 69.5 71.7 65.1 65.3
95.3 95.7 95.7 91.2 92.2 92.4 75.2 76.7 77.0 68.8 70.8 71.8 62.5 62.4 68.7
95.5 95.5 95.9 90.8 91.4 92.2 74.9 76.4 77.4 68.8 70.2 71.9 66.1 65.4 69.4

Table 4: Test set results for CAMeLBERT-Mix fine-tuned on transliterated Maltese, grouped by token and character
mappings. The ranking techniques are further grouped by the language model used by the primary and/or fall-back
technique: no language model (N/A), Tunisian (TUN), Maghrebi (MAG). Each value is an average of 5 runs with
different random seeds. The best score in a task is bolded, while the best results per token mappings are underlined.
Color shading is done with respect to the best and worst values of each task and training size setup.

XPOS DP SA
Script Model Large Small Large Small Small

Arabic CAMeLBERT
Arabic mBERT
Latin mBERT
Latin BERTu

96.1 92.6 77.3 72.4 66.7
95.9 92.1 77.7 72.0 61.6
96.7 92.4 77.3 71.1 67.3
98.3 97.4 88.1 86.3 83.1

Table 5: Comparison of fine-tuning on raw and transliterated Maltese using different language models. The
transliteration pipeline used is the Tunisian Word Model Ranking with Full token mappings. Large and Small refers
to Large Training and Small Training set ups as in Table 4.

tese, CAMeLBERT performs better than mBERT
in most task-data setups. CAMeLBERT is also
able to surpass or be very competitive with mBERT
fine-tuned on raw Maltese. This finding gives fur-
ther evidence that there is some level of mutual
intelligibility between transliterated Maltese and di-
alectal Arabic. Moreover, making use of monolin-
gual models should be considered for cross-lingual
transfer, whenever this is available.

5 Human Readability Evaluation

In this section, we investigate how readable translit-
erated Maltese is to native Arabic speakers. We
compare four settings: the deterministic system
against the non-deterministic system (Tunisian Ara-
bic Word Model) with both None and Full to-
ken mappings. We sample 50 instances from the
MUDT training set (Čéplö, 2018). For each exam-
ple, we provide the original sentence, a translation
extracted from Google Translate as a reference, and
each of the alternative transliterations (see example
in Table 6). We hide the transliteration system in-

formation and shuffle the order in which each alter-
native is displayed to prevent biases. For this study
we ask the evaluator, a native speaker of Tunisian
Arabic, who is fluent in French and familiar with
Italian, to rank the transliterations in the order of
how readable the text is, where 1 is best.

Table 7 shows the average readability rank for
different combinations. The results show that us-
ing the Word Model is better than the Deterministic
model, and that using the token mappings is helpful.
These results correlate with our empirical evalua-
tion from Section 4.

The evaluator reported that reading Maltese writ-
ten in the Arabic script allowed them to easily rec-
ognize shared words between Maltese and Tunisian
Arabic. For instance, the evaluator did not recog-
nize the Maltese word kien, but when transliterated
into the Arabic script as 	àA¿ ‘he was’, it was evident.
However, Italian-origin words presented a reading
challenge, e.g. Maltese akkuża (Italian accusa) was
garbled. The evaluator also pointed out that none of
the transliteration models were capable of handling
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ا�� ور������ ال ������ات ���� ����ن اذ���رات ا��� �� ����ا�� ��و�� ��ش ال ��� ا��ه ��ع ال ���دز��� ��ر�� ����
������ه ��� ات ��ع ا��ة .

ا�� ور������ ال ������ات ���� ����ن اذ���رات �� �� ��ا�� ��و�� ��ش ال ���س ا��ه �� ���دز��� ��ر�� ����
������ه ��� ات ��ع ا��ة .

�� ور������ ال �����ت ��م ���� د���ت ا��� �� ����ا�� ��ف ��ش ال ��� �� ��ع ال ���ز��� ��ج ��ج ������ ���
ت ��ع �� .

�� ور������ ل- �����ت ��م ���� د���ت ل �� ���� ��ف ��ش ل- ��� �� ��- ���ز��� ��ج ��ج ������ ��� ت
. �� ��

Text Rank

Maltese

English

Word Model + Full CC 1

Word Model + None

Deterministic + Full CC

Deterministic + None

Illum waranofsinhar il-Maġistrat Miriam Hayman iddikjarat li hemm biżżejjed provi biex il-ħames
aħwa tan-negozjant George Farrugia jitqiegħdu taħt att ta' akkuża.

This afternoon Magistrate Miriam Hayman has stated that there is enough evidence to put the five
brothers of businessman George Farrugia under indictment.

2

3

4

Table 6: An example of a Maltese sentence along with its English translation and the output of the four transliteration
models ranked by their readability level.

Mapping Average Rank
Word Model + Full 1.1
Deterministic + Full 2.3
Word Model + None 2.5
Deterministic + None 4.0

Table 7: Average Readability Rank

Maltese univerbations, such as waranofsinhar ‘af-
ternoon’ (see Table 6), which made it challenging
to recognize and read them accurately.

This experiment highlighted some of the many
challenges in reading Maltese written in Arabic
script and provided insights into the limitations
of different transliteration models, and issues to
consider addressing in the future.

6 Conclusion and Future Work

We presented a Maltese-to-Arabic transliteration
system as a tool to leverage cross-lingual trans-
fer from Arabic. As evidenced by our empirical
results, a non-deterministic system with signals
from the target language helps in choosing a better
transliteration alternative, especially in ambiguous
cases. Moreover, incorporating human-annotated
transliterations of a set of closed-class of words is
beneficial in downstream performance, especially
in lower-resource settings.

Our experimental setup exploited an Arabic lan-
guage model for cross-lingual transfer, instead of a
multilingual model such as mBERT. Results show
promising results, giving better performance than
multilingual models. This echoes the findings by
Wu and Dredze (2020), and we encourage further

research to investigate ways to effectively leverage
resources from linguistically related languages.

Future work should investigate the use of large
sentence-level contexts in mapping selections. Ex-
ploring cross-lingual transfer from Italian and En-
glish is also an interesting direction, including the
use of few-shot and zero-shot learning. It would be
interesting to also investigate these cross-lingual
transfer techniques through transliterated Arabic.

Limitations

In this work, we transliterate all Maltese words in
the same manner. Given the hybrid nature of Mal-
tese, it might be optimal to handle words which
do not have an Arabic origin in a different way.
Similarly, we do not treat named-entities any dif-
ferently.

Moreover, we assume that the Maltese text is
written using the standard orthographic rules. In
turn, the system might produce spurious translitera-
tions for cases with spelling errors. This issue also
exists when the text is in raw form, but may be fur-
ther exacerbated with transliteration. The character
mappings could be expanded to handle dropped
Maltese diacritics, such as writing c instead of ċ,
but there are other cases where silent letters such
as gh̄ are dropped altogether, making the problem
non-trivial.
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Abstract
We examine the task of distinguishing be-
tween Hindi and Urdu when those lan-
guages are romanized, i.e., written in the
Latin script. Both languages are widely in-
formally romanized, and to the extent that
they are identified in the Latin script by
language identification systems, they are
typically conflated. In the absence of large
labeled collections of such text, we con-
sider methods for generating training data.
Beginning with a small set of seed words,
each of which are strongly indicative of
one of the languages versus the other, we
prompt a pretrained large language model
(LLM) to generate romanized text. Treat-
ing text generated from an Urdu prompt
as one class and text generated from a
Hindi prompt as the other class, we build
a binary language identification (LangID)
classifier. We demonstrate that the result-
ing classifier distinguishes manually roman-
ized Urdu Wikipedia text from manually
romanized Hindi Wikipedia text far better
than chance. We use this classifier to esti-
mate the prevalence of Urdu in a large col-
lection of text labeled as romanized Hindi
that has been used to train large language
models. These techniques can be applied
to bootstrap classifiers in other cases where
a dataset is known to contain multiple dis-
tinct but related classes, such as differ-
ent dialects of the same language, but for
which labels cannot easily be obtained.

1 Introduction
Hindi and Urdu are considered the two stan-
dardized registers of the pluricentric Hindus-
tani language. In informal speech, they are
highly mutually intelligible, to the point where
it can be difficult to immediately assess which
one is being spoken (Masica, 1993). Written
(and more formal) Hindi and Urdu, however,
have more noticeable differences. First, out-
side of the colloquial vocabulary commonly

used in speech, they do differ in broad his-
torical influence on the lexicon – Hindi mak-
ing use of more Sanskrit-derived words and
Urdu using more Arabic- or Persian-derived
words. Most notably, however, the languages
differ in their native scripts: Hindi is written
in Devanagari, a Brahmic script, while Urdu
is written in a Perso-Arabic script. Despite
these stark differences, efforts have been made
to unify linguistic resources for the languages
(e.g., Bhatt et al., 2009; Visweswariah et al.,
2010; Bhat et al., 2016, 2017).

Additionally, however, both languages
are frequently written informally in the
Latin script, which is known as romaniza-
tion (Wellisch, 1978). Informal romanization
makes text in these languages far more diffi-
cult to distinguish than when they are writ-
ten in their distinct native scripts. Despite
their overall linguistic similarity, Hindi and
Urdu do represent different cultural contexts,
and may have different patterns of expression
that are useful to capture correctly. Predictive
models in service of, for example, romanized
text entry – perhaps providing next word pre-
diction and other utilities that should match
the user’s desired language – will be expected
to provide culturally appropriate predictions,
which may be difficult if all Urdu and Hindi
data is conflated in the training data. In gen-
eral, given the larger number of speakers, ro-
manized Hindi text may be more prevalent
and thus yield degraded performance for Urdu
speakers in a range of applications that pro-
cess romanized text if the two languages are
conflated.

In this preliminary study, we look at leverag-
ing multilingual large language models (LLMs)
that have been pretrained on data that in-
cludes (conflated) romanized Hindi and Urdu
text, along with a small seed word list, to gen-
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erate training data that can capture character-
istic differences between romanized Urdu and
Hindi. LLMs have recently become the back-
bone of many state-of-the-art NLP systems
performing a wide range of tasks, often after
some amount of fine-tuning (see, e.g., Ruder
et al. (2021) for multilingual task benchmarks).
In a recent paper, Nielsen et al. (2023) demon-
strated that large language models learn some
degree of long-distance sensitivity to spelling
convention differences in English — i.e., the T5
LLM (Raffel et al., 2020) is more likely to
produce the British spelling of a word follow-
ing an earlier instance of British spelling than
otherwise, even though the English language
pretraining data is not labeled with the par-
ticular spelling convention. Unlike the well-
understood and conventional set of spelling
differences distinguishing US and UK English,
romanized Hindi and Urdu represent a case
where (a) there is no fixed orthography, i.e.,
spelling varies heavily; and (b) as far as we
know, there are no documented widely at-
tested differing romanization conventions be-
tween the two languages to rely upon. We thus
try to exploit any implicit knowledge about
such differences that a pretrained LLM may
contain, as the means to build systems that
can distinguish between the two languages.

We demonstrate that a simple decision
tree classifier using character n-gram features
can be profitably trained on LLM generated
text to distinguish romanized Hindi from ro-
manized Urdu, even in the face of domain-
mismatch, at nearly the same accuracy as
that classifier’s topline (i.e., when trained on
domain- and annotator-matched data). In-
terestingly, a more powerful neural classifier,
which yields a substantially higher topline ac-
curacy, overfits on the LLM generated train-
ing data to the point of performing essentially
at chance on the validation set, suggesting
that the neural classifier relies too heavily on
reliable yet spurious differences between the
classes in the generated text. We use the
resulting decision tree classifiers to estimate
the prevalence of Urdu in the mC4 corpus,
and also examine their most important fea-
tures, yielding some potentially useful gener-
alizations about the romanization tendencies
in the two languages.

2 Background
2.1 Romanized Hindi and Urdu
As stated earlier, distinguishing between Hindi
and Urdu when written in their native scripts,
Devanagari and Perso-Arabic respectively, is
straightforward. Informal romanization re-
moves this key distinction between the lan-
guages, and methods for automatic identifica-
tion of romanized Hindi/Urdu text often con-
flate the two, sometimes deliberately (Ansari
et al., 2021). This is particularly true since
the romanization in Hindi and Urdu is typi-
cally less transliteration (i.e., driven by writ-
ing system correspondences) than rough pho-
netic transcription, hence the written differ-
ences between the two languages are lessened.
For example, Urdu romanizations tend to in-
clude vowels even when the vowel is omitted
in the Perso-Arabic orthography.

To see examples of this, we can examine
the Dakshina dataset1 (Roark et al., 2020),
which includes both single word and full sen-
tence romanizations of Wikipedia data in 12
South Asian languages, including Hindi and
Urdu. The word ”گزر“ (pass) is romanized in
the Urdu portion of the collection as either
“guzar” or (less frequently) “gujar”, despite
having no vowels specified in the native script.
The same word in Hindi (गुज़र) is romanized
in the Hindi portion of the collection once as
“guzar” and once as “gujar”.

Such conventions obviously make it far more
difficult to distinguish romanized Hindi from
Urdu than when they are written in different
native scripts. Despite the lack of a widely
used standardized orthography in the Latin
script in the languages, there may be some ro-
manization conventions associated with each
community that would help tease them apart.
As we are not aware of any previous studies
describing such distinguishing features in the
linguistics literature, we turn to automated,
data-driven methods to find them.

Romanized Hindi is frequent enough that
it is commonly included in multilingual text
collections scraped from the internet, such as
mC4 (Xue et al., 2021), the multilingual cor-
pus derived from Common Crawl2 that is used

1https://github.com/google-research-datasets/
dakshina

2http://commoncrawl.org/
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to train mT5 (Xue et al., 2021), the multilin-
gual version of the T5 language model (Raf-
fel et al., 2020). Six languages are included
in that corpus in both their native script and
the Latin script – Chinese, Japanese, Hindi,
Greek, Russian and Bulgarian – presumably
because the language identification system
used to identify the languages for the collec-
tion, CLD3,3 only includes Latin script class
labels for those six languages. Given the sim-
ilarity of romanized Hindi and Urdu, and the
lack of romanized Urdu as an option within
the system, one might expect that some frac-
tion of the Latin script Hindi data in mC4 is
in fact romanized Urdu instead.

2.2 Related work
Transliteration of informally romanized text
into the native script of the language has
been explored for languages making use of
Perso-Arabic scripts, including Arabic (Al-
Badrashiny et al., 2014), and South Asian lan-
guages Urdu and Sindhi (Roark et al., 2020),
as well as languages using Brahmic scripts
such as Hindi, Bengali and Tamil (Roark
et al., 2020). Work has also examined di-
rectly applying NLP models to informally ro-
manized text in Arabic (Chalabi and Gerges,
2012), Persian (Maleki and Ahrenberg, 2008)
and Urdu (Bögel, 2012; Irvine et al., 2012;
Rafae et al., 2015). Language identification
has been shown to be a particularly tricky
problem for a variety of informally roman-
ized languages (Bögel, 2012; Banerjee et al.,
2014; Das and Gambäck, 2014; Eskander et al.,
2014; Adouane et al., 2016; Zhang et al., 2018;
Kreutzer et al., 2022). We direct the interested
reader to Roark et al. (2020) for a more exten-
sive background on these and related topics.

The problem of distinguishing romanized
Hindi and Urdu, given a small set of seed
words believed to be indicative of each lan-
guage – the approach we pursue in this paper –
can be thought of as an instance of weak super-
vision, or semi-supervised learning. We have
a large, unlabeled dataset assumed to contain
both Hindi and Urdu, and can use the seed set
to “label” a small subset of the data depending
on which seed words it contains.

From here, a typical semi-supervised ap-
3https://github.com/google/cld3

proach would be to try to use the distribution
of unlabeled sentences around the “labeled”
points to build a decision surface that sepa-
rates the two classes. Various general methods
exist, including transductive support vector
machines (TSVM) (Vapnik, 1998), or graph-
based methods within the framework of mani-
fold regularization (Belkin et al., 2004). These
classic approaches, however, may require mak-
ing additional assumptions, such as defining a
distance metric between data points.

In this paper, we attempt a different ap-
proach. We exploit the implicit knowledge con-
tained in a pre-trained LLM, as well its abil-
ity to maintain context over longer spans of
generated text. In particular, we prompt the
model with a frame containing one of our seed
words, and allow it to generate an arbitrary
amount of text based on that template. Then,
we simply use this generated text as labeled
data and train a standard supervised classifier
to decide whether new text is either Hindi or
Urdu. Before presenting these methods in de-
tail, we first present data resources (two exist-
ing and one new) used for validation.

3 Datasets

Our work makes use of three independent data
sources, including a training/validation set de-
rived from Wikipedia, a general web-scraped
text collection labeled in part as being ro-
manized Hindi, and a set of Hindi and Urdu
language-indicating seed words.

Dakshina While most relevant datasets do
not distinguish between romanized Hindi and
romanized Urdu, the Dakshina corpus4 (Roark
et al., 2020) does distinguish between the
two. It contains hand-romanized sentences
(10k per language) taken from Hindi and Urdu
Wikipedia articles. This makes it ideal for eval-
uating our language ID system. We split the
Hindi and Urdu portions of the corpus into
training, development, and test sets,5 and we
use the development set (965 sentences from
each language) to evaluate all versions of our
language ID system. We also use the training

4https://github.com/google-research-datasets/
dakshina

5This data split and the seed words are available at
https://github.com/google-research/google-research/
tree/master/distinguishing_romanized_hindi_urdu.
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Hindi Urdu English
urja ऊजा tawanai توانائی energy
chhati छाती seena سینا chest
shunya शू य sifar صفر zero
ang अंग aazoo عاضو organ
prakar कार qisam قسم type

Table 1: Examples from the seed list, including
romanization and native script for both Hindi and
Urdu alternatives along with an English gloss.

set in one of our baselines (see Section 4.1).
All of the training and validation sets are bal-
anced between the two languages.

mC4 The mC4 corpus, described above, con-
sists of web-scraped data divided into 101 lan-
guage partitions, of which “hi-Latn,” nomi-
nally corresponding to romanized Hindi, is one.
However, as previously mentioned, we believe
this parition is likely to contain romanized
Urdu as well, which has been conflated with
Hindi due to the coverage of the CLD3 LangId
system used to build the corpus.

Seed words Consulting with professional
linguists who are familiar with both Hindi and
Urdu, we collected 147 Hindi/Urdu pairs of
words that differ between the two languages,
but otherwise share the same meaning and
are used in mostly the same semantic contexts.
These were elicited by asking for words that,
if seen in romanized text, would be strongly
indicative of either Urdu or Hindi. The seed
words were provided in the native scripts of
Hindi and Urdu along with common roman-
izations for those words. Table 1 presents five
example pairs from the set in both Latin and
native script, along with an English gloss.

4 Methods
In this paper, we focus on comparing differ-
ent sources of training data for distinguishing
romanized Hindi and Urdu, rather than devel-
oping new classification architectures.

As such, initial comparisons are done us-
ing a straightforward off-the-shelf decision tree
classifier (Breiman et al., 1984) from Scikit-
Learn6. This model has the advantage of being
highly interpretable, which makes it simple to
determine which features are most important

6https://scikit-learn.org/stable/modules/tree.html

for distinguishing Hindi from Urdu. We train
the decision tree with a maximum depth of 5
nodes, and use character 1- through 4-gram
features.

To see how a more complex neural model be-
haves, we also finetune7 the same mT5 check-
point we use for data generation (see Section
4.2) to act as a classifier, where the input is a
romanized sequence with the added task pre-
fix ‘Classify_HIUR:’, and the output is either
the string ‘hi’ or ‘ur’.

For each of the three sources of classifier
training data – Dakshina, mC4 and mT5 gen-
erated text – we provide the size of the re-
source and example strings in Table 2.

4.1 Baselines
Dakshina Topline. We train the classifiers
on the training portion of the romanized Dak-
shina fullstring data. The specific articles in
the Hindi and Urdu portions of the data dif-
fer, but otherwise span the entire range of
Wikipedia topics, so there is unlikely to a be
confound due to mismatched domains. The
romanizations were produced by specific sets
of annotators – disjoint between the two lan-
guages – hence the text may contain individual
romanization styles that can make detection
easier if present in the training data. Since
this kind of labeled training data — along with
a strong domain-match between the training
and development data — is unlikely to occur in
a realistic scenario, we consider this a topline
condition. Our Dakshina training corpus has
a total of 15.8k sentences, with a total of 1.6M
characters.

mC4 Sentences. We train our classifiers on
a balanced sample of sentences taken directly
from the hi-Latn portion of mC4 (which we
believe contains both Hindi and Urdu). In
order to distinguish Hindi-aligned and Urdu-
aligned sentences from the corpus, we use a
simple heuristic: We give a sentence the Hindi
label if it contains at least one of our Hindi
seed words, and none of our Urdu seed words.
The same applies in reverse to select potential
Urdu sentences. From these candidates, we se-
lect 45.9k sentences for each language. This

7The number of finetuning steps varied according to
training data size — 5k for the Dakshina topline, 50k
for the mc4 sentences baseline, and 100k for the data
generated by mT5.
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Dataset Lines Lang Example

Dakshina train set 15.8k HI kul milakar yah 800 kilometer ki unchai tak pahunchegi.
UR jo bulandi mein duniya mein doosre number par hai.

mC4 sentences 91.9k
HI mainyual prakriyaon ko svachaalit kyon karen vyaapaar

prakriya prabandhan sophtaveyar

UR aik din mujhay asad bata raha tha blue flim banay mein
bht paisa hai aik flim banao tu 1lac ruppe

mT5 generated data 4.5m HI dva ka title oot bhi vechain wala tadap dono.
UR mulaqat ka abjad majamiyat duniya dono se se ghazal.

Table 2: Size of each dataset in number of lines, along with one line labeled with each language from
each set. All datasets are balanced, so half the data is labeled Hindi, and half Urdu.

results in a training corpus of 91.9k sentences,
with a total of 97.7M characters.

4.2 Improving language ID with
generated text

In this section, we present a method for using
an LLM to generate training data for identi-
fying romanized Hindi and Urdu. As we de-
scribe in Section 2, romanized Hindi and Urdu
are not easily distinguishable, and so a corpus
like the romanized Hindi section of mC4 likely
contains both romanized Hindi and romanized
Urdu.

We perform our experiments using
mT5 (Xue et al., 2021), a multilingual
offshoot of the original T5 model (Raffel et al.,
2020), trained on the entire mC4 dataset.
mT5 is an encoder-decoder transformer
architecture pre-trained on a span corruption
task, a form of masked language modeling.
Spans of text in the input string are replaced
with a sentinel token, whose contents are
recovered during decoding (e.g., “The cat in
the <extra_id_0>.” maps to “<extra_id_0>
hat <extra_id_1>”). The model uses a 250k
sentencepiece (Kudo and Richardson, 2018)
vocabulary, combined with 100 additional
vocabulary items to represent the text spans.

We start with a publicly available mT5
checkpoint, using the “large” configuration on
the t5x (Roberts et al., 2022) codebase8. We
fine-tune specifically on the romanized “Hindi”
(hi-Latn) portion of the mC4 dataset, using
the original span corruption task, for an addi-
tional 100k steps. This imparts a bias to out-
put Hindi and Urdu content specifically, while

8https://github.com/google-research/t5x/blob/
main/docs/models.md#mt5-checkpoints

the original checkpoint tends to generate out-
put from a wider language distribution which
is not relevant to our task.

It seems reasonable that most sentences in
the hi-Latn portion of mC4 come entirely from
either a Hindi or Urdu source. We hypothesize
that this will allow mT5 to learn that Urdu-
aligned features are more likely to co-occur
with other Urdu-aligned features, rather than
Hindi-aligned features, and vice versa – much
as such models have been shown to learn that
words written using British spelling conven-
tions tend to co-occur with words that also fol-
low British spelling conventions (Nielsen et al.,
2023).

In order to extract the information that
mT5 has learned about the features that dis-
tinguish Hindi and Urdu, we first use mT5 to
generate strings. We construct prompts for
generation that contain words from the list of
Hindi- and Urdu-specific seed words described
in Section 3. We do this by inserting these seed
words into short frame sentences, with a blank
span elsewhere for the model to fill in. See Ta-
ble 3 for the set of frame templates — outside
the seed words, the sentences are designed to
be language-neutral, and to be semantically
generic so as not to strongly constrain possi-
ble generated continuations. For each combi-
nation of seed word and template, we gener-
ate 1000 different continuations via random
sampling — given a prompt, each subsequent
symbol in a generated string is sampled from
the multinomial vocabulary distribution pro-
duced by the decoder at every timestep, with
decoding stopping when an end-of-string to-
ken is produced. This resulted in a total
of 4.5M strings, with 54.4M total characters,
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Frames with Glosses
mainne[I] SEED aur[and] BLANK likha[wrote].

maine[I] likha[wrote] SEED BLANK
ye[this] kaho[say]: SEED BLANK

usane[he] yah[this] likha[wrote]: SEED BLANK
ye[these] hamaaree[our] pasandeeda[favorite] cheejen[things] hain[are]: SEED BLANK

maine[I] likha[wrote] SEED aur[and] BLANK
ye[this] kaho[say]: SEED aur[and] BLANK

usane[he] yah[this] likha[wrote]: SEED aur[and] BLANK
ye[these] hamaaree[our] pasandeeda[favorite] cheejen[things] hain[are]: SEED aur[and] BLANK

maine[I] likha[wrote] SEED, BLANK
ye[this] kaho[say]: SEED BLANK

usane[he] yah[this] likha[wrote]: SEED, BLANK
ye[these] hamaaree[our] pasandeeda[favorite] cheejen[things] hain[are]: SEED, BLANK

Table 3: Frames for text generation, with approximate glosses.

half of which are generated from Hindi-aligned
prompts, and half from Urdu-aligned prompts.
We label each generated string with the lan-
guage of the seed word in the prompt, strip
away any <extra_id> sentinel symbols, and
then train classifiers on these labeled strings.

For example, we can make use of the sec-
ond template in Table 3 and the first Hindi
seed word in Table 1, to construct the specific
prompt: “maine likha urja <extra_id_0>”.
The model would then map this input to
an output that effectively fills in the blank
(<extra_id_0>) at the end of the string with
some amount of output text that is prompt-
appropriate according to the training data.

5 Results and discussion

In this section, we first determine the lan-
guage identification classification accuracy of
our two classifiers when trained on three dif-
ferent sourcs, before attempting to estimate
the amount of Urdu in the romanized Hindi
section of mC4. We additionally examine the
most important features of the decision tree
model.

5.1 Language ID performance
Table 4 shows the accuracy of each model on
the Dakshina development set, under three
training conditions: training on (a) the Dak-
shina training set, which is the classifier’s
topline performance for the validation set,
since the training data is matched to the vali-
dation set for annotators and domain; (b) the

Accuracy
Training data DT mT5
Dakshina training set (topline) 85.6 96.7
mC4 sentences (baseline) 49.0 50.8
mT5 generated data 83.4 49.2

Table 4: Accuracy on the Dakshina development
set, for both Decisition Tree (DT) and finetuned
mT5 (mT5) classifiers.

mC4 extracted sentences, which is a baseline
method for making use of the provided seed
words; and (c) the mT4 generated data.

Examining the topline result for each clas-
sifier, i.e., training on the well-matched Dak-
shina training set, we can see clearly that
the mT5 classifier achieves much higher accu-
racy (96.7%) than the decision tree classifier
(85.6%). The neural classifier is simply more
powerful, having access to more than just the
local character n-gram features used by the
decision tree model, and is able to leverage
pretraining effectively. This is exactly why
the Dakshina training is labeled as a topline
evaluation, because strong classifiers can make
use of well-matched annotator and/or domain
characteristics that permit more effective dis-
crimination between examples in the collec-
tion. The decision tree classifier fails to ex-
ploit such dependencies, hence its topline per-
formance suffers relative to the neural model.

The mC4 trained baseline classifiers, how-
ever, perform essentially at chance (near 50%
accuracy) for both classificiation methods. In-
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terestingly, the decision tree model trained
on the mT5-generated data performs quite
close to the topline model for that classifier at
83.4% accuracy. The classifier manages this in
spite of being trained on mT5-generated data,
which, unlike the Dakshina topline, is neither
domain- nor annotator-matched to the devel-
opment set.

Surprisingly, the decision tree model trained
on the generated data approaches the classi-
fier’s topline even though the generated data
itself is not very separable — the training ac-
curacy of the model is only 55%. Even though
the generated data must be very noisy, there
is a very large amount of it, which allows for
the detection of a few signal-rich features while
the remaining noise averages out.

Note that the useful features used by the de-
cision tree model cannot just be character n-
grams found in our seed words. Otherwise, the
balanced mC4 baseline would have performed
better than chance. The large amount of gen-
erated data must thus contain additional infor-
mation, effectively extracting knowledge from
the LLM.

In contrast, the neural classifier fails to rise
above chance performance on the validation
set in this condition. It has the capacity
to memorize the training data with nearly
100% accuracy, but hovers around chance
when tested on the development set. This is
likely due to a domain mismatch. The dev
set (as well as the mC4 data that mT5 was
pre-trained on) largely consists of proper sen-
tences, while the generated data often appears
to be random word sequences, since it was pro-
duced by having mT5 fill in blanks in a generic
template. Such a global mismatch is not a
problem for the decision tree, since it sees all
text as a bag of unordered ngram features. In
this instance, performance actually seems to
benefit from that simplification.

The ability of the decision tree classifier
trained on mT5 generated training data to per-
form with relatively high accuracy on the dev
set also suggests that, indeed, a substantial
amount of the text labeled as romanized Hindi
in mC4 is romanized Urdu. Otherwise the in-
dependently created set of prompts would not
have yielded data sufficient to perform better
than chance on the task. While we now have

Est. Urdu %
Generated data 61.1
Topline 35.0

Table 5: The percentage of mC4’s romanized Hindi
data that our models estimate to be Urdu.

validation that this text exists, we can go fur-
ther and try to estimate how much of the data
is actually romanized Urdu rather than Hindi.

5.2 Reconsidering mC4’s Hindi section
Given our decision tree model’s relatively high
performance on out-of-domain language ID,
we can use it to offer a tentative estimate of
how prevalent Urdu text is in the “Hindi” sec-
tion of mC4. This isn’t easily verified, since
mC4 doesn’t distinguish between the two lan-
guages, but we offer these estimates in Table
5 as a suggestion of what percentage of mC4’s
Hindi data is actually Urdu. The higher num-
ber seems likely to be an overestimate, given
differences in speaker population between the
two languages, hence this is an indication that
our model is somewhat biased towards Urdu
(when in fact a prior bias towards Hindi is
likely warranted). Further validation of this
is needed.

5.3 Interpreting top features
In addition to scoring the overall performance
of the language ID model, we investigate which
features are most important to the decision
tree model’s performance. We use Gini impor-
tance to rank the features of each version of
the decision tree. We then use Pearson’s cor-
relation coefficient to determine which of the
two languages each feature is correlated with.

When we examine the top features for the
topline model and the model trained on gener-
ated data (see Table 6), we can see some pat-
terns emerge. Most obviously, the character
v is more associated with Hindi, while q and
z are more associated with Urdu. One reason
for this is that the phonemes /z/ and /q/ are
more frequent in words with Arabic or Persian
origins. Hindi speakers are much more likely
to pronounce these phonemes as [ �dZ] and [k]
respectively (Kachru, 2006). In addition, al-
though the phoneme / �dZ/ exists in both Hindi
and Urdu, as noted in Section 2, when we look
at Dakshina data, we find that Urdu speak-

39



Generated data Topline
ngram Pearson’s r ngram Pearson’s r

v -0.46 v -0.46
z 0.42 q 0.37
q 0.37 z 0.42
pr -0.37 men_ -0.28
f 0.24 pra -0.36

rez 0.01 va -0.39
ve -0.14 _men -0.27
ove -0.01 kee 0.24
pra -0.36 ovel 0.03
a 0.01 _me_ -0.23

ohol 0.00 dh -0.34
qu 0.09 _pra -0.35
e 0.05 equ -0.03

tra_ -0.17 ee 0.34
que -0.04 d -0.04

Table 6: Top 20 features for the model trained on
generated data and the topline model. Note that
the space character is represented here with an un-
derscore. The features shown in bold magenta
are correlated with the Urdu label (shown by the
positive Pearson’s r), and the features shown in
cyan are Hindi-correlated (negative Pearson’s r).

ers are more likely to transliterate it with the
character z than j.

These patterns in the top features suggest
that we may be able to use these features to un-
cover previously undocumented language vari-
ation between two related language varieties.
Of course, insofar as these features have not
been documented, it is difficult to evaluate
how successfully they reflect meaningful vari-
ations. One direction for future work would
be to verify this method on language varieties
with well documented variations, such as US
and UK English.

6 Conclusion
We demonstrate that it is possible to make use
of pretrained large language models to gen-
erate useful training data for language iden-
tification, even if the distinction between the
languages was only implicit in the pretraining
data. Our method only requires a corpus of
unlabelled, mixed data from the two language
varieties in question and a short list of seed
words from each language. It can therefore be
applied in cases where only unlabeled textual
data exists, including lower-resource language

scenarios.
Interestingly, the combination of a powerful

neural LLM for generating training data and
a relatively simple decision tree classifier mak-
ing use of local word-level features, yielded the
best results. By focusing on local word-form
features, the decision tree classifier avoided ex-
ploiting more global (but less relevant) cues in
the generated strings, and thus was able to
learn interesting word-level dependencies that
the more powerful model simply ignored.

Future work will include manual validation
and error analysis of classifier performance on
a range of texts. Further, we intend to exam-
ine this method, as suggested earlier, on more
clearly documented written language varieties,
such as those found with US and UK English
spelling differences. We also plan to investi-
gate similar language variety confounds, such
as that found between Bosnian, Croatian and
Montenegrin in the Latin script.
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Our work is focused on just a single case study
of language identification of romanized text.
As detailed in Section 2, distinguishing roman-
ized Hindi and Urdu is a good candidate for
a case study for several reasons, but it would
be beneficial to extend this work to other lan-
guage situations.

Another limitation was our choice to focus
on already existing pre-trained models, rather
than directly controlling the training data that
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is input to each model. This means some of
the conclusions about the connection between
training data and outcome are tentative, pend-
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Abstract 

We propose methods for transliterating 

English loanwords in Japanese from their 

Japanese written form (katakana/romaji) 

to their original English written form. Our 

data is a Japanese-English loanwords 

dictionary that we have created ourselves. 

We employ two approaches: direct 

transliteration, which directly converts 

words from katakana to English, and 

indirect transliteration, which utilizes the 

English pronunciation as a means to 

convert katakana words into their 

corresponding English sound 

representations, which are subsequently 

converted into English words. 

Additionally, we compare the 

effectiveness of using katakana versus 

romaji as input characters. We develop 6 

models of 2 types for our experiments: one 

with an English lexicon-filter, and the 

other without. For each type, we built 3 

models, including a pair n-gram based on 

WFSTs and two sequence-to-sequence 

models leveraging LSTM and 

transformer. Our best performing model 

was the pair n-gram model with a lexicon-

filter, directly transliterating from 

katakana to English. 

1 Introduction 

Loanwords have grown at a rapid pace in Japanese 

language since 1990s. English loanwords make up 

8 percent of the Japanese vocabulary and 94 

percent of all loanwords used in Japanese (Stanlaw, 

2004). The excessive use of loanwords in mass 

media not only poses difficulties for Japanese to 

understand their own language (Irwin, 2011), but 

also creates callenges for English speakers to 

accurately back-transliterate the loanwords due to 

the significant differences in sound and written 

representation from their original forms.  

Knight and Graehl (1998) utilized estimation-

maximization to establish a mapping of the 

similarity between English and Japanese sounds. 

Among 38 phonemes they have examined, only 5 

had a corresponding Japanese sound with a 

probability greater than .9, and 10 of them reached 

a probability of .8.  

In terms of writing systems, Japanese has a 

relatively complex system. Japanese uses three sets 

of characters: hiragana, kanji, and katakana. 

Katakana is mainly used for writing foreign words 

and over 100 of these characters are in use. 

Moreover, unlike English, Japanese characters 

represent sounds syllabically instead of 

phonetically (DeFrancis, 1989). Romaji, another 

set of characters is informally used in Japanese, 

represents the Romanization of katakana. It was 

originally used to annotate the sounds of Japanese 

characters but has gained popularity as a means of 

typing Japanese using keyboards. 

As described by Knight and Graehl (1998), the 

transliteration of English words to katakana is an 

information-losing operation from both the sound 

and writing system perspectives. For instance, 

because there is no distinction between sounds of / 

æ, ʌ / and / θ, s / in Japanese, the English words 

bath and bus are mapped to the same form in 

katakana: バ ス<ba-su>. In contrast, the word 

camera has two corresponding katakana forms: カ

メラ <ka-me-ra> orキャメラ <kya-me-ra>.  

Due to the loss of information, back-

transliteration becomes even more challenging. 

Nonetheless, in recent years, an increasing 

number of researchers have been employing NLP 

methods to address this issue. Many studies tackle 

the back-transliteration challenge as a Grapheme-

to-Phoneme (G2P) problem (e.g., Jiampojamarn 

et al. 2010; Rosca and Breuel, 2016; Merhav and 

Ash, 2018), utilizing models such as WFST-based 

n-gram models or neural sequence-to-sequence 

models, which are commonly employed for the 
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G2P tasks (e.g., Novak et al. 2016; Gorman et al., 

2020), to address the issue. 

In this paper, we approach the back-

transliteration problem by building models that 

investigate the impact of the sound information 

and the use of either katakana or romaji as the 

input for Japanese. In addition to utilizing the n-

gram and sequence-to-sequence models typically 

employed in G2P tasks, we introduce a novel 

approach by incorporating an English lexicon-

filter mechanism. We expect this technique to 

help us generate more relevant outputs. 

2 Related Work 

Knight and Graehl (1998) is one of earliest works 

on transliteration and back-transliteration of 

Japanese loanwords. They utilize WFSTs to build a 

modular system that transliterate the katakana 

words to their original English forms using the 

sound of English words. They test their system on 

two relatively small datasets: a content words 

dictionary with 1,449 katakana-English pairs and a 

name list with 100 pairs. The accuracy of their 

method outperforms that of human translators.  

Yamashita et al. (2018) not only uses phonemes 

to map katakana to English but also directly uses 

characters. They employ a bidirectional recurrent 

neural network (RNN), trained on a katakana-

English content words dictionary, and experiment 

with three test datasets: a content word list, a city 

name list, and a restaurant name list. They use 5 

similarity algorithms evaluate their model and 

report the top-five precision of each measurement. 

Interestingly, they find that the direct mapping 

using characters performs better than using 

phonemes as medium for all their measurements. 

Merhav and Ash (2018)’s research primarily 

focusses on the transliteration of named entities 

from English to katakana. They employ a n-gram 

model with the Phonetisaurus library (Novak 

et al. 2016), an RNN model with the seq2seq 

library (Luong et al. 2017) and a transformer model 

with tensor2tensor library (Vaswani et al. 

2018). They apply their transformer model to the 

back-transliteration task, which outperforms the 

other two models. They report the 1-best, 2-best, 

and 3-best word error rate (WER) for evaluation 

and the WER of the back-transliteration are 

averagely .2 points higher than the transliteration. 

 
1 https://github.com/sigmorphon/2020. 
2https://www.edrdg.org/jmdict/jmdict_whatsnew.html. 

For our experiments with the no-lexicon-filter 

models, we adapt the implementation of the 

baselines in 2020 SIGMORPHON shared task 1  

(Gorman et al., 2020), which consist of 3 models: 

a pair n-gram model built using OpenGrm toolkit 

(Roark et al. 2012, Gorman, 2016), and two 

sequence-to-sequence models with LSTM (Luong 

et al. 2015) and transformer (Vaswani et al. 2017) 

architectures that are built with the fairseq (Ott, 

et al. 2019) library. 

3 Data 

Our dataset is compiled from three dictionaries. 

First, we use the JMdict2 (Breen, 1995), a product 

of the Japanese-Multilingual electronic dictionary 

project to extract the katakana-English word pairs. 

Second, we incorporate the CMUdict 3  (Weide, 

2014), which provides the pronunciation of the 

English words. Finally, we utilize the Webster’s 

Dictionary (Neilson and Knott, 1934) and the 

CMUdict to build the English lexicon-filter. 

To construct our dataset, we first filter out non-

loanwords such as onomatopoeias and then 

manually expand the abbreviated katakana words. 

For example, the word アメフト<a-me-fu-to> 

‘Ame foot’, is extended to アメリカンフットボー

ル<a-me-ri-ka-fu-to-bo-o-ru> ‘American football’. 

Next, we utilize the CMUdict to map the sounds of 

English words and pair them with the 

corresponding katakana words. Finally, for the 

purpose of our experiment, we add a column of 

Romanized katakana words to our data by using a 

python library romkan4 . A sample of our final 

dataset is shown in Table 1. 

Our dataset consists 26,208 items, which we 

randomly divided into train, dev, and test sets. The 

proportions of the three sets are 80%, 10%, and 

10%, respectively. It is noteworthy that 47.2% of 

our data consist of katakana words are mapped to 

multiple-word expressions in English, such as the 

example of American football mentioned above. 

Finally, we merge the CMUdict (Weide, 2014) 

and Webster's dictionary (Neilson and Knott, 1934) 

to form an English wordlist with over 320k distinct 

words for building the lexicon-filter models.  
 

3 http://www.speech.cs.cmu.edu/cgi-bin/cmudict. 
4 https://pypi.org/project/romkan. 
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4 Methods 

4.1 Approaches 

Both the direct and indirect transliteration 

approaches will explore the impact of using 

different Japanese characters: katakana and romaji 

as the inputs. In the direct approach, words are 

directly converted from their Japanese writing 

forms to their English forms. On the other hand, the 

indirect approach can be implemented in various 

ways. We trained models on katakana-phonemes 

and romaji-phonemes data, which are utilized to 

predict the possible pronunciations for English 

words in the first step. Subsequently, we train 

models using the phoneme-English data from the 

CMUdict (Weide, 2014) and employ them and the 

phoneme results from the first step to predict the 

final words in English. Figure 1 illustrates the 

difference between using katakana and romaji for 

indirect and direct approaches. 

 

4.2 Models 

We create 2 types of models: models with an 

English lexicon-filter, and models without an 

English lexicon-filter. Within each type, we have 

three models, namely a pair n-gram model, and two 

neural sequence-to-sequence models with LSTM 

and transformer (Gorman et al., 2020). 

The architecture of the pair n-gram model is 

similar to the architecture of Phonetisaurus toolkit 

(Novak, 2016), but it is implemented with the 

libraries of Pynini (Gorman, 2016), Baum-Welch, 

and NGram (Roark et al. 2012). We use this model 

to train an aligner based on WFSTs that maps 

katakana or romaji characters to English 

characters. Next, the alignments are then used to 

compute a higher-order n-gram model (we set the 

order to 8), which is converted to a final WFST. 

The resulting WFST can take the input words 

written either in katakana or romaji, and produce a 

weighted lattice of possible English words, the 

prediction is made by selecting the shortest path/s 

through the lattice. 

The neural network models are implemented 

using the fairseq (Ott, et al. 2019) library. The 

LSTM-based model contains a bidirectional LSTM 

encoder with a single layer and a unidirectional 

LSTM decoder with a single layer (Luong et al., 

2015). The transformer-based model (Vaswani et 

al. 2017)  contains 4 encoder and 4 decoder layers, 

and both tuned using Wu et al. (2020)’s pre-layer 

normalization method. The two models share most 

of the training hyperparameters, such as the Adam 

optimizer (Kingma and Ba, 2015), and label-

smoothed cross-entropy for regularization. We tune 

the models on the development dataset, with 

different learning rates of .001 and .005, batch sizes 

of 128, 256, 512, and embedding layer dimensions 

of 128, 256, and hidden layer units of 512, 1024. 

We perform early stopping in a similar way to 

Gorman et al. (2020), that we save every 5 

checkpoints, and use the checkpoint that reached 

katakana romaji English CMU 
スイーパー suiipaa sweeper S W IY P ER 

テニスエルボー tenisueruboo tennis elbow T EH N AH S EH L B OW 

… … … … 

Table 1. Samples of final dataset. The CMU column contains the English pronunciations. 

 

 

Indirect  Direct 

katakana 

 

 

 

romaji 

 

 

 

Figure 1. Demonstrations of difference between 

using katakana and romaji as the input for 

indirect (left) and direct (right) approaches. 
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the lowest word error rate (WER) on the 

development set to predict on the test set. 

The implementation of the lexicon filter differs 

between the pair n-gram model and the sequence-

to-sequence models. In the case of the pair n-gram 

model, we construct a FST utilizing the English 

wordlist data and then compose it with the output 

lattices. This process enables us to eliminate any 

predictions that are not present in the English 

wordlist. On the other hand, for the neural network 

models, we extract the top-5 predictions and use 

the English wordlist to filter out the predictions that 

include non-existent words. In all models, we 

retain the original outputs if all the hypotheses 

contain non-existent word. 

5 Evaluation 

We evaluate our models by reporting the word error 

rate (WER), which represents the percentage of 

predicted words that differ from the target words. A 

lower WER value indicates a better performance. 

We consider the multi-word expressions as a single 

entity during our evaluation, meaning that any 

incorrect prediction of a word in the expression 

results in the entire prediction being considered 

incorrect. Additionally, as the selection of random 

seed values can non-trivially affect the model’s 

performance (Reimers and Gurevych, 2017), we 

opted to train each of our models with five different 

random seeds and present the median value of the 

resulting five WERs. 

6 Results 

Table 2 displays the results of all experiments, 

which demonstrate that the indirect approach 

performs worse than the direct approach. This 

finding is consistent with the results reported by 

Yamashita et al. (2018). However, the difference in 

WERs between using katakana and romaji as the 

input are insignificant for either approach. 

In addition, it is worth noting that while the 

transformer models with lexicon-filter have shown 

better performance compared to the LSTM-based 

models in the direct transliteration experiments, the 

pair n-gram model surpassed them by a reduction 

of 2 to 3 points in terms of WER. This is 

noteworthy as transformer has generally 

outperformed other two models in previous G2P 

tasks, as well as the named entity recognition task 

by Merhav and Ash (2018). 

Finally, the results demonstrate a significant 

reduction in WER for models with lexicon-filters 

compared to those without. Particularly for 

experiments with the direct approach, show a 

reduction of average 10 points for all models. The 

pair n-gram model with lexicon-filter that directly 

transliterate katakana to English proved to be the 

most robust, which achieves a WER of 23.01. 

7 Discussion 

Different designs in the indirect approach can yield 

different outcomes. Our chosen design for the 

experiment inherently introduces noise to the 

models during the conversion of phonemes to 

English words. Table 3 displays the WER results of 

experiments where words in katakana or romaji are 

converted into their corresponding English 

phonemes. The relatively high scores implies that 

the phonemes utilized for predicting English 

words, generated from the Japanese data, can 

significantly differ from the data used to train the 

phoneme-English conversion models. Yamashita et 

al. (2018) compared this design with an alternative 

approach where both Japanese and English words 

were converted to phonemes, and the similarity 

between the results was measured, which yielded 

better results in their study. 

Models 
Indirect Direct 

katakana romaji katakana romaji 

LSTM 
No lexicon-filter 38.38 37.96 33.12 33.42 

Lexicon-filter 34.41 33.93 26.33 25.91 

Transformer 
No lexicon-filter 46.70 48.95 34.30 35.41 

Lexicon-filter 41.17 43.99 24.95 25.60 

Pair n-gram 
No lexicon-filter 34.38 35.83 34.26 35.02 

Lexicon-filter 30.64 31.59 23.01 25.41 

Table 2. WER results for all experiments. 
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In order to assess the impact of different input 

characters and model architectures on solving the 

back-transliteration problem, we perform 

McNemar’s tests5 (Gillick and Cox, 1989) on the 

results obtained from the corresponding 

experiments. The null hypothesis in McNemar’s 

test states that the two hypotheses exhibit equal 

accuracy and performance. In our case, we failed to 

reject the null hypothesis when comparing the use 

katakana and romaji as input characters, as well as 

when comparing models with lexicon-filter in the 

direct transliteration approach. However, it is 

interesting to find that pair n-gram model has 

surpassed the sequence-to-sequence models. 

Merhav and Ash (2018) has surprisingly found that 

their transformer model, which is typically known 

for its ability to handle long term dependencies, 

outperformed their WFST-based n-gram model in 

their named entity transliteration task with 

relatively small input sizes. Based on this finding, 

we divide our results into two categories: small and 

large input size, using the median as the threshold. 

We then compare the WER of the transformer and 

pair n-gram models within each category. We 

observe that while the two models exhibited similar 

WER on the small input size data, there was a 

significant difference on the large input size data, 

where the pair n-gram model outperformed the 

transformer model with a WER that was 

approximately 10 percent lower. 

Upon analyzing the errors in our predictions, we 

examine the results generated by the pair n-gram 

model with the lexicon filter that used katakana as 

input. We identify two major types of the errors: the 

spelling errors and the word delimiter errors. Some 

of the spelling errors are attributed to the phonetic 

distinctions between Japanese and English, as 

discussed previously in this paper. For instance, the 

word lighter is predicted as writer due to the lack 

of distinguish between the sounds of / l, ɹ / in 

 
5 We adapt Gorman and Bedrick’s implementation of the 

test: https://github.com/kylebgorman/SOTA-taggers. 

Japanese. Other spelling errors can arise from the 

English homophones such as the target-hypothesis 

pair of site and sight.  

Word delimiter errors occur when the predicted 

words are correct, but the position of the 

whitespace is incorrect, such as the pairs of 

fireman and fire man or homegrown terror and 

home grown terror. These errors account for 10% 

of the total errors and accepting them could reduce 

the WER by 2 to 3 points. 

8 Conclusion 

Our study investigated the factors affecting the 

back-transliteration of English loanwords in 

Japanese. Specifically, we constructed models to 

compare the use of characters for direct 

transliteration versus the use of sounds as a 

medium, as well as the use of katakana versus 

romaji as input sources. We built 6 models with 2 

types: models with lexicon-filter and those without 

lexicon-filter. For each type, we built two neural 

sequence-to-sequence models as well as a pair n-

gram model. Our results revealed that models with 

lexicon-filter exhibited significant improvement in 

performance, with an average reduction of 10 

points in WER. The most robust model we 

achieved was the pair n-gram model with lexicon-

filter for the katakana-to-English transliteration, 

which produced a WER of 23.01. There are some 

areas for potential improvement in the future, such 

as integrating spelling correction models and 

incorporating word frequency computation. 

Moreover, we envision the integration of our model 

to address other challenges, including machine 

translation and entity matching. 

Limitations 

There remains a problem we have yet to address: 

the abbreviation of loanwords in Japanese. 

Japanese often abbreviates multi-word expressions 

after transliterating them into katakana. For 

example, スマートホン <su-ma-a-to-ho-n> ‘smart 

phone’ becomes スマホ <su-ma-ho>. For our 

method, we manually extended these abbreviated 

words to their full forms, but automating this 

process would be preferable due to the prevalence 

of these words in Japanese. However, back-

 katakana romaji 

LSTM 34.41 33.65 

Transformer 42.92 46.62 

Pair n-gram 32.32 34.26 

Table 3. WER results of experiments converting 

Japanese loanwords to their corresponding English 

phonemes. 
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transliterating them presents challenges as they 

deviate further from their original English forms. 

We designed our method to specifically focus on 

back-transliterating of content words, unlike many 

other studies that focused on the name entities data. 

This is because the loanwords of content words are 

prevalent in Japanese. However, names are also 

challenging as they are in other languages. 

Previous studies have suggested that a more 

sophisticated method may be necessary for back-

transliterating names. 
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Abstract 

Japanese writing is a complex system, and 

a large part of the complexity resides in the 

use of kanji. A single kanji character in 

modern Japanese may have multiple 

pronunciations, either as native 

vocabulary or as words borrowed from 

Chinese. This causes a problem for text-to-

speech synthesis (TTS) because the 

system has to predict which pronunciation 

of each kanji character is appropriate in the 

context. The problem is called homograph 

disambiguation. To solve the problem, this 

research provides a new annotated 

Japanese single kanji character 

pronunciation data set and describes an 

experiment using the logistic regression 

(LR) classifier. A baseline is computed to 

compare with the LR classifier accuracy. 

This experiment provides the first 

experimental research in Japanese single 

kanji homograph disambiguation. The 

annotated Japanese data is freely released 

to the public to support further work.    

1 Introduction 

Japanese uses a mixed writing system with three 

distinct scripts and one romanization. Kanji 漢字
is the writing script that borrows directly from 

Chinese characters which were introduced in 

Japan from China through Korea from the third 

century CE. There are 2,136 commonly used kanji 
characters termed Joyo kanji in present-day 

Japanese. 1  A single kanji character in modern 

Japanese may have multiple pronunciations 

derived from the linguistic history of the kanji 

characters as either native vocabulary words or as 

terms borrowed from Chinese. For instance, the 

 
1https://kanji.jitenon.jp/cat/joyo.html 

kanji character 山 ‘mountain’ can be read as either 

the native Japanese word yama or the Chinese-

derived term san. The native Japanese 

pronunciations of the kanji character 文 ‘letter, 

sentence, writings’ are humi, aya, and kaza, while 

Chinese borrowed pronunciations are bun and 

mon. Because a kanji character has multiple 

pronunciations, to predict the appropriate 

pronunciation for each kanji character, a text-to-

speech synthesis engine must select the 

appropriate reading. This is a form of homograph 

disambiguation. 

    This research is a computational study of 

Japanese kanji homograph disambiguation. 

Recent research in homograph disambiguation in 

Japanese is limited because of the lack of 

extensive data sets that include comprehensive 

pronunciations for the most commonly used kanji 

characters. The goal of this research is to fill this 

void, make new data sets to conduct the analysis 

of kanji characters with multiple pronunciations, 

and use the computational methodology to test the 

data set to lay a foundation for computational 

research on Japanese kanji homographs in the 

future. 

1.1 Japanese writing scripts 

The Japanese writing system uses three different 

scripts, Chinese characters (kanji), and two kana 

systems: hiragana and katakana, which are 

derivatives of Chinese characters. Hiragana 

resulted from the cursive style of writing Chinese 

characters, while katakana developed from the 

abbreviation of Chinese characters. Roughly 

speaking, kanji are used for content words such as 

nouns, stems of adjectives，and verbs, whereas 

hiragana is used for writing grammatical words 

Pronunciation Ambiguities in Japanese Kanji 
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(case markers and other ‘small’ words). Katakana 

is almost exclusively used today to write foreign 

words and names such as Tennessee テネシー 

teneshii (Sproat, 2009: 47). 

    In addition to the three writing scripts that 

originate in Chinese characters, romaji is another 

phonetic writing script using the Roman 

alphabets. Thus, Japanese essentially has four 

ways to write the language. For instance, the word 

for ‘mountain’ can be written as 山 in kanji, as や

ま in hiragana, as ヤマ in katakana, and yama in 

romaji. For more details, see Zhang (2023: 4f.). 

1.2 Kanji 

The following sections introduce the kanji 

pronunciation ambiguities. 

1.2.1 On readings and kun readings 

Over time as Chinese characters were adapted to 

Japanese, the characters came to be associated with 

native Japanese words as well. For instance, the 

Chinese character for shān 山 was borrowed and 

used to write the newly created Japanese 

morpheme /san/. However, the Japanese already 

had the word yama ‘mountain’. The character 山 

was also used to write the native word yama. 

Present-day Japanese has kept both terms for 

‘mountain’ but uses them in different contexts. For 

instance, by itself, the signifier ‘mountain’ is 

usually referred to as yama, but Mt. Fuji is Fujisan. 

The kanji character 人 ‘people, person’ has two 

borrowed pronunciations: nin and jin, and one 

native Japanese pronunciation hito; the kanji 

character 者 ‘person’ has one borrowed 

pronunciation sha, and one native pronunciation 

mono. A majority of kanji characters have one or 

more Chinese-derived readings, and one or more 

native readings (Sproat et al., 2021). 2  The 

borrowed readings and native ones are known as on 

readings and kun readings, respectively. The 

readings in speech are not a problem, however, 
when given the written form first, for instance, both 

san and yama are written as 山, one must decide, 

depending on the context of each occasion, whether 

the character should be pronounced as san or yama. 

The multiple context-based pronunciations of a 

single kanji make Japanese text a challenge. 

 
2There is a kanji category called 和製漢語 wasei kango 

‘Japanese-made Chinese-character-based words’. Wasei 

kango are words that are composed of Chinese morphemes 

but were made by the Japanese rather than borrowed from 

Chinese. The items have kanji forms and most of them are 

1.2.2 Multiple on readings 

In general, a given kanji character may have 

several different Sino-Japanese readings 

reflecting the different stages at which the kanji 

character was borrowed from Chinese (Sproat, 

2009: 47; Olinsky, 2000). Many Chinese words 

were assimilated into Japanese along with their 

characters and sounds during three unique 

historical periods. Each of these three periods of 

linguistic exchange are marked by a specific 

system of pronunciation. The three systems are 

Go’on ‘Go pronunciations’, Kan’on ‘Kan 

pronunciations’, and To’on ‘To pronunciations’. 

For instance, the kanji character行 has several on 

readings: gyo, ko, and an. For more details, see 

Zhang (2023: 7f.). 

1.2.3 Multiple kun readings 

The Chinese character borrowing has experienced 

at least three booms, and the cycles of kanji 

borrowing led to multiple usages for each single 

kanji character. In other words, one kanji 

character can hold multiple Japanese native 

readings with disparate associated meanings. For 

instance, the kanji character 生 has several kun 

readings each with a different meaning: iki ‘live, 

exist’, hae ‘grass grows’, nama ‘raw’, and u ‘to 

produce, give birth to’; 生 can also be read as ha, 

o, ki, inochi, ubu, and na. 

1.2.4 Personal name readings 

Personal name readings are a reading category 

different from on readings and kun readings. 

A kanji character has diverse readings in personal 

names which are different from its on readings 

and kun readings. For instance, the kanji character 

一 has several personal name readings: i, osamu, 

ka, kazu, and katsu. For more details, see Zhang 

(2023: 9f.). 

1.2.5 Reading ambiguities 

Each single kanji character, generally, has at least 

one on and at least one kun reading. Because a 

kanji character has multiple readings, and each 

reading is used in different senses, when 

encountering a kanji character, one needs to figure 

out an appropriate contextual reading for the kanji 

character. For instance, the kanji character 行 is 

read based on the kun reading rules, e.g., 蛯 ebi ‘shrimp’, 躾 

shitsuke ‘upbringing’, and 凧 tako ‘kite’.  A few of them have 

both on reading and kun reading, e.g., 雫 da (on reading),  

shizuku (kun reading) ‘driblet’, and 鱈 setsu (on reading),  

tara (kun reading) ‘cod’. 
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pronounced gyo in 修行 shugyo ‘ascetic practices, 

training’, ko in 行動 kodo ‘action’, and an in 行

脚 angya ‘pilgrimage’. 

1.3 TTS and TTS approaches 

Text-to-speech synthesis (TTS) is a technology 

that allows written text to be output as speech. 

Because people are in fact very sensitive to both 

the words and the way they are spoken, the goals 

in building a high-quality TTS system should 

clearly get across the message and use a human-

like voice. These two goals of TTS are called 

intelligibility and naturalness (Taylor, 2009: 2-3).  

    The TTS problem is traditionally split into 

front-end and back-end systems. As one of the 

front-end system problems, the TTS system must 

predict the pronunciations of the words. For the 

in-vocabulary words with a single pronunciation, 

this requires only dictionary lookup. But for other 

types of words, for instance, homographs, because 

polysemous words are pronounced differently 

depending on the intended sense, one must 

analyze the context in which a kanji character 

occurs to select a contextually appropriate 

pronunciation (Gorman et al., 2018). This 

problem has been studied as homograph 

disambiguation, e.g., in English and a few other 

languages. A number of methods have been tried 

for several disambiguation tasks in NLP, 

including part of speech (POS) tagging and 

decision lists. Sproat et al. (1992) propose 

statistics of POS bigram or trigram to solve the 

problem and improve the disambiguation 

performance with words that have different POS 

taggers. Yarowsky (1994, 1997) presents decision 

list algorithms that combine the strengths of n-

gram taggers, Bayesian classifiers, and decision 

trees in a highly effective general-purpose 

decision procedure for lexical ambiguity 

resolution. Gorman et al. (2018) select a set of 163 

homographs for the US English experiment and 

find that hybrid systems (making use of both rules 

and machine learning) are significantly more 

accurate than either hand-written rules or machine 

learning alone.  

1.4 Japanese TTS homograph ambiguities 

Japanese writing is a complex system, and a large 

part of the complexity resides in the reading of 

kanji characters. The trick in any case is to know 

which is the right reading, which makes reading 

Japanese text a challenge for the TTS system 

(Sproat, 2009: 47). As discussed in section 1.2.1, 

the kanji character 山  ‘mountain’ could be 

pronounced either san or yama. The two 

pronunciations share the same meaning.  

However, the TTS system must do homograph 

disambiguation to find an appropriate 

pronunciation based on the contextual 

information of the kanji character. 

    Two features are also related to the Japanese 

homograph disambiguation performance: word 

boundaries and formality. Because there is no 

word-boundary delimiter in Japanese, it is hard to 

identify a word. In the word segmentation 

process, if word boundaries cannot be identified 

correctly, it may lead TTS to incorrectly 

pronounce a string (Olinsky, 2000; Ooyama et al., 

1987; Tesprasit et al., 2003). Therefore, problems 

of word boundary ambiguity and homograph 

ambiguity always occur together. Additionally, 

because Japanese writing is a combination of 

different scripts, kanji is used primarily for stems 

and hiragana is used for most inflectional endings 

and grammatical devices, word boundary 

discrimination can be simplified by detecting the 

transitions of the two different scripts. For 

instance, the string “現代の行政区分 ” ‘modern 

administrative divisions’ can be segmented at 

least into three tokens with the intervention of the 

hiragana の ‘possessive particle’ between the two 

kanji clusters: “現代 ” ‘modern time’ and “行政

区分” ‘administrative divisions’. Katakana, on 

the other hand, is used primarily for phonetic 

renderings of foreign words, further reducing 

ambiguity. Thus, kanji can be considered the 

“harder” case for word segmentation (Olinsky, 

2000).  For instance, the kanji string “米国産業

界 ” can be segmented into two separate ways. 

The first kanji character holds different meanings 

and pronunciations based on the different 

segmentations. The first segmentation is 米

国  ‘America’ 産業  ‘Industry’ 界 ‘Realm’, in 

which the first kanji character 米 is pronounced 

Bei; the second segmentation is 米 ‘Rice’ 国産 

‘Domestic production’  業界  ‘Industry’, in 

which the kanji character 米 is pronounced Kome. 

Taylor (2009: 46) discusses the homograph 

syntactic ambiguity using English sentence 

“Police help dog bite victim” which has at least 

two different possible syntactic patterns: (Police 

help dog) bite victim; and Police help (dog bite 

victim). The homograph syntactic ambiguities 

also exist in Japanese sentences. If not processed 

appropriately, it can hurt the performance of one 

of the TTS goals—intelligibility. 

52



 

 
 

 

    Japanese is famous for its politeness and 

formality. Some Japanese words have both 

informal and formal forms. Formal Japanese 

forms can additionally be divided into three 

categories: 丁寧語 teinei-go ‘polite form’, 尊敬

語 sonkei-go ‘honorific form’, and 謙譲語 kenjo-

go ‘humble form’. The kanji word 今日 ‘today’ 

has two pronunciations, the informal 

pronunciation is kyo, and the formal 

pronunciation is konnichi. Therefore, given the 

kanji word 今日, the system needs to analyze the 

formality based on the contextual information and 

select an appropriate pronunciation accordingly. 

Whether the system can do the contextual 

formality analysis perfectly or not will affect the 

achievement of the other TTS goal—naturalness. 
    In addition to its importance in TTS 

applications, homograph disambiguation is 

relevant to automatic speech recognition (ASR) 

and is also a subset of word sense disambiguation 

(WSD) (Seale, 2021). Therefore, the task 

of kanji homograph disambiguation is not only 

important in improving the Japanese TTS 

performance but is also a crucial part of gaining 

high ASR and WSD accuracy. 

    However, Japanese kanji homograph 

disambiguation, to the best of the author’s 

knowledge, is not currently attested to in peer-

reviewed literature or otherwise published online. 

Also, there does not exist a well-developed data 

set that can support the research. 

1.5 Labeling in Japanese kanji homographs 

In TTS synthesis, the selection of the correct 

pronunciation of a text string occurs when a 

homograph is encountered (Seale, 2021). 

Homographs are pronounced differently depending 

on the intended sense, and the context provides 

enough clues for a homograph to select a 

contextually appropriate pronunciation (Gorman et 

al., 2018; Hearst, 1991). Yarowsky (1997) 

describes the techniques of English homograph 

disambiguation where each homograph is labeled 

originally by hand and a collection of features such 

as nearby content words. We manually label the 

pronunciations for each kanji homograph given a 

context and use machine learning methods to test 

the performance of the Japanese kanji homograph 

disambiguation. The data is released to the public 

for further experimentation by the NLP research 

community.  

1.6 Research contributions 

This research serves as the first academic work 

focused on Japanese kanji homograph 

disambiguation. Its contributions include 

publicizing the first single kanji pronunciation 

annotated data set, a typology of homographs with 

implications for both labeling and modeling and 

offering substantial language-specific resources to 

do Japanese homograph disambiguation. The data 

is released to the public for further 

experimentation by the NLP research community.   

2 Data-driven kanji homograph research 

This chapter introduces the Japanese kanji 
homograph data collecting, labeling, and 

modeling. Although very well respected at the 

current time, this research determined that the part 

of speech (POS) method is not compatible with 

Japanese homograph disambiguation. An 

explanation will be presented at the beginning of 

the chapter. 

2.1 The reason for not using POS 

With the increasing availability of annotated 

language data, several statistical part of speech 

(POS) tags have been developed which achieve 

high accuracy. Many prior work (Asahara et al., 

2000; Brants, 2000; Denis, 2009; Gorman et al., 

2018; Manning, 2011; Ratnaparkhi, 1997; Seale, 

2021; Toutanova et al., 2000) uses POS features 

for disambiguating words. However, unlike 

homographs in some languages, the readings of 

kanji are generally not disambiguated by POS 

tags: firstly, most readings of kanji characters 

correspond to the same parts of speech, for 

instance, the kanji character 山 is a noun whether 

it is read as san or yama; secondly, some kanji 

characters cannot be assigned part of speech, for 

instance, the kanji character 文 is a component of 

the nouns 文化 ‘culture’, 文法 ‘grammar’, and 文

学 ‘literature’, and the part of speech for 文 itself 

cannot be defined. Therefore, POS annotation was 

not adopted as an analyzer in this research. For 

more details, see Zhang (2023: 16f.). 

2.2 Kanji homograph data 

The goal of this research is to construct a way of 

determining an appropriate pronunciation for 

Japanese kanji homographs. For this purpose, a 

data set labeled the pronunciation of commonly 
used single kanji characters was constructed. 

53



 

 
 

 

2.2.1 Data collection 

The labeled single kanji homograph data set is 

constructed using the following data: Japanese 

dictionary Jiten 3  and Universal Dependencies 

(UD) Japanese-GSD.4 Jiten is an online Japanese 

dictionary. According to Jiten, as of June 2023, 

the number of recorded kanji characters is 27,693, 

and the total number of commonly used kanji 

characters is 2,136. This research collected each 

commonly used kanji character readings, 

including on readings, kun readings, and personal 

name readings. In addition, sentences from UD 

Japanese-GSD were combed for the context of 

commonly used kanji characters. These kanji 
characters and their pronunciations were 

combined with the Jiten kanji characters. The UD 

Japanese-GSD resource consists of sentences 

from Wikipedia and sentences which have been 

automatically split into words by IBM’s word 

segmenter (Asahara et al., 2018). The data set is 

segmented into 193,654 tokens and 8,100 

sentences, and divided into training, development, 

and test sets. This research ignored the original 

splits for data collection. 

2.2.2 Kanji homograph extractions 

This research used Python libraries, data classes, 

and collections to extract the kanji homographs. 

The top 100 most commonly used kanji 
homographs in the combined UD Japanese-GSD 

data set were extracted. After this process, some 

kanji homographs were excluded. Firstly, it was 

determined that a kanji homograph with a 

frequency of 50 or more occurrences was optimal, 

because if there is not enough data for a given kanji 

homograph, we cannot build a good classifier. This 

resulted in 86 kanji homographs. Secondly, 18 

semiotic classes were excluded.  There are some 

semiotic classes, for instance, computer languages, 

email addresses, dates, times, telephone numbers, 

and postal addresses are much simpler than natural 

language, and problems will arise when we mix the 
natural language and those semiotic systems in the 

same signal and using the same characters to do so 

(Taylor, 2009: 33-34).  In Japanese, the reading of 

a kanji character inside a number or date expression 

is different from reading a kanji character that is not 

a part of one of those expressions.  For instance, the 

kanji homograph 一 ‘one’ has multiple readings.  

When 一 stands alone, the reading is ichi; when 一 

 
3https://jitenon.com/cat/common_kanji.php 
4 The treebank is licensed under the Creative Commons 

License Attribution-ShareAlike 4.0 International. 

is one part of the semiotic classes, for example, 

ichimai ‘one piece of’, ikko ‘one’, and hitotsu 

‘one’, the reading will be ichi, itsu, and hito, 

respectively, depending on the following 

characters. The third exclusion ensures that each 

pronunciation must occur more than once and be at 

least 2% overall of the annotated data.  Therefore, 

kanji homographs with only one pronunciation 

were removed so as not to bolster model scores, as 

the models would correctly pick the only 

pronunciation class available, and 36 kanji 

homographs removed due to pronunciation 

invariance. Thus, there were 32 kanji homographs 

retained.  1 kanji homograph was excluded due to 

Japanese formality.  The kanji character 私 is a 

first-person singular pronoun that has two 

pronunciations: watashi and watakushi.  There is 
only a slight difference between the two 

pronunciations, and distinguishing the two 

pronunciations requires subtle context.  Therefore, 

it was excluded to avoid confusing the system.  2 

kanji homographs were removed due to automatic 

kanji homograph extraction errors. 5   Data for a 

further 3 kanji homographs were removed because 

the number of examples that can be labeled was 

very small.6  For more details, see Zhang (2023: 

18f.). After removing 74 kanji homographs, the 

remaining UD Japanese-GSD homograph data 

contains 26 unique homographs, and the 26 kanji 

homographs were modeled.  

2.2.3 Kanji homograph pronunciation class 

size 

Each kanji homograph in the data set has at least 

two pronunciations. 77% of the kanji homographs 

have two pronunciations, and 23% have three or 

four pronunciations. 70% of the kanji homographs 

with two pronunciations have one commonly used 

pronunciation, and the commonly used 

pronunciation is greater than or equal to 40% of 
the available data. One kanji homograph has the 

largest difference in pronunciation class size, with 

a ratio of 4:96, and one has a ratio of 49:51. On 

the other hand, four kanji homographs with more 

than two pronunciations have two commonly used 

pronunciations. Those two pronunciations 

accounted for around 90% of the available data 

and the ratio of the two is very close.   

 

 

 

5The kanji homographs are見 and 出. 
6The kanji homographs are 名, 位, and 次. 
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いつ も 、 人 が 沢山 い ます 。 

                              t − 2    t − 1      t     t + 1      t + 2 

 Table 1: Example of n-gram features for the ambiguous kanji character 人 ‘people, person’.  

 

 

 

 

 

2.2.4 Data split redistribution 

The total number of examples for the 26 kanji 

homographs in the data set is 1,903. These samples 

were split into 80% train, 10% dev, and 10% test. 

Stratified sampling was used as the default to 

maintain pronunciation class distribution among 

the splits. The stratified sampling method could be 

advantageous to sample each kanji homograph 

pronunciation category independently.  

2.2.5 Data release 

The new data sets were released for general use 

with the hope of helping to advance future 

research in Japanese and cross-lingual 

homographs. The data sets were released in two 
parts. First, 2,136 commonly used kanji 

homographs with their readings and reading types 

were released in a tab-separated values (TSV) 

file.7 Readings for each kanji homograph include 

on readings, kun readings, and personal name 

readings. An annotated UD Japanese-GSD—a 

data set of kanji homograph readings in context 

was also released.8 It includes sentences in which 

the target kanji homograph has been found. 

2.3 Modeling 

As the task of homograph disambiguation is to 

select a contextually appropriate pronunciation 

for a homograph, a logistic regression classifier 

was developed to make pronunciation predictions, 

and a baseline was computed to compare it 

against. While a baseline makes predictions that 

ignore the input features, the logistic regression 

classifier derives the input features from the 

homographs and the context surrounding them.  

 

 

 
7https://github.com/wenzhang0222/thesis 
8https://github.com/wenzhang0222/thesis 

 

 

 

 

 

2.3.1 Baseline 

A baseline was computed using the most frequent 

class label for each homograph, and then it was 

compared to the logistic regression classifier 

accuracy. 

2.3.2 Logistic regression classifier 

As the main task of homograph disambiguation is 

to select an appropriate pronunciation for a 

homograph given the context, a logistic regression 

(henceforth, LR) classifier was developed which 

considers the contextual features. In the 

development of the LR classifier, one LR 

classifier per-kanji was trained with the following 

n-gram features: tokens indexed one and two 

before and behind the homograph token, bigrams 

indexed immediately before and after the 

homograph token, and a skip-gram, the 

constituents of which surround the homograph 

token.9 Table 1 displays one example of the kanji 

homograph n-gram features: t shows the position 

of the target kanji homograph; t − 2 “も” and t − 

1 “、” are the left two tokens, while t + 1   “が ” 

and t + 2 “沢山 ” are the right two tokens.  Each 

unigram t − 2, t − 1, t + 1, and t + 2; the previous 

bigram t − 2 and t − 1; the following bigram t + 1 

and t + 2; and the skip-gram bigram t − 1 and t + 

1 were extracted as the target token features. 

2.4 Evaluation and analysis 

Per-class accuracy of one of the models from the 

most performant model type is reviewed, and 

error analysis is done for all models. 

 

 

 

 

 

 

 

 

 

9Writing script categories (kanji, hiragana, and katakana) for 

n-grams were also checked but not selected as one of the 

features because they did not help the overall performance. 
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Figure 1: Baseline and LR accuracy for each kanji homograph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

2.4.1 Evaluation procedures 

A baseline and LR classifier were trained and 

evaluated on the test set. Randomness can play a  

major role in the outcome of experiments and 

common sequence tagging tasks, the seed value for 

the random number generator can result in 

statistically significant differences for state-of-the-

art systems (Reimers et al., 2017). Because 

randomness is inherent in the model, different 

results will be obtained if it is run multiple times. 

To protect against the human selection of metrics 

from a particularly good run, the reported metrics 

were taken from the model with the median 

balanced accuracy from each set of five models’ 
performances. Hyperparameters were adjusted 

during training: L1 regularization, LIBLINEAR 

solver, and hyperparameter C = 10. Separate 

models were trained for each kanji homograph. In 

addition, development of the models was done 

using the train and dev splits, and metrics were 

reported on the test split. 

2.4.2 Metrics 

The accuracy of a model provides a measure of its 

predictions’ proximity to the correct values. 

Accuracy is determined in the range between 0  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 1. The performance of the models was 

evaluated using micro accuracy and macro 

accuracy. 

2.4.3 Model performance 

The micro and macro accuracies for the baseline 

and the LR classifier trained in this research are 

recorded in Table 2 — they show, on average, an 

increase between baseline and the non-baseline 

accuracies. The reasons are, firstly, logistic 

regression is famous for handling classification 

problems; secondly, L1 regularization was applied 

in the LR classifier, and it can handle both dense 

and sparse input. 

2.4.4 Per-kanji homograph performance 

Figure 1 shows the accuracies for each kanji 
homograph: the baseline accuracy is represented 

by light blue histograms and the LR accuracy is 

shown in dark blue histograms. While the baseline 

accuracies range from .43 to .86, the LR 

accuracies range from 0.57 to 1.00. Overall, the 

LR accuracies outperform baseline accuracies. 

For more details, see Zhang (2023: 29f.). 

2.4.5 Error analysis 

The following sections report error analysis based 

on the errors made by the baseline and the LR 

classifier. 

 

Kanji geographical feature error analysis 

Reading a kanji character in some place names is 

a problem due to many kanji characters in those 

place names do not follow the default or general 

reading rules (Jones et al., 2022). Most parts of 

Model Micro acc. Macro acc. 

baseline .67 .67 

LR .83 .83 

 

Table 2: 26 kanji models’ micro and macro accuracy. 
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Japan have their own dialects that can be used for 

colloquial interactions.  As a result, kanji reading 

in place names are sometime following local 

traditions or dialects. In this research, there is one 

kanji character that reflects the Japanese kanji 

geographical features. The kanji character is 町 

‘town’. 町 has two pronunciations: the on reading 

cho and the kun reading machi. The reading of 町 

seems casual and it is largely influenced by its 

geographical location. Both 町 ’s baseline and LR 

accuracy are .67. For more details, see Zhang 

(2023: 31f.). 

Fixed expression error analysis 

 

Most kanji characters have a commonly used on 

reading and a commonly used kun reading. 

Generally, when on reading and kun reading share 

the same meaning, the context will select a 

reading based on the n-gram features and 

sentential formality. While kun reading is casual, 

on reading is more formal. However, in some 

fixed expressions, due to history and/or 

geographical reasons, on reading and kun reading 

will no longer be distinguished, and there is only 

one reading. For instance, the kanji character 生 

has two commonly used pronunciations: one is the 

on reading sei, the other is the kun reading nama. 

When 生 means ‘live’, it can only be read as nama 

instead of sei. The LR classifier predicts 50% 

incorrectly in this case. Other examples can be 

found in Zhang (2023: 34f.).  

 

Formality error analysis 

 

The Japanese honorific system is well-developed, 

ranging from pronouncing a single kanji character 

in a specific context to choosing sentence patterns 

and expressions. We retained a mild formality 

kanji homograph to test whether the model can 

learn, and to what extent formality can be learned 

during training. The kanji character is 他 ‘others’. 

他 can combine with the hiragana phrase その  

‘that’ to make a fixed expression その他  ‘the 

others’, and it has two pronunciations in the 

combination: hoka and ta. The only difference 

between the pronunciations sonohoka and sonota 

is that sonohoka sounds more casual, which can 

be used in daily life conversations; sonata is 

formal, can be found in business expressions and 

official documents. The LR accuracy of the kanji 

character 他  is .82, and all the incorrect 

predictions are about the formality pronunciations 

of 他 in the combination その他. This indicates 

that the LR classifier was not able to differentiate 

the Japanese formality robustly.  

 

Pronunciation class size imbalanced error 

analysis 

 

There are two kanji characters that each of which 

has four pronunciations, one is the kanji character 

家  ‘home, house, family’ and one is the kanji 

character 後  ‘later, back’. The character 家  ’s 

pronunciations are: ka, ke, ie, and ya. Among the 

105 examples of the kanji character 家 , the 

pronunciation ka counts for 62%, ke is 19%, ie is  

17%, and ya only counts for 2%. The LR classifier 

could not distinguish the two commonly used 
pronunciations: ka and ke and predicted all the ke 

to ka. LR also predicted ya to ka. Because the ratio 

of the pronunciation ya is very low, it can be 

assumed that features of the pronunciation ya 

were not fully learned by the LR classifier during 

training, and the LR classifier used the most 

frequent pronunciation ka to predict it. Other 

examples can be found in Zhang (2023: 35f.) 

3 Discussion and conclusion 

This research has been motivated by providing the 

first annotated Japanese single kanji 
pronunciation data set to solve Japanese kanji 

reading ambiguities. Although the pronunciation 

of Japanese kanji characters is a bottleneck on 

TTS performance, it has not been studied 

seriously due to the lack of reliable publicly 

available data. At the beginning of Chapter 2, this 

research addressed weaknesses in the use of part 

of speech (POS) as a mean of Japanese kanji 
homograph disambiguation and expounded on the 

source and methods of obtaining and processing 

the data. Some Japanese characteristics, for 

instance, rendaku, formality, and geographical 

features were taken in account when processing 

data. 

    Baseline and logistic regression (LR) classifier 

were used to examine the data performance. 

While the baseline can only obtain 67% prediction 

accuracy, the LR classifier, with the help of the n-

gram feature extractions, effective statistical 

analysis and regularization, improved the 

prediction accuracy to 83%. The following 

sections provide information about the known 

limitations of this research and directions for 

future research. 
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3.1 Known limitations and future research 

As mentioned in Chapter 2, since data is annotated 

by the author in person, it may include some human 

error in labeling. However, this can be resolved 

through a review of the labels and the publication 

of an amended version. In addition, the sentence 

data is obtained from the Universal Dependencies 

(UD) Japanese-GSD data set, this is just one of 

eight UD Japanese corpora and other ones could be 

used to expand the data set. Also, this research 

treats the single kanji homographs as the target, and 

the work could undoubtedly be improved by 

expanding the research to kanji combinations. As 

discussed in Chapter 1, Japanese is one of the 

languages that lack word boundaries. Therefore, 

the first interesting point will be that when a kanji 
homograph is in a kanji combination or phrase, 

which kanji homographs will tie together to make 

a word to create a word boundary with other kanji 
homographs. Then the second point is how the new 

kanji combination can affect the pronunciation 

selection of those kanji homographs. 

    An anonymous reviewer suggests that we 

compare against the kanji disambiguation system 

embedded in MeCab. However, we leave this 

comparison for future work.  

    Finally, due to time constraints, this research 

extracts n-gram features for the target kanji 
homographs. There will be other features that help 

analyze the context to improve the model 

performance. 

3.2 Conclusion 

This research has pioneered labeling for the task 

of Japanese kanji homograph disambiguation in 

text-to-speech applications. It contributes to 

providing the first public free kanji homograph 

annotated data. New data sets are offered to the 

research community to provide further research 

on this work. This research also provides a 

typology of homographs based on specific 

language features. The direction is set for future 

research in Japanese homograph studies and can 

be extended to research on the writing system of 

Chinese characters. 
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Abstract

Word error rate (WER) and character er-
ror rate (CER) are standard metrics in
Speech Recognition (ASR), but one prob-
lem has always been alternative spellings:
If one’s system transcribes adviser whereas
the ground truth has advisor, this will
count as an error even though the two
spellings really represent the same word.
Japanese is notorious for “lacking orthogra-
phy”: most words can be spelled in multi-
ple ways, presenting a problem for accurate
ASR evaluation. In this paper we propose
a new lenient evaluation metric as a more
defensible CER measure for Japanese ASR.
We create a lattice of plausible respellings
of the reference transcription, using a com-
bination of lexical resources, a Japanese
text-processing system, and a neural ma-
chine translation model for reconstructing
kanji from hiragana or katakana. In a
manual evaluation, raters rated 95.4% of
the proposed spelling variants as plausible.
ASR results show that our method, which
does not penalize the system for choosing a
valid alternate spelling of a word, affords a
2.4%–3.1% absolute reduction in CER de-
pending on the task.

1 Introduction: “Word” error rate
For decades, a standard measure of per-
formance in Automatic Speech Recognition
(ASR) has been word error rate (WER), which
gives a measure of how poorly a transcription
hypothesized by the ASR system matches a
reference transcription and which, while of-
ten criticized—e.g. (Wang et al., 2003)—is
still widely used. While the expression WER
uses the term word, it is important to note
that what is matched is not really words, but
rather spelled forms. To take a simple exam-
ple from English, the reference transcription
might have the token advisor, whereas the

corresponding token in the hypothesis is ad-
viser. Although these are variant spellings of
the same word, the system would be assessed
as getting the word wrong, since the spellings
do not match. If one used instead character
error rate (CER), the effect of the spelling dis-
crepancy would be of course be less, but there
would still be an error. Arguably this should
really not count as an error, since the spelling
alternates are both valid.

Orthographic variation (Meletis and
Dürscheid, 2022, Section 4.6), is common in
the world’s writing systems, but for many
systems the effect is a minor one. In English,
for example, orthographic variation is of two
main types: regional variation, in particular
British versus American spelling (e.g. neigh-
bour vs. neighbor); and more or less free
variation within a regional variety such as
the advisor/adviser example above, or issues
such as whether to write a space in noun
compounds (e.g. doghouse vs. dog house). In
the former case, one can argue that a spelling
discrepancy should count as an error since
in contexts where, say, flavour would be an
appropriate spelling, neighbor would not be,
and vice versa. In the latter case, the variants
should probably not be counted as errors, but
a naive WER or CER computation would
so count them. Still, since the amount of
such spelling variation is relatively small, one
can usually ignore this effect, or use cleanup
scripts to handle the few cases that occur.
WER is a fiction, but it is a fiction that can
largely be ignored.

2 Japanese spelling inconsistency

In Japanese, unlike in English, spelling vari-
ation is rampant, and the fiction becomes
too great to be ignored. Japanese spelling
is very inconsistent, with many words that
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have kanji (Chinese character) spellings also
appearing in text in hiragana (one of the two
syllabaries used in Japanese), or even, for
emphasis or other reasons, in katakana (the
other syllabary). Thus common words like
だめ (hiragana) dame ‘not allowed’ also fre-
quently appear as ダメ (katakana) for empha-
sis, but there is also a somewhat infrequent
but nonetheless occurring form in kanji, 駄目.
ください kudasai ‘please’ also frequently ap-
pears as 下さい. うまい umai ‘good’ can also
be written as 上手い. If one’s reference tran-
scription has ダメ dame and the ASR system
hypothesizes だめ, a naive WER/CER com-
putation would count this as an error, even
though these are both valid variant spellings.

There are many reasons for the variation.
Some of them have to do with style—on which
see Section 6. Katakana is frequently used
to mark emphasis so that in Japanese, or-
thographic variation is used to mark what
in English would involve either, to adopt
the terminology of Meletis and Dürscheid
(2022), graphetic variation such as italics,
or graphemic variation such as capitalization.
Joyce and Masuda (2019) give the example
of mechamecha ‘absurdly’, normally written in
katakana メチャメチャ, being written in kanji
as 目茶目茶 in a sentence with foreign words or
emphasized words, both written in katakana.
They suggest the reason for the kanji spelling
in this case is to provide visual distinctiveness.
Spelling variants may also be used for artistic
reasons (Lowy, 2021). One would like to have
a measure of error rate that takes these sorts
of variation into account.

One could of course propose developing ref-
erence transcriptions that are highly standard-
ized so that, e.g., dame is always written
だめ, thus eliminating the problem. Indeed
corpora such as the Corpus of Spontaneous
Japanese1 exist that have highly standardized
orthographic transcriptions. But this is not a
practical solution in general for a couple of rea-
sons. First, a large amount of potential train-
ing data that comes with transcriptions—for
example YouTube videos—will not have been
subjected to rigorous transcription guidelines,
and the cost of retranscribing such data would

1https://clrd.ninjal.ac.jp/csj/en/data-index.
html

be prohibitive. Second, downstream applica-
tions cannot be expected to adhere to what-
ever guidelines have been adopted, and one
would like the flexibility to provide transcrip-
tions that can match what downstream appli-
cations expect. Over and above this, normal-
izing everything to a standard spelling misses
the fact that variation is a normal part of
Japanese spelling, and one can ignore this only
by adopting an artificial standard. We pro-
pose therefore to try to model what every na-
tive speaker/reader of Japanese knows, namely
that だめ, ダメ and 駄目 are all legal ways to
write dame ‘not allowed’.

At the same time, one cannot allow the sys-
tem to be too loose. To return to an exam-
ple cited above, for うまい umai ‘good’, one
can also have 上手い, as above, but in addition
another possible written form is 美味い. The
second spelling, 上手い just means ‘good’ (i.e,
good at something), whereas 美味い means
‘good tasting’. These two senses are both avail-
able for うまい, but they are not interchange-
able, and this issue comes up if the ground
truth has a kana spelling, whereas the hypoth-
esized form uses kanji. If ground truth has
うまい, and the system transcribes 美味い ‘de-
licious’, whereas a native speaker could tell
from context that what was intended was 上手

い ‘good’, this should count as an error. In
reconstructing spelling variants in kanji from
reference forms in kana, the system therefore
needs to do sense disambiguation.

3 Proposed method

Our method starts with the creation of a
lattice of possible respellings, given a refer-
ence transcription for an utterance. In order
to illustrate the method, we consider the
hypothetical reference transcription

この 拉麺 は うまい 。

kono rāmen ha umai .

‘this ramen is delicious’. The first step
involves computing hiragana transcriptions
for kanji sequences, which in the case at hand
will yield らーめん for rāmen. In general
tokens written in kanji may have multiple
readings, but usually only one reading is
appropriate for a given context. For this
conversion we use a proprietary Japanese
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lattice-based text normalization system that
uses a large dictionary, annotated corpora,
rules, and linear classifiers to determine the
most likely readings of kanji sequences in
context. The system has a roughly 97% token
accuracy on held out data. As is well-known,
Japanese text lacks word separators, but one
side-effect of the text normalization system
is to produce a word-segmentation of the
sentence. These word segments are used as
the tokens for subsequent processing in our
lattice construction.

For each hiragana word, we also want
a katakana equivalent—cf., the example of
だめ/ダメ above. This is a fairly straightfor-
ward conversion and in the example at hand
would produce ラーメン for rāmen, which also
happens to be the way this word is normally
written.

This completes the conversion of kanji
tokens into kana, and the next step is to
convert in the other direction. For exam-
ple, the last non-punctuation token in the
utterance うまい umai ‘delicious’, also has
a common kanji spelling 旨い. However as
noted above, in this as in many other cases,
one needs to be careful, since another possible
spelling for うまい is 上手い, which would
not be appropriate in this instance since it
means ‘skillful’. For this conversion we train a
transformer-based neural machine translation
model (NMT)—e.g. (Tay et al., 2020)—on
Japanese web text where we first converted
successive kanji spellings into hiragana using
the text normalization system previously
described. For example, consider the input
sentence:

再び、MTサミットが日本で

futatabi, MT samitto-ga nihon de
‘Again, the MT Summit is in Japan’

which contains two words containing kanji
再び futatabi ‘again’ and 日本 nihon ‘Japan’.
Consider the second of these, which has the
hiragana transcription にほん. We replace
this into the sentence above and tag it with
a special tag <to_kanji>...</to_kanji> so
that the input appears as

再び、 MTサミットが <to_kanji> にほん

</to_kanji> で

and we train the NMT system to predict
日本, given this context. We also need to
train the model to predict cases where kana
spellings should not be replaced by kanji: For
example the final で does not have a kanji
variant, and so in this case we would produce
a variant of the input sentence with that token
tagged with <to_kanji>...</to_kanji>, and
the system would be trained to replace it with
itself.

The NMT transformer is configured with 6
layers, 8 attention heads and a hidden-layer di-
mension of 2048, and trained on a web corpus
of 7.3 billion tokens. At runtime the model is
applied to each hiragana word in the sentence
in turn to predict whether that token should
be replaced with a word spelled in kanji, and
if so which word. The token error rate for
kanji restoration on a held out corpus is ap-
proximately 3.8%. In the case at hand, the
system would correctly predict 旨い as an ap-
propriate spelling of うまい.

Finally, 旨い has another possible kanji
spelling, 美味い, which we have already seen
in Section 2. To allow for these variants we
use lexical resources licensed from the CJK
Institute (www.cjki.org), in particular the
Japanese Orthographic Dictionary, which lists
spelling equivalence classes for several tens of
thousands of Japanese words.2 These equiv-
alence classes are ‘safe’ in the sense that one
can substitute any spelling in the class for any
other without considering the context of the
word. Thus 美味い and 旨い both mean ‘deli-
cious’ and can be safely substituted for each
other. To the CJKI institute data we have
added additional equivalence classes mined
from various data sources such as Wikipedia,
for a total of about 54,200 equivalence classes.

Figure 1 shows the complete lattice that
is reconstructed for the input sentence given
above.

Lattices are implemented in OpenFst (Riley
et al., 2009), with weights represented in the

2Public resources such as JMDict (Breen, 2004) also
contain some information on spelling variants. How-
ever, as we note in the Limitations section, unlike the
JOD, JMDict has not been curated with a view to
marking which spellings are interchangeable. Nonethe-
less, we plan to investigate incorporating additional
data from JMDict in future work.
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Figure 1: Final lattice computed for the reference transcription この拉麺はうまい。 ‘this ramen is deli-
cious’.

Tropical semiring. During evaluation, the Lev-
enshtein edit distance (Levenshtein, 1966) be-
tween the reference lattice and the hypothe-
sized transcription is computed using the algo-
rithm reported in Gorman and Sproat (2021),
pp. 93–96.

As with standard CER, we define our le-
nient CER as the lattice edit distance—the
sum of the substitution, insertion and deletion
errors—divided by the number of characters in
the best matching path in the reference lattice.

In future work (Section 6) we also wish to
incorporate style/register language models to
rank different transcriptions, and we will thus
want to preserve language model weights for
the various spelling alternatives. To that end,
we first convert the Tropical weights into a
<Tropical, Tropical> Lexicographic semiring
(Sproat et al., 2014), where the first dimension
is reserved for the edit distance weights, and
the second dimension preserves the language
model weights. This will guarantee that the
path in the lattice closest to the hypothesized
string is selected, with the language model
score of that path preserved in the second di-
mension. After the shortest path has been
computed, the result can be converted back
to the Tropical semiring with just the (second-
dimension) language model weights.

In the experiments reported in Section 5, we
compare the results with multiple lattice vari-
ants, which are indicated with the terms bold-
faced below:

1. The raw ground-truth transcription, rep-
resented as a trivial (single-path) lattice.

2. The lattice in (1) augmented with kana
conversion via the text-normalization sys-
tem (+kana).

3. The lattice in (2) augmented with the
kanji restoration NMT model (+kanji).

4. The lattice in (3) augmented with the
spelling equivalence classes (+lexicon).

4 Related Work

While the contribution of spelling variation
to error rate computation for Japanese ASR
has been noted—see Mishima et al. (2020),
page 72—as far as we can tell, there has been
no prior work that specifically addresses so-
lutions to this problem. However, the prob-
lem of spelling variation in Japanese is sim-
ilar to cases in other languages where no
standardized spelling exists. For example,
Ali et al. (2017)—and see also (Ali et al.,
2019)—present an approach for ASR for Ara-
bic dialects. Unlike Modern Standard Arabic,
which has an official and standardized orthog-
raphy, Arabic regional varieties such as Lev-
antine, Gulf Arabic, or Maghrebi are spoken
languages that have no generally agreed stan-
dard written form. Nonetheless, particularly
with the advent of social media, people increas-
ingly communicate in Arabic dialects in writ-
ten form. But since there is no prescribed stan-
dard there is a substantial amount of variation
in how words are spelled. Ali et al. (2017) pro-
pose the WERd (“word error rate for dialects”)
metric, which depends on a spelling variants
table, which they construct from social me-
dia. Variants are collected by mining tokens
that share the same context, occur a sufficient
number of times, and are within a Levenshtein
edit-distance bound of each other. This kind
of approach for finding potentially intersubsti-
tutable terms has been used in other applica-
tions: for example, Roark and Sproat (2014)
propose a similar approach for finding poten-
tial pairs of words and novel abbreviations of
those words. Once the spelling variants ta-
ble is constructed, Ali et al. (2017) use it to
match ASR candidates against the reference
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transcription similar to the way in which our
lattice-based matching works. Related work
includes Nigmatulina et al. (2020), who report
on an ASR system for Swiss German, which
like dialectal Arabic, has no standard orthog-
raphy, but where spellings are loosely based on
pronunciation.

Another case of spelling variation can be
found with transliteration, say when someone
whose native language is Hindi using the De-
vanagari script, transliterates a Hindi word
into English. As Roark et al. (2020) dis-
cuss, this problem has a practical applica-
tion, since while keyboards for Devanagari and
other South Asian scripts exist, they tend to
be difficult to use, whereas many users are
used to typing in English. Therefore many
users prefer to type in Latin script translit-
eration, and have the system automatically
convert to the native script. But this intro-
duces a problem since, while there are stan-
dards for transliteration of South Asian lan-
guages into Latin script, few people adhere to
them. The result is that one can find quite
a large amount of variation in how to spell
words in Latin script, whereas there is gener-
ally one way to correctly write a given word
in the native script. Roark et al. (2020) inves-
tigated a variety of methods including both
neural and pair n-gram methods, and found
that they got the best performance with a pair
6-gram model using a Katz-smoothed trigram
language model for the output.

While the above cases are similar to the
problem with Japanese spelling variation,
there is also an important difference. For di-
alectal Arabic, and transliterated South Asian
languages, there is no standard, and so long
as the message can be communicated, users
are more or less unconstrained in how they
will spell words. In the case of Japanese,
spelling variation is not completely uncon-
strained: there are definitely wrong spellings
for words, even if there is in any given case no
single right spelling. While this does not dic-
tate a particular approach to the problem, it
does mean that the variation needs to be con-
strained by lexical knowledge implemented in
some fashion.

Our use of Neural MT models for kanji
restoration is related to the similar use of NMT

models for transliteration: see, e.g., Grund-
kiewicz and Heafield (2018) and Kundu et al.
(2018).

Finally, we note that the problem of lenient
evaluation comes up in other domains, for ex-
ample in evaluation of MT systems. For exam-
ple, Bouamor et al. (2014) argue that the rich
morphology of Arabic has a negative impact
on BLEU scores in that a naive application of
BLEU can rank correct translations lower than
incorrect ones. They propose a lenient metric
they term “AL-BLEU”, which takes morpho-
logical variation into account. They argue that
this metric provides a more defensible evalua-
tion metric.

5 Experiments

We investigated our proposed evaluation met-
rics on several Japanese ASR tasks. Using
large-scale multiple domain datasets, we calcu-
lated error reductions from conventional naive
CER, using lattices that incorporate the addi-
tional resources discussed in the last section.
We also conducted human evaluations to vali-
date the generated spelling alternatives.

5.1 ASR datasets
We evaluated on proprietary Japanese
datasets in three domains: Farfield, Voice-
Search (VS), and YouTube (YT)— respec-
tively, domains involving far-field speech,
voice search, and YouTube video seg-
ments, (Narayanan et al., 2019). These
datasets contain anonymized and hand-
transcribed utterances. The numbers of
evaluated utterances were 15,693 (161,174
characters) for Farfield; 9,440 (78,606 charac-
ters) for VS; and 17,780 (238,662 characters)
for YT.

5.2 ASR models
Our Japanese ASR models are Conformer-
based Recurrent Neural Network Transducers
(RNN-T) (Gulati et al., 2020). For the YT do-
main evaluation, we trained the ASR model
only with a YT training set of 2,000 hours
using a 17-layer, 512-dimensional, 8-attention-
head, non-causal encoder, and a 5000-class
character vocabulary. Apart from YT, our
model was trained with all the multi-domain
training sets of 25,000 hours using a 12-layer,
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1024-dimensional, 8-attention-head, causal en-
coder, with a 6400-class wordpiece model vo-
cabulary (Schuster and Nakajima, 2012).

5.3 Results with ASR tasks

Table 1 shows conventional WER and CER
using the raw ground truth text, and CERs
using our proposed target lattices for each
ASR domain evaluation, as discussed in Sec-
tion 3. In addition to the average error rates,
we also computed ±95% confidence interval
following Vilar (2008).

First, comparing WER and CER with the
raw reference text, CERs were always lower
than WERs in every domain. This is largely
because WER depends on word boundaries es-
timated by a word segmenter, which can often
lead to artificial mismatches between reference
and transcription. CER, obviously, does not
require word segmentation. For this reason,
we evaluated our evaluation method by com-
paring baseline CER rates against the lenient
CER lattice-based scoring.

When we added alternative kana spellings
into the reference lattice (+kana), CERs
were decreased by at least 2% absolute for
all domains. More spellings from the kanji-
restoration NMT (+kanji) and the lexicon
(+lexicon) further reduced CERs to 2.4%–
3.1% absolute depending on the domain. For
example, VS was the most impacted domain,
with a 25.16% relative error reduction.

A manual examination of cases of mismatch
between the reference transcription and the hy-
pothesized transcription in YT revealed many
cases where one had kanji spellings and the
other kana, or where one had hiragana and
the other katakana, as one would expect given
the discussion in Section 2. For example,
the following pairs show, (1) kana-kana, (2)
kana-kanji, (3) kanji-kana, and (4) kanji-kanji
(false) errors between the ASR hypothesis
(hyp) and reference ground truth (ref). Also
given are romaji and a translation:

1.

hyp: イナバのチュールかな

ref: いなばのちゅーるかな

rom: inaba no chūru-ka-na
tra: Inaba Churu (dog treats)...

2.

hyp: 皆さんご機嫌よう

ref: みなさんごきげんよう

rom: minasan gokigenyō
tra: hello everyone

3.

hyp: がんばれ

ref: 頑張れ

rom: ganbare
tra: do your best

4.

hyp: 柔らかい設定になってます

ref: 軟らかい設定になってます

rom: yawarakai settei ni nattemasu
tra: it has a soft setting

The proposed system correctly produces these
alternative spellings in the lattices created
from the reference ground truth.

5.4 Manual evaluation of spelling
variants

We evaluated spelling variants of 913 phrases
generated by the model against the original
spellings from the YT domain. More specif-
ically, we evaluated phrases extracted from
the transcription in the reference lattice that
had the best edit-distance score when matched
against the ASR hypothesis. The phrases var-
ied in length from 1 to 93 characters, where
80% are 2 to 15 characters. Three trained
raters were asked to assign each variant to one
of the following bins:

• Acceptable: Spelling variants are with-
out errors and acceptable.

• Acceptable (Depending on the con-
text): Acceptable in the context of a
given phrase.

• Great: Great or better than the original
spellings. Note that ‘great’ means that
the selected alternate spellings are indeed
commonly used valid spellings for the in-
tended term, and ‘better’ means that the
alternative spelling is even more natural,
and easier and clearer for native speakers
to read.

• Great (Depending on the context):
Great in the context of a given phrase.

• Wrong: Spelling contains errors.
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Farfield VoiceSearch YouTube
WER 12.74± 0.49 11.58± 0.52 22.58± 0.42
CER 12.53± 0.49 9.62± 0.47 18.36± 0.38
+kana 9.93± 0.42 7.68± 0.40 16.67± 0.35

+kanji 9.59± 0.42 7.45± 0.39 16.18± 0.35
+lexicon 9.46± 0.41 7.20± 0.39 15.84± 0.35

Table 1: Multi-domain ASR evaluation results with ±95% confidence interval. For “WER” and “CER”,
we used raw ground truth texts as reference targets. Other results show CERs using additional reference
lattices augmented with alternative spellings of +kana, (kana)+kanji, and (kana+kanji)+lexicon,
respectively. See Section 3 for details on what each of these augmentations means.

• Wrong (Depending on the context):
Spellings are inappropriate and consid-
ered as errors in the context of a given
phrase.

Consolidated results show that over 95.4% of
spelling variants are valid, and 16% are great
or better than the original transcripts.

6 Conclusions and Future Work
In this paper we have proposed a lattice-based
lenient evaluation method applied to comput-
ing character error rate in Japanese ASR. The
method combines lexical resources, a Japanese
text-processing system, and a neural MT sys-
tem to reconstruct kanji from kana spellings
in context. We evaluated on three differ-
ent commercial Japanese ASR domains, and
demonstrated a 2.4%–3.1% absolute reduction
of CER—translating into an over 25% relative
error reduction for the Voice Search domain.

Obviously these reductions in CER are not
due to any improvement in the ASR method
itself, but rather reflect a more defensible mea-
sure than naive comparison to a single refer-
ence transcription. This in turn points to the
importance of taking spelling variation into ac-
count when evaluating systems on languages
where such variation is simply a fact of life.

As noted in Section 3, we plan in future
work to address another issue, namely style
and register. While it is true that one often
sees spelling variation for words even within
the same text, it is also the case that style
and register are important factors in deciding
which spellings are felicitous in any given con-
text. Thus while the word kawaii ‘cute’, has
a kanji spelling 可愛い, that spelling would
not usually be found in social media where
the hiragana かわいい or katakana カワイイ

variants would be more expected, especially if
the goal is to communicate a more “friendly”
message. We are currently experimenting with
using style/register language models that are
trained on different genres of text ranging from
(informal) social media texts scraped from the
Web to (formal) official Japanese government
documents. In the context of the system de-
scribed in this paper, the language models will
be used to rank alternative spellings. Thus, a
hypothesized spelling for a sentence may be a
technically valid variant for a given reference
transcription, but may also not be the most
consistent in terms of style, and thus should
be evaluated somewhat worse than a transcrip-
tion that is more consistent. This would in-
volve not only considering the edit distance
measure—first dimension of the lexicographic
semiring described in Section 3, but also the
language-model cost in the second dimension.

We are also investigating using the spelling-
variant-augmented reference lattices during
training of the ASR system rather than just
evaluation. Currently the ASR systems are
trained with a single ground truth, which
means that the ASR systems themselves are
not sensitive to spelling variation. To this end,
we are developing lattice-based loss functions
that can be used during ASR training.

In addition to the above, we will continue
to improve the system in various ways. We
plan to include more lexical resources, such as
publicly available resources like JMDict (see
footnote 2), as well as improve the NMT-based
kanji restoration model, with a goal to reduc-
ing human-judged unacceptable substitutions
below the current 4.6%. An open question is
whether large language models such as GPT-4
or Bard can be induced to provide judgments
on whether two Japanese spellings are inter-
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Figure 2: Manual evaluation results on spelling variants quality of 913 phrase pairs.

substitable in a given context, and we also plan
to investigate this in future work.

Finally, while Japanese provides a particu-
larly rich example of spelling variation com-
pared to other modern writing systems, as dis-
cussed in Section 4, there are many languages
that are primarily oral, and for which there no
accepted written standard. In such languages,
one can expect a fair amount of variation in
spelling when people attempt to write them,
and the methods proposed in this paper could
be applicable to such cases.

Limitations
Our work focuses on the problem of spelling
variation in Japanese. The Japanese writing
system is the most complex of any modern
writing system (to find anything of compara-
ble complexity, one would have to go back to
cuneiform Akkadian or Hittite) and presents
a unique range of issues that impact speech
and language technology, one of which is the
spelling variation discussed in this paper.

Nonetheless, as also noted in Section 6, we
believe that the approach here should be ap-
plicable, perhaps with less dramatic results,
to other cases where spelling variation oc-
curs. This may be particularly an issue in lan-

guages that do not have a standardized writing
system—e.g. Colloquial Arabic dialects—and
where a large amount of spelling variation is of-
ten observed. However we have not evaluated
the approach on this sort of data.

Our evaluation system is not open-sourced
due to the propriety lexical resources, text nor-
malizer and kana/kanji translators. The text
normalizer could probably be replaced with,
e.g., the open-source Mecab (Kudo, 2006)
system, though we expect that performance
would be degraded. Similarly our lexical re-
sources could potentially be replaced with pub-
licly available Japanese dictionaries such as
JMDict (Breen, 2004), but again performance
would probably suffer. Note in particular that
unlike CJKI’s Japanese Orthographic Dictio-
nary, JMDict entries have not been carefully
curated to indicate which spellings are inter-
changeable, and which are, rather, words with
the same reading but distinct meanings. An
informal manual evaluation we performed on
potential spelling variant pairs that were ex-
tracted from JMDict entries nominally repre-
senting the same word sense, revealed that
about 92% were valid variant spellings, but
that the rest were either wrong, or at least
unclear.
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Abstract

A numeration system encodes abstract numeric
quantities as concrete strings of written char-
acters. The numeration systems used by mod-
ern scripts tend to be precise and unambigu-
ous, but this was not so for the ancient and
partially-deciphered proto-Elamite (PE) script,
where written numerals can have up to four
distinct readings depending on the system that
is used to read them. We consider the task
of disambiguating between these readings in
order to determine the values of the numeric
quantities recorded in this corpus. We algo-
rithmically extract a list of possible readings
for each PE numeral notation, and contribute
two disambiguation techniques based on struc-
tural properties of the original documents and
classifiers learned with the bootstrapping algo-
rithm. We also contribute a test set for eval-
uating disambiguation techniques, as well as
a novel approach to cautious rule selection
for bootstrapped classifiers. Our analysis con-
firms existing intuitions about this script and
reveals previously-unknown correlations be-
tween tablet content and numeral magnitude.
This work is crucial to understanding and deci-
phering PE, as the corpus is heavily accounting-
focused and contains many more numeric to-
kens than tokens of text.

1 Introduction

Proto-Elamite (PE) is a partially-deciphered script
unearthed at early 3rd millennium BCE sites across
the Iranian plateau. This script was exclusively
used to record spreadsheet-style administrative ac-
counts, and well over half of the attested glyphs are
known to be digits. Despite this abundance of nu-
meric notations, no large-scale quantitative analysis
of PE numerals has ever been undertaken, and most
prior work has focused on the adjoining text. This is
likely because the script employs multiple distinct
number systems, which use partially-overlapping
sets of digits and occasionally assign distinct values
to identical-looking sign shapes (Figure 1). Many

Sexagesimal
6←− 10←− 6←− 10←− 2←−

Decimal
6←− 10←− 6←− 10←−

Bisexagesimal
10←− 2←− 6←− 10←−

Capacity
6←− 10←− 3←− 10←− 6←−

5←− 2←− 3←− 2←− 2←−

Figure 1: Relative values of digits in the main proto-
Elamite number systems. X n←− Y means that one X
has the same value as n Y s.

numerals can be read according to two or more
of these systems, and represent different values
depending on the system used.

Some PE signs have been given tentative read-
ings in prior work, and on the basis of these read-
ings there appears to be a regular relationship be-
tween the kind of object recorded and the number
system used to count it (in a manner not entirely
dissimilar to the measure words found across East
Asian languages). Knowing which system is in
use for a given numeral therefore increases the pos-
sibility of understanding what category of object
is recorded in the adjoining text, and thus opens
new avenues for the ongoing decipherment of this
script.

In this work, we consider the task of disam-
biguating which systems are used in ambiguous PE
numeral notations in order that the values of these
numerals may be determined. We describe a sim-
ple rule-based technique to extract lists of possible
readings from PE numeral notations, which allows

71



us to give the first large-scale survey of PE nu-
merals since Friberg 1978 (whose manual analysis
occurred at a time when fewer texts were known).
We then propose two disambiguation techniques,
one based on the subset-sum problem and another
which uses a bootstrap classifier (Yarowsky, 1995).
We describe the construction of a test set for eval-
uating PE numeral disambiguation models, and
propose a novel approach to cautious rule selec-
tion which significantly improves the performance
of a bootstrap classifier on our data. Our analysis
shows how these techniques lead to a deeper under-
standing of this ancient and undeciphered writing
system.

2 Data & Background

We base our analysis off the transliterated PE cor-
pus hosted by the CDLI.1 Each text in this corpus
contains an optional header, followed by a series
of “entries” written one per line of the transliter-
ated file. Each entry contains a (possibly empty)
span of text, a comma delimiter, and a (possibly
empty) numeral notation. The transliterations use a
work-in-progress signlist that reflects experts’ cur-
rent understanding of the texts, but which may not
exactly match the true character inventory of the
underlying script. In this signlist, characters that
are believed to represent text are transliterated with
labels beginning in “M” (e.g. M001, after Meriggi
who pioneered the study of this script), and those
representing digits are labeled with “N” (e.g. N01).
The notation n(N00) means that the digit N00 is
written down n times. Figure 2 shows an example
of a tablet alongside its transliteration.

Most proto-Elamite numerals are written using
one of four2 number systems, which are called
decimal (D), sexagesimal (S), bisexagesimal (B),
and capacity (C). In spite of their names, all of
these systems use mixed radices. Figure 1 shows
the relative values of the digits in each of these
systems, as derived through prior manual analyses
(Friberg, 1978; Damerow and Englund, 1989; Dahl,
2019). Unlike Hindu-Arabic notation, where the
value of a digit depends on its position, the values

1Cuneiform Digital Library Initiative, https://cdli.
mpiwg-berlin.mpg.de; corpus downloaded 3 Oct 2022.

2Additionally, there are marginal systems (labeled B#, C#,
and C”) which appear to be derived from one of the four main
systems by the addition of hatch marks or boxes drawn around
the digits. These systems are rare, and the extra hatching or
boxing makes them trivial to identify, so we ignore them for
the remainder of this work.

Text Numeral
M056∼f 1(N34) 5(N14) 1(N01) 1(N8B)

= 111.5× N01S

M341 M288 7(N14) 2(N01) 3(N39B)
= 44.6× N01C

Figure 2: Proto-Elamite tablet MDP 26, 177 (Scheil
1935; P008805) alongside its transliteration and con-
verted readings for both numerals. The tablet is read
right-to-left: M056∼f is the sign in the top-right corner.
Observe that 111.5/44.6 equals the 2.5:1 ratio noted in
Section 4.1.2.

of proto-Elamite digits are fixed, and larger values
are denoted by repeating a digit multiple times.

Note that some digits can be used with dis-
tinct values in multiple systems (e.g. N14 equals
10×N01 in S, but only 6×N01 in C): this means
that it can sometimes be impossible to determine
the absolute value of a numeral unless context
makes clear which system it employs.

Since N01 occurs as part of every number sys-
tem, we use this sign as a standard unit and report
values as multiples of N01 whenever we convert
to Hindu-Arabic notation. The S, D, and B sys-
tems are understood to represent unitless cardinal
numbers, while C records unitful measures of vol-
ume. When it is necessary to emphasize that these
systems are not commensurable, we add a super-
script to denote the system in use: e.g. 12× N01C

is a measure of volume which is not equivalent to
12× N01D, despite having identical magnitude.

We summarize the above points with an illustra-
tive example. The following notation (read from
right-to-left)

would be transliterated as 1(N45) 2(N14) 7(N01).
This numeral must use either the S or C system, as
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the large circle N45 only occurs in these systems
(Figure 1). Using the readings from the S system,
this notation encodes a value of

3627× N01= (1× 3600+2× 10+7× 1)× N01

Using the C system, it instead encodes

79× N01 = (1× 60 +2× 6 +7× 1)× N01

Of these, we know that the S reading must be the
correct one, since 7(N01) should never occur in
the C system (every 6 N01 would be bundled into
an N14, so the actual notation for 79× N01C would
be 1(N45) 3(N14) 1(N01)).

It is not clear whether these notations would
have been considered ambiguous at the time they
were written. It is very plausible that the original
scribes would have been able to infer the correct
reading for a numeral based on contextual informa-
tion which is not salient to the modern reader (for
example, by knowing that certain items are con-
sistently counted with a particular number system,
a possibility discussed by Englund 2004, 2011).
There is equally the possibility that these notations
were ambiguous even to their authors, but that this
ambiguity did not interfere with their intended use,
for example if the PE texts were intended for short-
term use when the scribes would still recall which
system they intended at the time of writing.

3 Methodology

3.1 Automated Conversion

We extract all of the numeral notations from the
transliterated corpus by using a regular expression
to find every contiguous sequence of N-signs; we
discard sequences which are damaged, which we
identify as being immediately adjacent to a translit-
erated X or .... Algorithm 1 uses the relative
values from Figure 1 to automatically extract a
dictionary of possible readings for each of these
numerals.

Of the 8011 intact numerals which we have ex-
tracted, there are 7954 for which this conversion
returns at least one reading. Of these, only 1919 un-
ambiguously belong to a particular number system:
the remainder are ambiguous between two, three,
or even all four systems (Table 1). The following
sections outline two proposals for disambiguating
the ambiguous cases. Section 4.1.1 discusses the
57 cases for which there is no valid reading in any
system.

Algorithm 1 PE Numeral Readings

Input: digits = [(n1, sign1), ..., (nk, signk)]
▷ A list of signs and num. times each one occurs.
Returns: A map from number systems to possi-
ble readings for this digit list.
for sys ∈ {S,D,B,C} do

valuesys ← 0

for (n, sign) ∈ digits do
for sys ∈ {S,D,B,C} do

if sign /∈ signs_used_by(sys) then
valuesys ← ⊥
▷ ⊥ means there is no valid reading

in this system.
continue

if n > max_count(sign, sys) then
▷ max_count returns the max num.

of times this digit can occur before it would carry
over to a higher value digit.

valuesys ← ⊥
v ← value of sign in sys
valuesys ← valuesys + n× v
▷ ⊥ plus anything equals ⊥

return {sys 7→valuesys∀sys ∈ {S,D,B,C}}

3.2 Subset-Sum Analysis

Our first approach to disambiguation relies on the
fact that some PE documents end in a summary line,
which records the total sum of the preceding entries.
Although the entries themselves may be ambiguous,
the sums naturally record larger amounts and are
therefore more likely to use high-magnitude digits
that unambiguously belong to a particular system.
When a tablet records values from multiple number
systems, they are summarized separately; thus if
we can identify unambiguous summaries, we can
infer that all of the entries which they sum must
belong to the same system.

To achieve this, we filter the corpus to find texts
with one or two entries on the reverse, as current
understandings of the corpus suggest that these are
likely to be summaries.3 For each of these texts,
we solve an instance of the subset-sum problem
to identify whether any combination of readings
from the obverse adds up to the same value as any
reading of the reverse.

3Some transliterations include an annotation which explic-
itly labels a particular entry as a summary. However, not all
summaries are labeled in this way, so we rely on automatic de-
tection of summaries to expand the number of texts available
for this analysis.
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Possible Readings Number of Numerals

none 57

B 19
C 1727
D 66
S 107

B or D 21
B or S 5
C or S 143

B, C, or S 185
B, D, or S 292

B, C, D, or S 5389

Table 1: Distribution of readings produced by our auto-
mated conversion. A majority of numerals in the corpus
can be read using any one of the four number systems.

If an accurate summation is found, and any of
the component terms has an unambiguous number
system, we use this as evidence to disambiguate the
entire text to that system. We manually evaluate
this approach by confirming with domain experts
whether the resulting disambiguations are correct.

3.3 Bootstrapping

Some of the PE numeral notations are inherently
unambiguous, either because they use a digit which
only occurs in a single system, or because they con-
tain more instances of a digit than would be allowed
by some systems. We propose to use these cases as
seed rules to train a bootstrap classifier (Yarowsky,
1995) for disambiguation.

We choose bootstrapping because it requires
only a small number of seed labels, and as seen
in Table 1 some systems have few unambiguous
attestations. Moreover, bootstrapping yields inter-
pretable results which can be understood by exam-
ining the label distribution associated with each in-
put feature. This helps to legitimize model outputs
to domain experts, and to situate model predictions
relative to prior manual analyses.

Table 2 lists the features used by our classifier. A
numeral’s initial label distribution is uniform over
every system for which our automated conversion
returns a valid reading, and zero elsewhere. We use
the DL-2-ML algorithm (Haffari and Sarkar, 2007;
Abney, 2002), which models πx(j) (the likelihood
that sample x belongs to class j) as

Feature Description of Value(s)

TABLET The tablet where this numeral oc-
curs.

FIRST_SIGN The first sign of the tablet where
this numeral occurs (where we
may expect to find a header).

SAME_ENTRY Bag of signs which occur in the
entry preceding this numeral.

SAME_TABLET Bag of signs which occur any-
where on the same tablet as this
numeral.

OBJECT The sign immediately preceding
this numeral (where we may ex-
pect to find a counted object).

IMPLICIT_OBJECT The last sign in the first entry of
the text where this numeral occurs
(where we may expect to find an
implicit object).

Table 2: Each numeral is associated with a set of fea-
tures from this list, which we use to train our bootstrap
classifiers.

πx(j) ∝
∏

f∈Fx

θfj

where Fx is the set of features associated with sam-
ple x, and θfj is a learnable parameter which mea-
sures the association between feature f and class j.
We apply the “cautious” approach from Collins and
Singer 1999, which limits the number of rules that
can be added to the decision list at each iteration
of training. Specifically, candidate rules are sorted
according to the number of labeled examples that
support them, and only the n with the largest sup-
port are added to the decision list.4 n starts at 5
and increases by 5 each iteration.

The cautious algorithm was motivated by the
observation that “the highest frequency rules [are]
much ‘safer’ [than low-frequency rules], as they
tend to be very accurate” (Collins and Singer,
1999). This observation does not seem to hold
for our data, where many of the most frequent fea-
tures barely meet the confidence threshold to be
added to the decision list and, impressionistically,
do not appear to be any more accurate than those
with lower frequency. We therefore propose a novel
approach to cautious rule selection whereby θf is

4Whitney and Sarkar 2012 note that many details are omit-
ted from the description of the cautious algorithm in Collins
and Singer 1999. We follow Whitney and Sarkar in assuming
that confidence thresholding is performed using unsmoothed
label counts. However, we differ from their approach by se-
lecting the top n rules overall (not the top n for each label) as
this yields stronger results on our data.
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only updated if the update increases maxj θfj , i.e.
if it increases the confidence of the label distribu-
tion associated with feature f . In this setting we
visit the features in a random order each iteration,
to prevent a degenerate outcome whereby endless
incremental updates are made only to the first rules
visited.

System Number of
Test Items

B 3
C 18
D 14
S 13

Table 3: Distribution of target classes in our numeral
disambiguation test set. This set contains every instance
of the B class which we were able to manually dis-
ambiguate with the help of domain experts; the other
classes are kept small to maintain as balanced a distri-
bution as possible.

Prior to training, we upsample seeds with rare
labels to obtain an equal number for each class.
We evaluate our classifiers on a test set which we
construct by manually disambiguating some of the
ambiguous notations in the corpus. We endeav-
oured to keep this set as balanced as possible, but
some systems (particularly B) can only be confi-
dently identified in a few texts. This means the
test set cannot contain every numeral for which we
know the target label, as doing so would yield too
great an imbalance between classes. Appendix A
describes what evidence was used to disambiguate
each numeral in the set, and Table 3 summarizes
the overall class distribution. All of the labels in
the test set have been verified by domain experts.

4 Results

4.1 Automated Conversion

4.1.1 Invalid Notations
There are 57 intact numerals for which our auto-
mated conversion does not return a valid reading
according to any number system. The vast majority
of these violate the bundling principles established
in prior work and shown in Figure 1. For example,
the notation 11(N01) in P008043 should not be
attested in any system, as every system carries over
to a higher digit after at most ten N01s.

Some of these illegal notations may reflect er-
rors on the part of the original scribes. For ex-

Systems Used Number of Tablets

C and S 12
C and D 15
C and B 4
S and D 1

Table 4: Number of tablets which unambiguously use
more than one number system.

ample, in P008844, the sum of the D values on
the obverse equals 9(N23) 3(N14) 3(N01), or
573; the scribe has actually written 9(N23) 7(N14)
3(N01), which violates the usual principle that 6
N14s carry over to one N23. This suggests that the
scribe may have conceived of the D system as a
truly decimal notation (in which case the least sig-
nificant digits would be written as 7 tens and 3
ones, exactly as we find on the tablet), forgetting
that N23 uses a different radix. Several of the other
aberrant notations lend credence to this view, such
as P008788 which apparently records 88 M367s
(likely goats, usually counted with D) as 8(N14)
8(N01). These cases suggest a lack of standardi-
sation across scribes or across documents, which
is consistent with the longstanding view that the
writing system never achieved a significant degree
of standardisation (Dahl, 2019).

4.1.2 Mixed Systems
Our automated conversion reveals numerous ac-
counts (Table 4) which unambiguously use two
different number systems (no tablets unambigu-
ously use more than two systems). In all but one
of these, the C system occurs alongside one of
the “integer” systems S, D, or B. This suggests a
general pattern of accounts which record capaci-
ties of goods received/disbursed from/to individual
people, animals, households, or other entities also
counted in whole numbers on the tablet. The text
P009383 is unique in that it unambiguously uses
two of the “integer” systems S and D. On close
inspection, however, the original tablet is heavily
abraded where the putative S notation occurs, and
the sign which forces this notation to be read as
S (N08) is almost entirely unreadable. Given the
otherwise total absence of texts which mix inte-
ger systems, we posit that this text may contain a
transliteration error and that the broken sign is not
in fact an N08.

Several texts which mix the S and C systems also
have other features in common. P008796, P008798,
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and P008805 are exemplary of this group, which
are all two-entry texts where the first entry is an
S-denominated amount of M056∼f (possibly a
plow), and the second is a C-denominated amount
of M288. In all of these texts, there are exactly
2.5 × N01S per N01C : this ratio was previously
identified and discussed by Damerow and Englund
(1989); Englund (2004). P008791 appears to be-
long to this same class of texts, and given that the
first entry records 128× N01S M056∼f we should
expect 51.2 × N01C in the final entry (or 8(N14)
3(N01) 1(N39B)). We actually find 52 × N01C ,
or 8(N14) 4(N01). Close inspection of the tablet,
however, reveals that there has been a translitera-
tion error, and that the final sign, although mostly
broken, is recognizably an N39B. The text yields the
expected ratio when this mistake is corrected. Er-
rors such as these are much easier to identify when
dealing in converted Arabic numerals, which mod-
ern readers can understand and manipulate more
quickly and intuitively than the original PE nota-
tions.

Out of 244 signs which precede at least two un-
ambiguous notations, only 11 occur next to no-
tations from distinct systems. These 11 (M001,
M056∼f, M059, M096, M124, M218, M305,
M327, M371, M387, M388) include signs which
have been speculated (Dahl, 2019) to represent hu-
man laborers or overseers (M388, M124), signs
with possible syllabic values (M001, M096, M218,
M387, M371), and headers or account owners
(M059, M305, M327). In other words, these are
signs which we expect to qualify or describe an
object being counted, and not to be counted them-
selves. It therefore appears that, while counted
objects are consistently recorded using one par-
ticular number system, these qualifying signs can
potentially be used to qualify objects from several
different systems. This suggests a novel approach
to determine the function of signs with unknown
meanings, by looking at the variety of number sys-
tems they occur beside.

4.2 Subset-Sum Analysis

Our subset-sum analysis identifies 24 texts which,
upon manual inspection, can be fully or partially
disambiguated based on their summary line(s). We
highlight one which is of particular interest. In
P008014, all entries must use the C system in or-
der to equal the same value as the unambiguous C
summary on the reverse. The text of the summary

contains only the “grain container” sign M288, im-
plying that the entire tablet should record amounts
of M288. However, on the obverse of the tablet,
M288 only occurs as the final sign of the very first
entry. This suggests that the scribe has only explic-
itly marked the counted object in the first entry, and
left it implicit in the following entries (this is in
keeping with known practices from other ancient
Mesopotamian accounting corpora; Nissen et al.
1993, pp. 37–38, Englund 2001). This means that
there exist long-distance dependencies between the
entries in some texts, which need to be accounted
for if these texts are to be fully understood.

4.3 Bootstrapping

Figure 3 and Table 5 compare results from our two
approaches to bootstrapping. The baseline, vanilla
bootstrapping algorithm achieves a mediocre 0.60
F1. Recall of the B and S classes is perfect, but
only half of the instances of the C class are cor-
rectly labeled. This classifier does not seem to
have uncovered any clear signals to identify the D
system: 3 instances of this class remain unlabeled
(none of their associated features ever attained the
required confidence to be added to the decision
list), and those which are labeled are distributed
uniformly across all of the possible classes.

4-way 2-way
Model prec. rec. F1 prec. rec. F1

Baseline 0.64 0.56 0.60 0.74 0.65 0.69
Ours 0.88 0.88 0.88 0.90 0.90 0.90

Table 5: Numeral disambiguation results. In the 4-
way setting, we seek to identify exactly which number
system is in use for each numeral. In the 2-way setting,
we only seek to distinguish C notations from everything
else.

By contrast, our proposed approach to cautious
rule selection yields 0.88 F1, with significantly
better recall of both the C and D classes than the
baseline. This suggests that frequency-based cau-
tion may be ill-suited for bootstrapping on some
datasets, and that, in settings where bootstrap classi-
fiers remain viable, it may be worthwhile to explore
alternative approaches to cautious rule selection.

Note from Figure 1 that ambiguities between the
S, D, and B systems primarily come from the digits
N01 and N14 , which have the same relative val-
ues across all three systems. S and B further over-
lap in the sign N34 , which also maintains the
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Figure 3: Confusion matrices from classifiers trained
using the vanilla bootstrap algorithm (left) and our pro-
posed variant (right).

Figure 4: 2-way disambiguation results. Confusion ma-
trices from vanilla bootstrapping (left) and our proposed
variant (right).

same value across both systems. Thus many numer-
als which are technically ambiguous between these
systems nonetheless have unambiguous values.5 In
settings where the absolute value of a numeral is
all that matters, it is therefore usually sufficient to
distinguish these systems from C without distin-
guishing them from one another. In this two-way
setting, our model achieves 0.90 F1, versus 0.69 F1
from the vanilla baseline (Figure 4).

We emphasize that our test set only contains
numerals which domain experts were able to dis-
ambiguate based on manual inspection. Easy cases
may therefore be over-represented, and we expect
our results to be an upper bound on the classifier’s
accuracy across the whole corpus. Despite this, the
results are strong enough to suggest that a majority
of the ambiguous numerals in the corpus can be
disambiguated with some certainty.

5 Analysis

In this section, we investigate how the features
from our bootstrap classifier relate to known or
hypothesized properties of the script.

A number of signs have been suggested as indi-
cating types of livestock (sheep, goats, etc.); these
include M346, M362, M367, and M417 (Dahl,

5Here we assume that the absolute value of N01 is the same
across all three systems, and not just its value relative to the
other digits. Current understandings suggest that this is the
case, but the undeciphered nature of the script means this is
technically not certain.

2005). In our analysis, all of these signs also pre-
dict the decimal system, which suggests that they
were typically used to count flock sizes.

M376 has been suggested as either a "high-status
human" (Dahl, 2005, p. 95) or livestock (Kelley,
2018, p. 165); it is strongly predicative of the sexi-
gesimal system in our analysis. Other objects asso-
ciated with this system include M056∼f (a plow),
M219, M371 and M296 (very speculatively, sylla-
bles used to write personal names), M059, M145,
and M365 (“owners”, possibly persons or insti-
tutions to whom these accounts belonged), and
M269∼c (a vessel?). This may cast some doubt
on the livestock reading for M376, in favor of the
high-status human reading which is a more natural
fit among the owner signs and possible personal
names in this collection.

We note one text, P008212, which may exhibit
a consistent ratio related to M376. P008212 alter-
nates between entries ending in M288 and entries
ending in M376 or M367∼i. The magnitude of the
numeral in an M288 entry is always exactly 4 times
as large as the magnitude of an adjacent M376 en-
try, or 2 times as large as an adjacent M367∼i entry.
This pattern is very unlikely to be due to chance,
as it holds across 44 total entries. Whatever the
meaning of M376, on the basis of this text we can
assert that it is associated with amounts of M288
that are exactly twice as large as those associated
with M367∼i. To our knowledge this ratio has not
yet been noted in previous publications.

After disambiguating every numeral in the cor-
pus to the most likely system according to our boot-
strap classifier, we measure the average magnitude
of counts associated with each feature. We ob-
serve that certain features accompany significantly
higher or lower counts than others. Entries ending
in M288 have the largest capacity magnitudes on
average, while those ending in M263 are among the
smallest. Both signs have been speculated to repre-
sent containers; from our results one might further
speculate that M263 is a container of smaller di-
mension, or one that was never dealt with in bulk
quantities. Entries ending in M297∼b also accom-
pany unusually large capacity measures, though
the visually-similar M297 does not stand out as
unusually large or small. This may point towards
these signs having distinct meanings or uses despite
sharing a visual resemblance.

The numerical systems of proto-Elamite have
been proposed to have functional uses relating to
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cultural practices in 3rd millennium south-western
Iran. For instance, the capacity system (C) is
suggested to be used for counting rations dis-
bursed to households or workers (Kelley, 2018, pgs.
153-155). Among the recipients of these rations
are M388 and M124, parallel “worker categories”
which may represent the heads of work teams. We
find that entries beginning in M388 accompany sig-
nificantly larger capacity measures on average than
those in M124, which may point towards M388
individuals heading teams of larger sizes or com-
prising workers of higher status.

6 Related Work

Naik et al. (2019) demonstrate that word embed-
ding models fail to capture magnitude and numer-
ation (i.e. the equivalence between 3 and three),
and suggest the need for dedicated representations
of numerals in NLP models. Sundararaman et al.
(2020) follow up with DICE embeddings designed
to explicitly capture both magnitude and numer-
ation, and demonstrate improved results on nu-
meracy tests introduced by Wallace et al. (2019).
Spithourakis and Riedel (2018) describe a GMM-
based approach to numeral embedding for language
models, which also incorporates explicit represen-
tations of magnitude. These models assume that
the magnitudes in question are known and must
simply be encoded; they do not consider the task of
determining magnitude from ambiguous notations.

While introducing a benchmark to test LM nu-
meracy, Shi et al. (2022) note that numeral repre-
sentations can vary across scripts; however, they
assume a setting where the conversion to Hindu-
Arabic notation is straightforward, and do not dis-
cuss ambiguities which may result from this con-
version.

One approach to handling numeric values in
word problems is to replace them with variables
v1, v2, ..., generate the solution as an equation in
terms of these variables, and substitute the original
values back to obtain a concrete solution. Wu et al.
(2021) note that the choice of equation can some-
times depend on whether the original quantities
were absolute values or percentages, and therefore
this replacement can introduce ambiguities which
make some problems unsolvable. They introduce a
magnitude-aware encoding for digit sequences, and
describe a numerical properties prediction mech-
anism which estimates whether a numeral is an
integer, fraction, percentage, etc. This mirrors our

attempt to predict an underlying number system.
Berg-Kirkpatrick and Spokoyny (2020) investi-

gate the task of predicting a numeric value given
surrounding text as context. They find that models
which implicitly separate a value’s mantissa from
its exponent achieve better results than those which
predict the value directly, and that context from
large pretrained text encoders is useful even when
the pretraining task was not focused on promoting
numeracy. As we are dealing with an undeciphered
corpus, our models are unfortunately unable to rely
on pretrained embeddings for context.

Friberg (1978) is responsible for early analyses
of proto-Elamite and proto-cuneiform (a related
script which is also partially deciphered) which
helped to establish the relative values of the digits
in these corpora. Nissen et al. (1994) perform what
is possibly the earliest computer-assisted analysis
of bookkeeping practices in proto-cuneiform, while
Damerow and Englund (1989) and Englund (2011)
discuss accounting practices in proto-cuneiform
and proto-Elamite and the relationships between
the two.

7 Conclusion

We have automated the process of extracting can-
didate readings for ancient proto-Elamite numeral
notations, and have described ambiguities in the
original script which make this extraction chal-
lenging. We present two approaches for disam-
biguating these ambiguous notations: one exploits
a common structural property of proto-Elamite ac-
counts to look for unambiguous summations, and
the other exploits the few unambiguous notations
to train a bootstrap classifier. We create a test set
for the disambiguation task by manually disam-
biguating a subset of the corpus, and we describe
a novel variant of cautious rule selection which
significantly improves bootstrapping performance
on this test set. As a result of this work, we are
able to assign confident values to a majority of
the numeral notations in proto-Elamite, to identify
and correct a number of transliteration errors in the
proto-Elamite corpus, and to shed new light on ex-
isting hypotheses about the meanings of some signs
in this partially-deciphered script. As the proto-
Elamite script was fundamentally an accounting
technology, we believe that this work represents a
crucial step towards deepening our understanding
of this ancient corpus.
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Limitations

As PE remains largely undeciphered, our results
can only be evaluated on the small subset of numer-
als which we have manually disambiguated. As
noted in the paper, these may be easier than the
rest of the corpus, meaning our evaluation can only
give an upper bound on model performance.

We use a feature-based classifier to give inter-
pretable results which can more easily be shared
and discussed with non-technical experts in As-
syriology. A limitation of this approach is that
model performance depends on the choice of in-
put features, and features which are effective can
sometimes seem arbitrary. We attempt to justify
the features used by our model by explaining in
Table 2 which aspects of the script each is intended
to capture.

Lastly, PE numerals are just one aspect of a com-
plex and multifarious decipherment problem. Our
results alone cannot paint a complete picture of this
script, and must be interpreted in relation to results
from outside of computer science.
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A Constructing a Test Set for Numeral
Disambiguation

This appendix describes a set of ambiguous nu-
merals which we believe can be confidently dis-
ambiguated. Together, these numerals comprise
the test set which we use to evaluate automated
disambiguation via bootstrapping.

A.1 Capacity Measures
P008014 Our subset-sum analysis (Section 3.2)
reveals that the sole entry on the reverse of
this tablet (P008014:18:num) exactly equals the
sum of the entries on the obverse, provided
the whole tablet is read in the capacity system.
This is consistent with the fact that four of the
entries on the text are unambiguously capac-
ity measures (P008014:11:num, P008014:14:num,
P008014:15:num, and P008014:18:num; the other
entries are SDBC-ambiguous). Moreover, the ap-
parent summary line has an M288 object, and the
first entry on the obverse ends in M288. This sug-
gests that the entire text may record amounts of
M288 (which is strongly associated with the ca-
pacity system), but that this object has been left
implicit in all but the first and last entries.

On the basis of this evidence, we
disambiguate the seven ambiguous
entries in this text (P008014:6:num,
P008014:7:num, P008014:8:num, P008014:9:num,
P008014:10:num, P008014:12:num,
P008014:15:num) to the capacity system.

A.2 Sexagesimal Measures
P008173 Our subset-sum analysis reveals that
the first entry on the reverse (P008173:13:num),
which is an unambiguous sexagesimal notation
counting 7.5× N01S instances of M376, exactly
equals the sum of the M376 entries on the obverse
(P008173:5:num, P008173:7, P008173:8) if these
entries are read in the sexagesimal system. On
the basis of this evidence we disambiguate these
entries to the sexagesimal system.

M056∼f/M288 Texts P008798 is exemplary of
a set of two-entry texts of comparable physical di-
mensions (approx. 43mm x 31mm x 18mm) which
count M056∼f in the first entry and M288 in the
second. In many of these texts, the first entry is
unambiguously sexagesimal and the second is un-
ambiguously capacity; in these cases the amount
of M056∼f is always exactly 2.5 times the amount
of M288.
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If P008797:6:num is read as a sexagesimal nota-
tion, then this text follows the same pattern as these
other texts, and exhibits the expected 2.5:1 ratio of
M056∼f to M288. On the basis of this evidence we
disambiguate this entry to the sexagesimal system.

By the same argument, we also disambiguate
P008791:6, P008799:6, P008800:6, P008801:6,
P008802:6, P008804:4 and P008810:7 to the sexa-
gesimal system.

A.3 Decimal Measures

P008179 This tablet is broken: a fracture on the
obverse renders one digit partially unreadable. The
broken digit has been restored as 2(N23), but we
propose that the correct reading should in fact be
1(N23).

To see that this should be the case, notice that
the first entry on the reverse (P008179:14:num)
unambiguously equals 852× N01D; this is exactly
the same sum obtained by reading the obverse en-
tries in the decimal system, provided one uses our
restoration instead of the current transliteration.

This reading is consistent with the fact that
some entries (P008179:8:num, P008179:9:num,
P008179:14:num) are already unambiguous dec-
imal counts. Moreover, all but one of the entries on
the obverse count the same object (M388), which
further points towards their likely using the same
number system. On the basis of this evidence, we
disambiguate P008179:10 and P008179:11 to the
decimal system.

The original restoration (2(N23)) presumably
arose from the observation that the lacuna is wide
enough to span two signs. The last visible sign
before the lacuna is M388, which only occurs at the
very end of entries elsewhere in this text, implying
that all of the missing signs are likely digits. Our
proposed reading requires that the N23 in the lacuna
occupy a slightly wider space than would be typical,
or perhaps that some of the lacuna be occupied by
an erasure. If the original restoration is correct,
there must instead be an arithmetic error in the
summary line (which in this case differs from the
true sum by 1(N23)).

P008012 Following the claim that sheep and
goats are counted decimally in proto-Elamite (En-
glund, 2011), the entirety of this text should be
expected to use the decimal system. Our subset-
sum analysis confirms that the entry on the reverse
(P008012:16) equals the sum of the entries on the
obverse when read in this system, though in this

case that would also be true for sexagesimal and
bisexagesimal readings. Notably, the summation
does not work out if the summary is read as a capac-
ity measure. Thus, while we may confidently say
that this text does not contain capacity measures,
we can only tentatively assign it to the decimal
system in particular.

P008243 Kelley (2018) observes that this is a
decimally-counted roster. We follow this author in
disambiguating all ambiguous numerals in this text
to the decimal system.

A.4 Bisexagesimal Measures
P009048 This text contains a large number
of unambiguous bisexagesimal notations. Of
these, P009048:16:num counts the same object
(M352∼h) as P009048:19, on the basis of which
we propose that P009048:19 is also a bisexa-
gesimal notation. Similarly, the unambiguous
entries P009048:10 and P009048:15 count the
same objects (M351+X and M354, respectively) as
P009048:13 and P009048:7, respectively, on the
basis of which we also disambiguate these entries
to B.
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Abstract

This paper presents a new approach to the an-
cient scripts decipherment problem based on
combinatorial optimisation and coupled simu-
lated annealing, an advanced non-convex op-
timisation procedure. Solutions are encoded
by using k-permutations allowing for null, one-
to-many, and many-to-one mappings between
signs. The proposed system is able to pro-
duce enhanced results in cognate identification
when compared to the state-of-the-art systems
on standard evaluation benchmarks used in lit-
erature.

1 Introduction

There are still a number of undeciphered scripts in
the world and most of them date back thousands
of years. The lack of an appropriate amount of in-
scriptions, the lack of known language descendants
written using these scripts or even any certainty
whether the symbols actually constitute a writing
system made the decipherment of such scripts re-
ally challenging. In the Aegean area, for example,
we can count at least three syllabic scripts that
have not been deciphered yet, namely the Linear A
script, Cretan Hieroglyphs and the Cypro-Minoan
script. They are scripts strictly connected from a
historical point of view, but no one has yet been
able to solve these decipherment puzzles. In this
work we deal with general decipherment problems,
but we are mainly interested in investigating these
undeciphered scripts from the Aegean area.

Deciphering an ancient script is, in general, a
very complex task; the solution of this problem has
been often split into different subproblems in order
to obtain specific answers or to simplify the task by
decomposing it into simpler problems. In the litera-
ture, we can find various contributions dealing with
all these subproblems and propose computational
methods for solving them in some way, often in
relation to one specific script. In order, we have to
(a) decide if a set of symbols actually represent a

writing system, then (b) we have to devise appro-
priate procedures to isolate or segment the stream
of symbols into a sequence of single signs and then
(c) reduce the set of signs to the minimal set for the
given writing system forming the alphabet (or syl-
labary, or whatever inventory of signs), identifying
all the allographs. Once we have such a minimal,
but complete, set of symbols, we can start (d) as-
signing to them phonetic/orthographic values and,
finally, (e) trying to match phonetic/orthographic
transcriptions to a specific language. Here we are
interested in studying and discussing steps (d) and
(e).

2 Related Works

Any modern attempt to decipher lost scripts using
computational tools, a field that has been gaining
more and more interest in NLP in the last years
(Knight and Sproat, 2009), is based on the compari-
son of a lost script/language wordlist with words of
a known deciphered script/language. These com-
putational approaches have to address two main
problems: the first regards the possibility that
the two scripts do not correspond. In this case
the phonological values of the lost symbols could
also be unknown and the matching between the
two wordlists must be preceded by some match-
ing between scripts; then, the two wordlists must
be matched in some way searching for “cognate”
words, i.e. words in different languages that can
share an etymological ancestor in a common parent
language.

Some scholarly works focus only on cognate de-
tection within the same script (Bouchard-Côté et al.,
2009) or directly using the International Phonetic
Alphabet sound representations (Hall and Klein,
2010). In both cases the tested languages were
typologically very similar.

Conversely, the most advanced recent studies on
the automatic decipherment of lost languages pro-
posed systems producing both signs mappings be-
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tween different scripts and mapping of words into
their corresponding cognates (e.g. Snyder et al.,
2010; Berg-Kirkpatrick and Klein, 2011; Luo et al.,
2019, 2021). These studies share a common view
on the computational approach: they structured the
algorithm as a two-step procedure, taking inspi-
ration from the Expectation–Maximization (EM)
algorithm. The first step proposes a temporary
matching between the two “alphabets”1, and the
second step, by relying on the script-matching, tries
to match the two word lists proposing possible cog-
nates. At the beginning of the process the scripts
matching will be almost random, and so will the
cognate matching, but, after several iterations the
whole process should converge proposing both a
script-matching and a list of possible cognates. The
key point hinges on finding an appropriate func-
tion, to be optimised by this iterative process, rep-
resenting in an optimal way the concept of match-
ing between words, including also some linguistic
constraints regarding scripts, words and possibly
sounds. Let us review the most recent and relevant
analyses, in our view, which tackle the decipher-
ment problem in an automatic way, all following
the general scheme just discussed.

Snyder et al. (2010) presented the first paper
which adopts the modern approach to the compu-
tational decipherment problem: their method re-
quires a non-parallel corpus in a known related
language and produces both alphabetic mappings
and translations of words into their corresponding
cognates, employing a non-parametric Bayesian
framework to simultaneously capture both low-
level sign mappings and high-level morphemic cor-
respondences. They tested this method on Ugaritic,
an ancient Semitic language, comparing it with old
Hebrew: the model correctly maps 29 of 30 signs
to their old Hebrew counterparts, and deduces the
correct Hebrew cognate for 60% of the Ugaritic
words that have cognates in Old Hebrew.

Berg-Kirkpatrick and Klein (2011) took a dif-
ferent approach: they devised an objective func-
tion that, when optimised, yields accurate solutions
to both decipherment and cognate pair identifica-
tion problems. Their system requires only a list of
words in both languages as input. The proposed
solution is both simple and elegant: binary vari-
ables govern both the matching between signs in
the two scripts and the matching between the two

1With the term “alphabet”, we indicate a generic notion of
inventory of signs, glyphs, etc. used as a writing system.

lexica. By applying an integer combinatorial opti-
misation procedure, their system was able to obtain
good results on the same problem introduced by
Snyder et al. (2010) and on a new matching task on
Romance languages.

Luo et al. (2019) present a novel neural approach
that defines the state-of-the-art for the automatic
decipherment of lost languages producing the high-
est matching performance. To compensate for the
lack of strong supervision information, their model
is designed to include known patterns in language
change documented by historical linguistics. The
mapping between signs is carried out by a bidirec-
tional recurrent neural network while the procedure
for matching cognates is formalised as a minimum-
cost flow problem. They applied this method to the
same problem presented in Snyder et al. (2010), a
sort of benchmark in this field, and on a brand new
dataset that included Linear B and ancient Myce-
naean Greek lexica obtaining very good mapping
results.

In a subsequent paper by Luo et al. (2021), the
authors faced a more difficult hurdle considering
scripts that are not fully segmented into words and
contexts in which the closest known language is
not determined. By building on rich linguistic con-
straints reflecting consistent patterns in historical
sound change, they were able to capture natural
phonetic geometry by learning character embed-
dings based on the International Phonetic Alphabet.
The resulting generative framework jointly mod-
els word segmentation and cognate alignment, in-
formed by phonetic/phonological constraints. They
tested their method on both deciphered languages,
namely Gothic and Ugaritic, and on an undeci-
phered one, Iberian, showing that incorporating
phonetic geometry leads to consistent gains.

The two studies from Berg-Kirkpatrick and
Klein (2011) and Luo et al. (2019) are the main
works with which to compare our proposal.

Berg-Kirkpatrick and Klein (2011) proposed an
approach that inspires our work, namely the pos-
sibility of tackling the decipherment problem as a
pure function optimisation problem, but their re-
sults do not represent the state-of-the-art because
they have been superseded by subsequent works.

The work from Luo et al. (2019), on the con-
trary, presents a system able to obtain very good
results, but it is not as flexible as we need. With
this respect, the mapping between lost and known
signs is realised by a recurrent neural network (NN)
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and, despite the positive facts that context could
be taken into account, it does not allow any further
flexibility. In practical decipherment situations we
have to face two problems that cannot be easily
solved by the approach from Luo et al. (2019): the
first regards the fact that very often paleographers
have a partial knowledge about the mapping of
some signs and this information must be injected
into the system and taken into account; the second
problem concerns the fact that very often real in-
scriptions are broken or damaged and some signs
cannot be read, thus some kind of uncertainty must
be included into the system, for example by using
wildcards or other special symbols. These special
treatments are very hard to implement into a recur-
rent NN. Moreover, deep NNs typically require a
lot of data in order to be properly trained and this
is often not the case in real situations.

As we said before, we are interested in studying
some undeciphered scripts from Aegean and we
definitely need a more flexible system that allows
partial readings and fixed knowledge to be included
as well as being able to work on limited amounts
of data.

3 Reference Benchmarks and other
Datasets

Various datasets have been used in past studies and
became standard benchmarks for evaluating the
performance of any computational tool aiming at
helping scholars in the decipherment process.

3.1 Ugaritic/Old Hebrew - U/OH

Ugaritic is an ancient Semitic language closely re-
lated to Old Hebrew. This dataset has been intro-
duced by Snyder et al. (2010) for testing their sys-
tem and became a common benchmark in the field.
Following Berg-Kirkpatrick and Klein (2011), we
evaluate our system on 2214 cognates pairs in the
two lexica.

3.2 Linear B/Mycenaean Greek - LB/MG

Linear B is a syllabic writing system used to write
Mycenaean Greek dating back to around 1450BC.
Luo et al. (2019) introduced a new dataset extract-
ing pairs of Linear B and Greek words from a com-
piled lexicon and removing some uncertain transla-
tions obtaining 919 pairs of cognates. This is a very
interesting benchmark for us as we are primarily
interested in working on syllabic scripts from the
Aegean area. On the LB side, we defined the signs

inventory as the original set of signs defined in LB
while for Greek, given the syllabic nature of the
mapping, we included complex signs formed by
all open syllables excluding those marking vowel
quantity (syllables ending in η or ω) to reduce the
signs inventory dimension on the Greek side.

The same authors introduced also a more chal-
lenging benchmark, more realistic from the paleo-
graphic point of view, considering the same LB lex-
icon and compare it with a reduced Greek lexicon
containing only proper nouns (LB/MG-names).

3.3 Cypriot Syllabary/Arcadocypriot Greek -
CS/AG

Given our primary interests, it seemed reasonable
to introduce a new dataset to be used as reference
for the decipherment of syllabic scripts from the
same area. The Cypriot Syllabary is a right-to-
left syllabic script used in Iron Age Cyprus. It is
descended from the Cypro-Minoan syllabary, in
turn, a derivative of Linear A. Most texts using this
script are in the Arcadocypriot dialect of Greek.

Relying on the alphabetic-syllabic index in
Hintze (1993), we compiled a new dataset con-
sisting of 693 pairs of cognates, the first written
using the CS and the second the Greek alphabet
from which we removed any diacritic following
the same procedure applied in Luo et al. (2019) for
creating the LB/MG dataset. With regard to Greek,
we considered only the open syllables as for the
previous dataset.

4 The Proposed Method

The proposed approach to the decipherment prob-
lem is configured as a global optimisation proce-
dure taking inspiration from the work proposed in
Berg-Kirkpatrick and Klein (2011). We will intro-
duce a flexible encoding of possible solutions and
an ‘energy function’ able to capture the goodness
of a single solution, both from the point of view of
signs matching and lexica matchings; by minimis-
ing the energy function, we will search for suitable
solutions to a decipherment problem.

Let us introduce some notation useful in the next
sections: Ls and Ks are two linearly ordered sets2

containing respectively the signs in the lost and
known languages (with |Ls| and |Ks| their cardi-
nality and li, kj respectively the i-th and j-th ele-
ment in the ordered sets), while Llex and Klex are

2A linearly ordered set is a set with a total order on it. Here,
it is useful only for indexing the set elements.
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Figure 1: Two simple examples of solution coding. a)
M = 1 then the first |Ks| cells contain the mapping
MapS (shown on the right) for the known signs to
the lost signs. Note that using k-permutations of size
N · |Ls| allows for one-to-many mappings from lost
to known signs (see also the definition MapS in 4.1).
b) M = 2, then we have two k-permutations allowing
for one-to-many assignments from known to lost signs.
In both cases it could happen that a lost sign does not
receive any assignment (not shown in the picture).

the two lexica and |Llex| and |Klex| their respective
number of words.

4.1 Solution Coding

The basic tool for encoding a problem solution is
the k-permutation without repetition. Let p1, ..., pn
be n objects. Let s1,...,sk be k (where k ≤ n) slots
to which k of the n objects can be assigned. A k-
permutation of n objects is one of the possible ways
to choose k objects and place them into the k slots
respecting the order. Each object can be chosen
only once. The number of possible k-permutations
is Pn,k = n!/(n − k)!. Here we consider the k-
permutation of the first n integer numbers.

In order to find a suitable sign assignment be-
tween lost language and known language, a generic
solution σ must have the possibility to express mul-
tiple assignments in both directions but paying at-
tention to the combinatorial explosion problem.

Let us start considering the case |Ls| ≤ |Ks|:
in this situation some lost signs must be mapped
to more than one known sign and we can easily
encode this fact with a single k-permutation σ with
n = N · |Ls| and k = |Ks|, N = 2, 3, ... Each
known sign kj being in position j, with j ≤ k,
of the k-permutation σ = ⟨σ1, ..., σk, ..., σn⟩ is
then mapped to a set of lost signs by the function

MapSσ : Ks → P(Ls),

MapSσ(kj) = lσj mod |Ls|

where P(Ls) is the power set of Ls.
In the other case with |Ls| > |Ks| we can de-

fine a solution σ formed by M k-permutations,
M = 2, 3, ..., concatenated one after the others,
each managed exactly in the same way as before,
but now N can also be equal to 1.

By defining the structure of possible solutions
σ in this way, each sign in the lost language can
receive from 0 to a maximum of N ×M possible
assignments of known signs, allowing a very high
level of flexibility in signs matching. Given that in
the definition of k-permutations k ≤ n, N controls
the well-formedness of the basic structure support-
ing solution definition ensuring that every known
sign will be assigned to at least one lost sign and
managing the different situations that occur when
|Ls| ≤ |Ks|. Moreover, M controls the number
of times a known sign will be assigned to a lost
sign. N and M are not completely independent
parameters as they interact in a complex way for
governing the number of multiple assignments in
both directions.

Figure 1 shows two small examples of the pro-
posed schema for encoding solutions.

As an added value, k-permutations exhibit an
interesting property: we can build an isomorphism
between k-permutations and the natural numbers
(Patel, 2022), thus each solution encoded by using
our schema can be mapped into M integers and,
for reasonable problems with M ≤ 2, fragments
of the search space can be visualised and inspected
using a 2D/3D graph.

4.2 Energy function

The second fundamental ingredient used in the pro-
posed method regards the design of an appropriate
energy function able to measure the goodness of a
given solution for a decipherment problem.

As we said before, Luo et al. (2019) broke the op-
timisation process into two separate steps repeated
iteratively: the first computes the best match be-
tween signs given a lexicon match and, after having
fixed the signs match, the second computes the best
match between lexica. We adopted a different ap-
proach taking inspiration from Berg-Kirkpatrick
and Klein (2011) and designed an energy func-
tion that measures the goodness of both aspects
together.
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4.2.1 Lost Words Expansion and
Transliteration

In order to transliterate the lost lexicon we
need to define the inverse function of MapS,
invMapSσ : Ls → P(Ks), that associates each
lost sign to the set of known signs mapped to it, as

invMapSσ(li) = {kj |li ∈MapSσ(kj)} .

By building on this definition, we can in-
troduce the transliteration and expansion
function TrExpσ for a given lost word
lW = ⟨lW1, ..., lWn⟩, with lW1, ..., lWn the
sequence of signs forming lW , as

TrExpσ(lW ) = { tW | tW = ⟨q1, ..., qn⟩,
qj ∈ invMapSσ(lWj) }.

T rExp transliterates each lost word into the known
alphabet and associates to it a set of transliterated
words formed by any combination of known signs
allowed by the mapping invMapS. This way of
proceeding could potentially produce a combina-
torial explosion, but, given that N and M are typi-
cally very small integers (almost always ≤ 3), this
problem will not be particularly severe. Table 1
shows an example of this process.

li invMapSσ(li) lW TrExpσ(lW )

A {Z,X} AA {ZZ,ZX,XZ,XX}
B {W,Z} BC {WX,WY,ZX,ZY}
C {X,Y} ABC {ZWX,ZWY,ZZX,

ZZY,XWX,XWY,
XZX,XZY}

Table 1: Transliteration and expansion example over the
same sets of signs used in Figure 1 (b).

4.2.2 Word Matching
A standard way to compare strings makes use of
the so called edit distance - ED (a.k.a. Leven-
shtein distance). We used this measure to com-
pare the expanded transliterations of lost words to
known words. The standard definition of the ED
involves counting the number of sign insertions,
deletions and substitutions to transform the first
string into the second. We modified the standard
definition, following the ideas in Wang et al. (2021),
for adding two wildcards that could be very useful
in real settings. Very often real inscriptions are
broken and/or some signs cannot be reliably distin-
guished; in these situation it might be preferable

to process these data maintaining the reading prob-
lems. For these reasons, we included the special
sign ‘?’ to indicate a single unreadable sign and
‘*’ to indicate multiple unreadable signs both al-
lowed only in lost words. Let X = ⟨x1, ...xn⟩ and
Y = ⟨y1, ...ym⟩ two words to be compared, with
n and m their respective lengths, then the ED with
wildcards used in this study, EDWX,Y (n,m), has
been defined as in Figure 2.

The edit distance in general, and also our varia-
tion including wildcards, does not take into account
word lengths and it is not suitable for comparing
the distance between sets of words. For this reason,
most studies introduced a kind of normalisation for
ED values. Given the interesting properties (Fis-
man et al., 2022) of the Generalised Edit Distance
proposed by Li and Liu (2007)3, we normalised
EDW as

EDWX,Y =
2 · EDWX,Y

|X|+ |Y |+ EDWX,Y

where | · | represents the word length.
We used EDW to compare the transliterated

and expanded lost lexicon, created by applying the
TrExp function to every word in Llex, with the
known words in Klex (see next Section).

We implemented the EDW function in a fast
code that also works on GPUs4.

4.2.3 Lexica Matching
The datasets presented in Section 3, as produced
by the cited works, associate each lost word with
one or more cognates in the known language. In
order to adhere to this view and to perform a correct
evaluation, we introduced a specific variant of the
standard Linear Sum Assignment - LSA - problem
(a.k.a. Hungarian algorithm) for matching lexica:
instead of matching single words, we match groups
of words both on the lost side and on the known
side. On the lost language side, this accounts for
different transliteration of the same lost word due to
multiple assignments to the same lost sign (see the
definitions of functions invMapS and TrExp),
while, on the known language side, this accounts
for the sets of cognates considered in the cited
benchmarks.

In order to introduce our modified version
of the LSA algorithm, let us define a partition

3Generalised Edit Distance is a metric, its upper bound is
1 and it does not escalate repetitions remaining simple and
quick to calculate.

4https://github.com/ftamburin/EditDistanceWild
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EDWX,Y (i, j) =





max(i, j), min(i, j) = 0

min





EDWX,Y (i− 1, j) + wD

EDWX,Y (i, j − 1) + wI

EDWX,Y (i− 1, j − 1) + S(xi, yj) · wS
min(i, j) ̸= 0, xi ̸= ‘*’

min





EDWX,Y (i− 1, j)

EDWX,Y (i, j − 1)

EDWX,Y (i− 1, j − 1)

min(i, j) ̸= 0, xi = ‘*’

S(x, y) =

{
0 x = y or x = ‘?’
1 otherwise

Figure 2: Edit Distance with Wildcards definition. wD, wI and wS represents the weight penalisations respectively
for sign deletion, insertion and substitution and, for this study, they have been all fixed to 1.

KlexG = K1
lexG, ...,K

G
lexG of Klex where Kj

lexG

represents a set of known cognates in the dataset;
we can then introduce the variables Ai,j ∈ {0, 1}
representing the lexica alignment obtained by the
LSA algorithm (with Ai,j = 1 iff lW i is assigned
to Kj

lexG), configure the LSA problem to be solved
as

min

|Llex|∑

i=1

|KlexG|∑

j=1

Ai,j ·


 min
X∈TrExpσ(lW i)

Y ∈Kj
lexG

EDWX,Y




s.t.
∑

i

Ai,j = 1, j = 1, 2, ..., |KlexG|
∑

j

Ai,j = 1, i = 1, 2, ..., |Llex|

and, once solved the LSA and fixed the values
for the As matching variables, we can define the
Energy function E for a given problem solution σ
as

E(σ) =

|Llex|∑

i=1

|KlexG|∑

j=1

Ai,j ·


 min
X∈TrExpσ(lW i)

Y ∈Kj
lexG

EDWX,Y




(1)
See Figure 3 for an example of the lexica match-

ing process.
It seems important to note that the computation

of the energy function E for a given solution σ
strictly derives from the solution itself, first by con-
verting the solution coding into signs assignments
by using the function TrExp and then matching
the two lexica by the LSA procedure described
above.

4.2.4 Penalty factors
In order to regularise the entire process and help
the optimisation procedure to find reliable solu-
tions, we introduced some regularisation factors
into the energy function E. Given that our method
relies on a flexible assignment schema allowing
no assignments to lost signs and multiple assign-
ments of known signs, we have to guarantee that
the optimisation procedure does not abuse of these
instruments. In general, no assignments to lost
signs rarely produces a good solution as well as
exaggerating in including multiple assignments of
known signs. In order to discourage solutions with
these characteristics, we introduced two penalisa-
tion factors: if we define #UA(σ) the number of
lost signs without any assignment and #MA(σ)
the number of known signs with multiple assign-
ments for a given solution σ, then the final energy
function to be minimised is

E′(σ) = E(σ)+λ·(#UA(σ)+#MA(σ)) . (2)

To strongly discourage these potentially degenerate
solutions we set λ = 4.

4.3 Energy Optimisation using Coupled
Simulated Annealing

Having configured our problem as a general global
optimisation procedure led us to minimise the en-
ergy function E′ defined before by using any meta-
heuristic proposed in the literature, e.g. tabu-search,
genetic and evolutionary methods, ant colony opti-
misation, simulated annealing, etc.

Coupled Simulated Annealing - CSA (de Souza
et al., 2010) is a method for global optimisation
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Llex Klex

lW TrExp WX WW XX XWY XWZ
AA ZZ 2 2 2 3 2

ZX 1 2 1 3 3
XZ 2 2 1 2 1
XX 1 2 0 2 2

BC WX 0 1 1 2 2
WY 1 1 2 1 2
ZX 1 2 1 3 3
ZY 2 2 2 2 3

ABC ZWX 1 2 2 2 2
ZWY 2 2 3 1 2
ZZX 2 3 2 3 3
ZZY 3 3 3 2 3
XWX 1 2 1 1 1
XWY 2 2 2 0 1
XZX 2 3 1 2 2
XZY 3 3 2 1 2

Figure 3: A simple example of the lexica matching
process. The lost lexicon is identical to that in Table
1, while the known lexicon is formed by five words
grouped into three set of cognates. On the top, we have
the cost matrix computed by using the edit distance (we
did not use the normalised version for readability) and
the values surrounded by a box indicate the minimum
considering two respective groups. At the bottom, these
minimal values represent the costs for a LSA problem
that finds the min-cost matching (thick lines) between
the two lexica respecting the groupings in the lost and
known lexica.

based on Simulated Annealing (SA). CSA is char-
acterised by a set of parallel standard SA processes
(with #Anns defining the number of annealers)
coupled by their acceptance probabilities. The cou-
pling is performed by a term in the acceptance prob-
ability function that is a function of the energies
of the current states of all SA processes creating
a cooperative behaviour via information exchange
between the parallel annealing processes. Coupling
can also provide information that can be used to
drive the overall optimisation process towards the
global optimum. The authors of the original work
present a system able to use the acceptance tem-
perature to control the variance of the acceptance
probabilities with a simple control scheme (called
‘CSA-MwVC’ in the original paper). This leads
to a much better optimisation efficiency because it
reduces the sensitivity of the algorithm to initiali-
sation parameters while guiding the optimisation
process towards quasi-optimal states.

After some attempt with other techniques, we
decided to adopt CSA mainly for two reasons: (a)
it is a method that can be easily parallelised on a
multicore CPU allowing for heavily parallel com-
putations with a minimal exchange of information
and (b) the control mechanism over the variance of
the acceptance probabilities automatically governs
the annealing process avoiding the introduction of
complex annealing schemas that often have to be
tuned for a specific dataset.

For the implementation of CSA we relied on a
code specifically developed for problems based on
permutations5 configuring it to employ 16 parallel
annealers.

The generic SA algorithm is quite simple: given
a solution, we have to perturb it obtaining a new
solution in its neighbourhood that is accepted, or
not, depending on a stochastic decision based on
the new solution energy and the global current sys-
tem temperature. Selecting a neighbouring solution
perturbing the current is a delicate step as we have
to ensure an appropriate sampling of the solution
space. Luckily, Tian et al. (1999) made an in depth
study regarding the most promising ‘moves’ for
solutions based on permutations and the swapping
of two items in the permutation is considered the
best move for assignment problems. In order to
help the system to avoid getting stuck in a local
minimum, we further introduced a random k-swap
perturbation with probability 0.1 with k decaying

5https://github.com/structurely/csa.
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Algorithm 1 CSA_OptMatcher

Data: Ls,Ks, Llex,Klex, N,M,#Anns
Result: the optimised solution best_σ
• Init one solution σj for each annealer j
• Init annealing and generation temperatures
Ta and Tg

for iter = 1, ... do
• Generate #Anns perturbed solutions σ′

j

by swapping two indices in each of them
• Compute E′(σ′

j), j = 1, ...,#Anns using
equations (1) and (2)

for j = 1, ...,#Anns do
if E′(σ′

j) ≤ E′(σj) then
• σj = σ′

j

else
• Accept σ′

j following the
CSA-MwVC algorithm

end if
end for
• Decrease Ta and Tg according to

CSA-MwVC temperature schedules
• best_σ = minj E

′(σj)
end for

with the generation temperature governed by the
CSA schedule.

See Algorithm 1 for a general picture of the
entire optimisation process.

4.4 Evaluation

With regard to evaluation, we stick to the same
procedure introduced in previous literature and, in
particular, in Luo et al. (2019) and measured the
system Accuracy in finding pairs of lost and known
cognates as listed in the considered dataset.

The influential paper from Reimers and
Gurevych (2017) makes clear to the community
that reporting a single score for each session could
be heavily affected by the system random initiali-
sation and we should instead report the mean and
standard deviation of various runs, with the same
setting, in order to get a more accurate picture of
the real systems performance and make more reli-
able comparisons between them. For these reasons,
any new result proposed in this paper is presented
as the mean and standard deviation of system Ac-
curacy over 4 runs with different random initialisa-
tions. In this way, we should give a real picture of
our system performances.

5 Results

The two parameters N and M for solution shap-
ing described in Section 4.1 could be considered
hyperparameters for the proposed method as they
can give more power to the possible solutions at
the price of more parameters to be fixed and thus
slower convergence. We decided to avoid any op-
timisation of these parameters in our experiments
and fix them using a very simple rule: N = 1,
M = 2 if |Ls| > |Ks| and N = 2, M = 1 other-
wise.

Table 2 shows the results of our experiments
compared with the reference literature. Our system
is able to produce better Accuracy than any other
work on all considered benchmark datasets with
a large margin. If we consider the fact that our
results are presented as the mean and std. deviation
of more runs and not as the maximum Accuracy
achieved by the system, the results are even more
relevant.

6 Discussion and Conclusions

We presented a new approach to the ancient scripts
decipherment able to produce very good results
in cognate identification w.r.t. the state-of-the-art.
All the hyperparameters were not optimised at all
and it seems reasonable that increasing N and/or
M even better results can be reached. We plan to
perform more experiments in that direction.

Another system feature worth of mention regards
its ability to converge to reasonable solution for any
simulation; even during the development phase,
the proposed system never got trapped into very
poor sub-optimal solutions. Simulations took a
relevant time to converge, but they always con-
verged without any need to restart the process, a
common technique for this kind of methods (see
e.g. Berg-Kirkpatrick and Klein 2013), confirm-
ing the strength of CSA as a function optimisation
technique.

There are other approaches to the problem in
the literature that we have not explicitly discussed
in Section 2 because not strictly devoted to the
decipherment of ancient scripts, but address the
problem of deciphering substitution or homophonic
codes like the famous Zodiac-408 cipher or the
Beale cipher (e.g. Ravi and Knight, 2011; Nuhn
et al., 2013, 2014). For example Ravi and Knight
(2011) proposed a stochastic model taking into ac-
count both token n-grams and dictionaries. Know-
ing for certain the target language, they can esti-
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Benchmark Dataset
U/OH LB/MG LB/MG CS/AG

System names
(Berg-Kirkpatrick and Klein, 2011) 90.4 - - -
(Luo et al., 2019) 93.5 84.7 67.3 -
This work (CSA_OptMatcher) 95.5±0.83 89.4±1.81 83.4±2.50 86.3±1.73

max 96.3 max 91.0 max 87.0 max 87.9

Table 2: Accuracy results in cognate identification compared with the reference literature.

mate a language model (LM) using a large set of
data, even artificially generated, and can take advan-
tage of complete lexica and frequency information
for the known language. Unfortunately, when using
these methods to solve the decipherment problems
on ancient languages often the target language is
not known for certain, maybe it is a language from
the same area sharing the same data scarcity as the
lost one and thus it is not possible to build use-
ful LMs or rely on a complete dictionary. On the
contrary, everything is only partially known or unre-
liable: phonetic values, signs mappings, frequency
information and the true underlying language. This
facts make it very difficult to use methods like the
one proposed by these authors.

Our very promising results in the decipherment
of ancient scripts might suggest that these tools can
solve all the unsolved problems, of palaeographic,
epigraphic and linguistic nature, debated for years
by experts. This is naturally not the case. These
techniques, even if very promising, also present a
large number of problems when applied in real de-
cipherment attempts: (a) first of all, segmented and
clean corpora are needed. Building a corpus for an
ancient undeciphered script, even in the case where
we have already solved the segmentation problems
and were able to collect single sign images and
sign/word sequences, is not an easy task. Most
inscriptions are damaged and many signs are not
readable. Broken words and/or partial sentences
are also frequent; (b) an extensive cognate list must
be available, but in most real cases we only have
two word lists that must be matched without any
guarantee that lost language cognates are really
present in the known language lexicon; (c) in NLP
we have to make evaluation on well-known test
beds and all the studies we discussed before worked
on well known correspondences to prove the sys-
tem effectiveness. It is an entirely different matter
to test the same systems on real cases when we
have to deal with unknown writing systems and

their corresponding languages.
In the light of these considerations, we agree

with Sproat (2020) who suggested that these tools
can help paleographers shed light on the decipher-
ment process, but we cannot rely on them only for
providing a complete solution to our real problems
without any human intervention for guiding the
process and interpreting the results. However, our
future plans regard the application of the proposed
system to undeciphered scripts from the Aegean
area, hoping to shed some light on problems unre-
solved for centuries.

Codes and all datasets for reproducing the exper-
iments are available on github6.
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Abstract

A crucial step in deciphering a text is to iden-
tify what set of characters were used to write it.
This requires grouping character tokens accord-
ing to visual and contextual features, which can
be challenging for human analysts when the
number of tokens or underlying types is large.
Prior work has shown that this process can be
automated by clustering dense representations
of character images, in a task which we call
“script clustering”. In this work, we present
novel architectures which exploit varying de-
grees of contextual and visual information to
learn representations for use in script cluster-
ing. We evaluate on a range of modern and
ancient scripts, and find that our models pro-
duce representations which are more effective
for script recovery than the current state-of-the-
art, despite using just 2% as many parameters.
Our analysis fruitfully applies these models to
assess hypotheses about the character inven-
tory of the partially-deciphered proto-Elamite
script.

1 Introduction

One of the first tasks in decipherment is to solve
an instance of the token-to-type problem by recog-
nizing which tokens represent the same underlying
character, and thereby to construct a list of every
character used in the script (cf. Gelb and Whiting
1975). Accurate character inventories are impor-
tant for decipherment, as they indicate patterns of
frequency and adjacency which can reveal infor-
mation about the underlying message. However,
it can be challenging for human annotators to de-
termine which characters are truly distinct: tokens
with different appearances can represent the same
underlying character (such as English and ),
while visually-similar tokens can represent distinct
characters (such as and or ß and B).

This work introduces novel, VAE-based tech-
niques for learning the character inventory of an
unknown script by clustering images of character

tokens. We show, through a range of experiments
on deciphered and undeciphered scripts from mod-
ern and ancient corpora, how the complexity and
number of characters in a script impact our mod-
els’ ability to learn the underlying character inven-
tory. On the ancient Cypro-Greek syllabary, our
models outperform the recent Sign2Vec architec-
ture (Corazza et al., 2022a) despite using just ∼2%
as many parameters. We also apply these models
to the undeciphered proto-Elamite script (PE; Dahl
2019), and find that they independently replicate
expert intuitions about the underlying character
inventory and suggest new relationships between
signs which have not yet been noted in prior work.

2 Methodology

Corazza et al. 2022a and Corazza et al. 2022b out-
line a two-step procedure for learning the charac-
ter inventory of an unknown script by clustering
images of character tokens. They first train an
unsupervised neural encoder to learn vector repre-
sentations for images of the characters in question.
After training, they cluster these representations:
the resulting clusters serve as an estimate for the
script’s underlying character inventory. The au-
thors demonstrate good performance on the ancient
Cypro-Greek script, and fruitfully apply this tech-
nique to the study of a related, undeciphered script
called Cypro-Minoan.

Our work follows the same overall approach, and
investigates how changes to the encoder architec-
ture, data quality, and training process can affect
the final clustering.

2.1 Motivation

Sign2Vec (Corazza et al., 2022a) uses the ResNet18
encoder (He et al., 2016), which is an 18-layer con-
volutional stack with residual connections. ResNet
was originally developed for object detection and
segmentation on the ImageNet (Deng et al., 2009)
and COCO (Lin et al., 2014) datasets, which in-
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clude photorealistic depictions of complex scenes.
In this setting, very deep networks are necessary to
capture the full range of visual information present
in the input images (He et al., 2016). By con-
trast, images of written characters tend to be vi-
sually simple: they often read clearly in greyscale
or black-and-white, and can generally be broken
down into simple lines, curves, or wedges against
a uniform background. In light of this, we hypothe-
size that the ResNet encoder may be significantly
over-parameterized for the task of script clustering.
This may lead to longer training times than neces-
sary, more expensive compute costs, and increased
risk of overfitting when applied to low-resource
decipherment corpora.

Additionally, one of the tasks used to train the
Sign2Vec encoder is a masked prediction task,
where information about a character must be re-
covered given the representations of the characters
to its immediate left and right. This provides the
model with a very narrow context window, which
is sufficient for the experiments in the original
work (Corazza et al., 2022a), but which we hy-
pothesize may hamper the model’s performance in
settings where wider context is available.

2.2 Model Architectures
In light of these limitations, we propose to compare
four architectures which reduce the size of the en-
coder relative to Sign2Vec and incorporate varying
degrees of context.1

VAE All of our models are built around a vari-
ational autoencoder (VAE; Kingma and Welling
2014) with a convolutional encoder and a deconvo-
lutional decoder (Figure 1). This architecture uses
three stacked convolutional layers to learn vector
representations µ, σ ∈ Rd from an input image
x ∈ Rn×n. These are used to sample a “code”
z ∼ N (µ, σ). A stack of transposed convolutional
layers decodes z to an image x̃ ∈ Rn×n. This
model is trained to minimize the reconstruction
error of x̃ with respect to the input x:

L = BCE(x̃, x) (1)

where BCE is binary cross-entropy.

VAE+Neighbors Our second model adds an aux-
iliary masked prediction task (Figure 2). Let zi−1

and zi+1 be the encodings of the images to the
1Code to be released at https://github.com/

MrLogarithm/cawl-clustering

μ

x x~

σ

z Deconv.
Decoder

Conv.
Encoder

Figure 1: VAE architecture. This model reconstructs its
input from a dense vector encoding.

direct left and right of a token xi. We learn a pro-
jection M ∈ R2d×d and decode M(zi−1 ⊕ zi+1)
to produce an image x̃′

i. We add a new loss term to
Equation (1) to minimize the reconstruction error
of x̃′

i with respect to xi:

LNeighbor = BCE(x̃′
i,xi)

This is similar to the auxiliary task in
Sign2Vec (Corazza et al., 2022a), with the
difference that our model draws the masked sign,
whereas Sign2Vec was trained to predict a property
called its “pseudolabel” (see Section 2.3).

x~

~

i

x'ix i-1

x i

x i+1

M

Figure 2: VAE+Neighbor architecture. This model adds
the auxiliary task of reconstructing a character image
given the encodings of the adjacent characters.

VAE+LSTM To include wider context, we pro-
pose a third architecture incorporating an au-
toregressive LSTM (Hochreiter and Schmidhuber,
1997) language model. The input to this model is
a sequence of character images {x1, ...,xn}. We
encode each image using convolutional encoders
with tied parameters to produce a sequence of codes
{z1, ..., zn}, and decode these using tied decoders
to produce a sequence of images {x̃1, ..., x̃n}. Up
to this point, the model is equivalent to a batched
version of the basic VAE model. To incorpo-
rate context, we pass {z1, ..., zn} to a unidirec-
tional LSTM, and use our VAE decoder to decode
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the LSTM outputs to a second image sequence
{x̃′

1, ..., x̃
′
n}.
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μ
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Encoder
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σ
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Encoder
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Encoder
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Encoder
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Encoder

Conv.
Encoder

LSTM
... ...

... ...

Figure 3: VAE+LSTM architecture. This model adds
the auxiliary task of drawing the next token given a
sequence of encodings for the preceding tokens.

We add the following loss term to Equation (1)
to minimize the reconstruction error of this image
sequence:

LLSTM =

n−1∑

i=1

BCE(x̃′
i,xi+1)

This can be viewed as an autoregressive
character-level language modeling objective, where
we wish to draw the image of the next charac-
ter xi+1 given all of the preceding characters
x1, ...,xi.

VAE+Transformer Our final model replaces the
LSTM component from the previous model with a
Transformer encoder stack (Vaswani et al., 2017);
we obtain the output image sequence {x̃′

1, ..., x̃
′
n}

by decoding the top layer of this Transformer. We
train this model on a masked language modeling
task: we mask input tokens at random by replacing
their images with standard Gaussian noise, and
train the model to recover the unmasked image
sequence by adding the following term to Equation
(1):

LTransformer =

n∑

i=1

BCE(x̃′
i,xi)

2.3 Training Details

At training time, we use a denoising tech-
nique (Vincent et al., 2008, 2010) to regularize

~

~

~

xi-1

MASK

xi+1

x'i-1

x'i

x'i+1

Conv.
Encoder

Conv.
Encoder

Conv.
Encoder

Transformer
Encoder

Figure 4: VAE+Transformer architecture. This model
adds the auxiliary task of reconstructing characters
which have been masked by random Gaussian noise.

our models: we apply a random transformation (ro-
tation of up to 45 degrees, shear of up to 25 degrees,
and a random scale factor between 0.4 and 1) to
each input image, while keeping the target of the
reconstruction loss unchanged.

All of our models are trained using stochas-
tic gradient descent (SGD) to minimize Eq. (1),
plus the appropriate model-specific auxiliary loss
(LNeighbor, LLSTM, or LTransformer), plus a pseu-
dolabel loss term LΨ which we describe below. We
jointly minimize the sum of all of the relevant loss
terms in a single pass, with no pretraining and no
warmup steps.

Pseudolabels We follow Corazza et al. 2022a in
using a soft, unsupervised technique to organize
our models’ encodings into loose clusters. This
technique, inspired by the neural clustering algo-
rithm DeepCluster-v2 (Caron et al., 2018), begins
by clustering the encodings using K-Means with
an arbitrary number of clusters k. Let C be a ma-
trix with columns corresponding to the K-Means
centroids (normalized to unit length). Let zi be an
arbitrary encoding, let Cj be the centroid which is
closest to zi, and let yi be a one-hot vector with
a one in the jth position. The pseudolabel loss is
then given by:

LΨ =

n∑

i=1

CCE(
zi
||zi||

C,yi) (2)

where CCE is categorical cross-entropy. For each
zi, this constructs a probability distribution zi

||zi||C
over k categories, where the mass in each category
is proportional to the similarity between zi and the
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corresponding centroid. Minimizing this loss con-
centrates the mass of the distribution into a single
term; in other words, this performs a soft clustering
by pulling each zi towards the nearest centroid in
the embedding space.

We follow Corazza et al. 2022a in using a pseu-
dolabel loss with 100 centroids, which we recom-
pute using K-Means at the beginning of each train-
ing epoch.

3 Data

We aim to apply these models to the study of the un-
deciphered proto-Elamite script, which is attested
across ca. 1581 clay tablets recovered from the an-
cient city of Susa and other parts of the Iranian
plateau. These texts have been transliterated by do-
main experts using a work-in-progress list of about
1500 distinct signs;2 the most complete and up-to-
date transliterations are hosted by the Cuneiform
Digital Library Initiative3 and described in a re-
cent survey by J. Dahl (2019). Each sign has
an accompanying digital image, also produced by
Dahl, depicting its “archetypal” form. These im-
ages smooth over many of the irregularities of the
original shapes drawn on clay, while still preserv-
ing slight visual differences between tokens which
may actually represent the same underlying char-
acter (such as and ). They therefore represent
an intermediate level of detail that is cleaner than
segmented images of the original texts, yet still
faithful to the original hand. We convert the entire
transliterated proto-Elamite corpus4 into a set of
image sequences by replacing each transliterated
sign name with the corresponding sign image (Fig-
ure 5). Table 1 summarizes the token count for the
resulting dataset.

We evaluate our models on their ability to re-
cover three scripts whose character inventories
are already known (English, Japanese, and Cypro-
Greek). We construct an English dataset by ex-
tracting the first 33k alphanumeric tokens (approxi-
mately the same number of tokens as are attested in

2Different sign-counting methodologies can yield sign
counts as low as 287 or as high as 1623 (Born et al., 2019),
depending on whether numerals, tilde-variants, complex
graphemes, and other categories of grapheme are included. To
further complicate matters, the signlist continues to vary as
transliterations are updated and sign names are revised. At the
time of publication, a list of sign names which are currently in
use can be found at https://cdli.mpiwg-berlin.mpg.de/
resources/token-lists

3https://cdli.mpiwg-berlin.mpg.de/
4https://cdli.mpiwg-berlin.mpg.de/search?

period=proto-elamite&genre=administrative

Figure 5: Samples of image sequences from our PE
(top), En (middle) and Jp (bottom) datasets.

Language # Characters #Tokens # Images

EN 62 33k 3410
JP 938 33k 1607
CG 55 3k 3005

PE — 35k 1319

Table 1: Size and character inventories of scripts used
for training. PE is undeciphered, and the size of its
character inventory remains unknown.

proto-Elamite) from the WikiText-2 corpus (Mer-
ity et al., 2016). We convert this text into image
sequences by replacing each character token with a
handwritten image of that character. We use images
from de Campos et al. 2009, who provide 55 hand-
written instances of all 62 upper- and lowercase
English letters and digits: one of these 55 images
is chosen at random each time a character occurs.
The resulting sequences (Figure 5) imitate the level
of detail in our proto-Elamite data, in that each let-
ter is attested by multiple distinct images, and the
same image can be used for multiple tokens.

We construct a Japanese dataset according to the
same procedure, using the first 33k tokens from the
Japanese Tatoeba corpus (Artetxe and Schwenk,
2018; Tiedemann, 2012). As we do not have hand-
written character images for Japanese, we instead
extract the glyphs from two Japanese fonts (Yuji
Boku and Zen Old Mincho). The Japanese writing
system uses three scripts: kanji which are highly lo-
gographic, and two syllabaries called hiragana and
katakana. Similarly, proto-Elamite has been spec-
ulated to contain a set of possibly-syllabic signs,
together with a large number of logograms (Dahl,
2019). Syllabic signs convey phonetic information
that can provide crucial insights for decipherment,
and are therefore a major focus of decipherment
efforts on this script. In our Japanese experiments
(see Section 4), we therefore train on the entire
script, but only evaluate the model’s ability to re-
cover the two syllabaries.

We use the same Cypro-Greek data as Corazza
et al. 2022a. Unlike the other datasets, this
uses manually-segmented images from hand-drawn
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copies of artifacts bearing the Cypro-Greek script.
There is therefore a greater degree of variation be-
tween the character shapes in this data, and no two
tokens ever have identical images. This means that
our three datasets fall along a cline from fully natu-
ralistic, handwritten sequences (Cypro-Greek), to
synthetic sequences derived from handwritten im-
ages (English), to synthetic sequences derived from
digital fonts (Japanese).

We trim extraneous whitespace from all charac-
ter images and resize them to 64× 64 pixels with
a single grayscale color channel before training.5

4 Experiments

We train each of the models from Section 2.2 on the
four corpora detailed above (see Appendix B for
hyperparameters and additional training details).
After training, we encode each image using the
trained encoder and cluster the resulting encod-
ings using (i) agglomerative clustering with vary-
ing numbers of clusters (English, Japanese, proto-
Elamite) or (ii) DBSCAN (Ester et al., 1996) with
varying ε (Cypro-Greek). We use DBSCAN for
Cypro-Greek to enable a fair comparison against
the results in Corazza et al. 2022a; however, we
find that DBSCAN is generally not effective when
clustering the other scripts. When clustering with
DBSCAN, we follow Corazza et al. 2022a in using
a minimum cluster size of 2, to imitate a decipher-
ment setting where the true number and frequency
of characters is unknown; for the other scripts we
vary the number of clusters for the same reason.6

For English, Japanese, and Cypro-Greek,
we report homogeneity, completeness, and V-
measure (Rosenberg and Hirschberg, 2007) relative
to the gold labels. Homogeneity ranges from 0 to 1,
where 1 means that each cluster contains instances
from just one of the underlying characters, and
smaller values imply that some clusters combine
instances of two or more distinct characters. Sim-
ilarly, a completeness of 1 means that each of the
underlying characters is represented by a single

5Rescaling the images to a fixed size obscures the height of
the original character (see Fig. 5, whereって is indistinguish-
able from つて). For this reason, our Japanese evaluation
only tests the model’s ability to recover the gojūon, dakuon,
and handakuon, ignoring the yōon, sokuon, and small vowels
which are distinguished only by size.

6The present work will otherwise ignore the problem of
selecting the correct number of clusters, for which a variety
of heuristics have been proposed in prior work (Rousseeuw
1987; Thorndike 1953; Sugar and James 2003; Honarkhah and
Caers 2010; Tibshirani et al. 2002 i.a.).

cluster, while smaller values mean that some char-
acters have been divided across multiple clusters.
Intuitively, low homogeneity scores mean that a
clustering merges together characters which are ac-
tually distinct, while low completeness means that
it splits some characters into subgroups that are not
underlyingly distinct. V-Measure is the harmonic
mean of homogeneity and completeness.

DBSCAN can label samples as outliers (and thus,
not part of any cluster): we only evaluate on tokens
which it assigns to a cluster.

In our Japanese experiments, we only evaluate
on hiragana and katakana, in imitation of the proto-
Elamite setting where we eventually aim to under-
stand the divisions of a putative syllabary compris-
ing only a subset of the overall script.

In our Cypro-Greek experiments, we compare
against the Sign2Vec and DeepCluster-v2 results re-
ported in Corazza et al. 2022a. For the other scripts,
we compare against agglomerative clusterings over
the input images.

In proto-Elamite, where the ground truth is not
known, we perform a qualitative evaluation in
collaboration with domain experts. We look for
sets of tokens which are assigned to the same
cluster by our VAE+Neighbor, VAE+LSTM, or
VAE+Transformer model, but belong to different
clusters in the vanilla VAE model. The vanilla
VAE differs from the other models in that it lacks
contextual information; therefore, any groupings
which are absent from this model’s output likely
reflect primarily contextual similarities. Contextual
resemblances are harder for human annotators to
notice than visual resemblances, and so we expect
these groupings to reflect similarities which may
have been overlooked in prior work. We collabo-
rate with domain experts to assess how these token
groupings relate to their intuitions about this script.

5 Results

5.1 Modern Scripts

Figure 6 plots V-Measure from agglomerative clus-
terings over our models’ representations of hand-
written English letters (Appendix A shows the
breakdown into homogeneity and completeness
scores). The curve for the baseline is obtained
by clustering the raw character images, rather than
their encodings.

All four of our proposed models are able to re-
cover the underlying script more accurately than
the baseline. When the number of clusters is close
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Figure 6: V-Measure on handwritten English. The true
character inventory comprises 52 upper- and lowercase
letters plus 10 digits.

to the true size of the alphabet, our LSTM and
Transformer-based models achieve the highest per-
formance, which supports our hypothesis that wider
context windows allow for more accurate script re-
covery.
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Figure 7: V-Measure on a synthetic mixture of Japanese
fonts. The target character inventory comprises 142
hiragana and katakana (46 gojūon, 20 dakuon, and 5
handakuon each).

Figure 7 plots the same metrics for our synthetic
Japanese dataset. In this setting, the differences
between models are much less pronounced: the
context-aware models do not exhibit the same ad-
vantage as in English, and in fact the VAE+LSTM
model fails to outperform the naive baseline when
the number of clusters exactly matches the true
number of underlying characters. When the num-
ber of clusters is much larger than the true number
of signs, our models do outperform the baseline,
however, the contextual models continue to slightly
underperform the contextless VAE on average. Re-
gardless of the number of clusters chosen, the V-
Measure for Japanese is always much higher than
for English.
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Figure 8: V-measure vs number of clusters for DB-
SCAN clusterings on Cypro-Greek. We evaluate over
the interval 0.1 ≤ ε < 8 in steps of 0.1. The dotted line
represents the true number of signs in the script.

These differences between English and Japanese
are likely due, in part, to the fact that there are only
two distinct images per character in the Japanese
data, compared to 55 in English. The Japanese
data are also fully synthetic, whereas the English
is handwritten. This may make the Japanese task
too easy (despite covering a much larger number of
unique characters) to the point that contextual mod-
els are not needed. This is nevertheless a useful
result, as it suggests that the difficulty of script clus-
tering depends less on the number of graphemes
than on the degree of variation between allographs.

5.2 Cypro-Greek

Table 2 compares the best result from each of our
models against the best results reported in Corazza
et al. 2022a; Figure 8 shows our full results for dif-
ferent values of DBSCAN’s ε parameter. Our best
models (VAE+LSTM and VAE+Transformer) out-
perform the Sign2Vec baseline, and all of our mod-
els outperform DeepCluster-v2 (Caron et al., 2018)
which was the inspiration for Sign2Vec. Although
our V-measure gains are modest, we emphasize that
our models use ∼98% fewer parameters than
Sign2Vec, and ∼99% fewer than DeepCluster-
v2. This supports our hypothesis that the ResNet
encoder is over-parameterized for the task of script
clustering, and demonstrates that accurate script
recovery is clearly possible even with much more
lightweight architectures.

Figure 9 plots homogeneity and completeness
vs number of clusters for each of our CG mod-
els. Each model exhibits a unique trend: the
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Figure 9: Completeness (left) and homogeneity (right) vs number of clusters for DBSCAN clusterings on Cypro-
Greek. We evaluate over the interval 0.1 ≤ ε < 8 in steps of 0.1. The dotted line represents the true number of
signs in the script.

V ↑ Parameters↓
DeepCluster-v2 (Corazza et al., 2022a) 0.73 > 23M
Sign2Vec (Corazza et al., 2022a) 0.75 > 11M

VAE (Ours) 0.75 0.215M
VAE+Neighbor (Ours) 0.74 0.215M
VAE+LSTM (Ours) 0.76 0.218M
VAE+Transformer (Ours) 0.76 0.227M

Table 2: V-measure (V ) and parameter counts for Cypro-
Greek. Best results for each model from Figure 8 and
Corazza et al. 2022a.

VAE+Transformer exhibits less variation in its
completeness scores across a range of cluster-
ing sizes, while the other models exhibit a more
pronounced fall and rise as the number of clus-
ters increases. All models are capable of achiev-
ing comparable homogeneity in the neighborhood
surrounding the true number of clusters, but the
VAE+Transformer maintains high homogeneity up
to a much higher number of clusters than the other
models. Geshkovski et al. 2023 have argued that
self-attention mechanisms cause tokens to cluster
around certain attracting states in the representa-
tion space; pseudolabeling (Caron et al., 2018) is
intended to have the same effect. We speculate that
the VAE+Transformer’s strong performance may
result in part from these behaviours reinforcing one
another to perform a more effective soft clustering
at training time.

5.3 Proto-Elamite

Table 3 shows pairs and triplets of proto-Elamite
characters which have distinct labels in the work-
ing signlist and VAE clustering, yet occupy the

same cluster in the VAE+Neighbor, VAE+LSTM,
or VAE+Transformer clusterings.7

The VAE+Neighbor model differs from the
working signlist and VAE clustering in only two
places, merging M332∼g with M297∼B and
M356∼B with M327∼N . Neither merger
appears to reflect any known similarities in how
these signs are used.

By contrast, the 6 mergers proposed by the
VAE+LSTM model appear much more plausible.
One cluster combines tokens which are currently

labeled as M362 and M362∼a , which adds
hatching to the central circle in a manner resem-
bling “gunuification” in early cuneiform. The ∼
notation in the working sign name explicitly ac-
knowledges that experts believe M362∼a may8 be
a graphic variant of M362; both signs have been
glossed as ‘nanny goat’ (Dahl, 2005), and previ-
ous scholarship has already acknowledged a likely
equivalence between M362∼a and another hatched
variant called M362∼b (Dahl, 2005) .

The output from our VAE+Transformer differs
the most from the working signlist, suggesting
17 sets of shapes which may represent the same

7For the VAE model, we use 1306 clusters, which equals
the number of unique sign images available at the time we
created our training data. We cluster the other models using
3.5× this many clusters; using such a large number helps
to guarantee that the observed groupings reflect legitimate
similarities and are not simply a side effect of compressing
too many tokens into too few groups.

8Specifically, ∼ followed by a number marks one sign as
a graphic variant of another; ∼ followed by a letter means
that the sign may be a variant of another, but experts remain
agnostic in the absence of further evidence.

98



VAE+Neighbor VAE+LSTM VAE+Transformer

Table 3: Pairs/triplets of character images which have distinct labels in the working signlist, but which our models
merge into single clusters.

underlying character. A significant number of
these are complex graphemes, where one glyph
has been drawn inside the whitespace at the cen-
ter of another. Previous work has suggested that
the meaning of a complex grapheme is principally
determined by its outer component (Born et al.,
2021), and indeed most of the merges proposed
by the VAE+Transformer occur between complex
graphemes with the same outer part. This suggests
that the model has rediscovered the same pattern
identified in prior work, and that these particular
merges do reflect plausible groupings on the part
of our model. Many of the other mergers occur be-
tween signs which are already labeled as possible
variants in the working signlist (such as M029∼a
and M029∼b , or the possible syllables M387∼h

and M387∼ca ) and thus appear similarly plau-
sible.

Of greater interest are cases such as M209∼a ,
M210∼f , and M195+M057 . The working
signlist labels these as wholly distinct characters,
and no explicit relationship between these signs
has been proposed in prior work. However, the
visual resemblance between M209∼a and M210∼f
is undeniable; both signs occur in texts which con-
tain the “yoke” character M054 , and both occur
in texts which appear to record amounts of grain
(M209∼a appears with the speculative grain capac-
ity sign M354 , while M210∼f occurs with the
more common container sign M288). Moreover,
in one text M209∼a is attested alongside a related
variant of M210, labeled M210∼d . Given these
signs’ visual resemblance to a plant sprouting from
a field, and their association with yokes and grain
accounts, we believe it is reasonable for the model
to have grouped these characters under the same
umbrella. M195+M057 is also attested in texts
alongside both M288 and M354; although it does
not occur next to the yoke sign M054, it often oc-
curs near the sign M003∼b , which is speculated
to be another field utensil and which experts note is

“related to M054” (Dahl, 2007). Both M195+M057
and M209∼a are also attested as “headers”, the
first sign of a document which is believed to of-
fer global context for interpreting the following
text (Damerow and Englund, 1989; Born et al.,
2022). While we are skeptical that M195+M057
is truly the same underlying character as M209∼a
and M210∼f, they clearly share contextual simi-
larities and are attested in comparable, apparently
agricultural, contexts. This demonstrates our pro-
posed model’s ability to detect contextual parallels
which are helpful for understanding the possible
relationships between signs in this script.

By reducing the number of clusters to force ad-
ditional merges, we can obtain yet more group-
ings of the sort reported in Table 3. For exam-
ple, when we reduce the number of clusters in the
VAE+Transformer model by a factor of 1

7 , a new
merger appears between M175+M131∼d and
M157+M131∼d . The outer components M157

and M175 differ only in the shape of the pro-
trusion at the top of the box, and a merger between
these signs is tentatively expected based on cur-
rent understandings of the corpus. Other mergers
which appear, and which are also expected based
on current understandings of the corpus, include
M056∼f with M056∼e , both signs being un-
derstood to depict a plow; M075∼ff , M075∼g ,
M075∼h , and M075∼o apparently depicting
minor variations on a sprouting plant; and M111∼c

, M111∼d , and M111∼e which differ only
in the direction of the internal hatching. Such cases
serve as useful confirmations of experts’ current
understanding of sign use in this script.

The cases reported so far represent only a small
fraction of the candidate mergers which can be ex-
tracted from our models, and we are optimistic that
this work will continue to give rise to useful in-
sights as experts take the opportunity to investigate
this space more fully.
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6 Related Work

Scribal hand identification (Popović et al., 2021;
Srivatsan et al., 2021) is a related task which seeks
to cluster instances of characters from a known
script according to the hand which wrote them.

Yin et al. (2019) describe a system for segment-
ing, transliterating, and deciphering images of his-
torical manuscripts. In the transliteration step, their
model implicitly learns an underlying script by
clustering character representations obtained from
a Siamese neural network trained to discriminate
between characters from known scripts. This net-
work learns character representations without ac-
cess to context, similarly to our vanilla VAE and the
DeepCluster-v2 baseline in Corazza et al. 2022a.

In a setting where the underlying script is al-
ready known, Dencker et al. (2020) and Gordin
et al. (2020) also describe systems for automated
transliteration from images of cuneiform text.

Kelley et al. (2022) study the character inven-
tory of proto-Elamite using a model similar to our
VAE+LSTM. Their model is not variational; it uses
softmax decoding over a fixed vocabulary initial-
ized to match the working signlist, which biases it
towards recovering the same divisions speculated
by experts. Our models use a deconvolutional de-
coder, which sidesteps this bias by allowing an
open vocabulary. Their evaluation does not test on
any known scripts, which makes it challenging to
determine the accuracy of the clusters their model
produces.

7 Conclusion

We have described four models which add vary-
ing degrees of contextual information to a VAE,
and have shown how these can be used to clus-
ter token images to recover a script’s character in-
ventory. On the ancient Cypro-Greek script, our
best models meet or outperform the state-of-the-art
Sign2Vec baseline using just ∼2% as many pa-
rameters, which supports our claim that written
text lacks the visual complexity to warrant mod-
els of the depth used in other image processing
applications. Our English and Cypro-Greek experi-
ments also demonstrate that contextual models are
more effective for script recovery than contextless
models. On synthetic Japanese data, which con-
tains many distinct graphemes but little variation
between allographs, our models achieve extremely
high V-Measure (>0.91), suggesting that they han-
dle large character inventories more easily than

they handle allography.
We apply our models to study the undeciphered

proto-Elamite script, and show that they capture ex-
isting intuitions about this script as well as suggest
new parallels between signs which have never been
noted in prior work. Our best insights for proto-
Elamite come from the LSTM and Transformer
models, while for Cypro-Greek our VAE+Neighbor
model is the only one which produces a clustering
with precisely the same number of clusters as there
are signs in the underlying script. This indicates
that it is useful to consider models with varying
access to contextual information according to the
number of long-distance contextual dependencies
the input script is expected to exhibit.

Limitations

Proto-Elamite is undeciphered, which means that
our results on this script cannot be compared to
any known ground truth. We attempt to ground
our results by situating them relative to current
Assyriological scholarship instead.

Writing systems exhibit considerable variation
in terms of the number of characters used, the vi-
sual complexity of those characters, and the degree
to which they represent phonetic information. Al-
though we try to cover a range of alphabetic and
non-alphabetic scripts in our evaluations, we can-
not cover all possible cases, and focus on those
which have some similarity to the proto-Elamite
script which is the main concern of our work.
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B Reproducibility Details

The code for our models will be published
at https://github.com/MrLogarithm/
cawl-clustering. All of the models in this work
are implemented with PyTorch. All settings use an
encoder with the following structure:

Sequential(
Dropout(0.5)
Conv2d(1 input channel, 3 output

channels, kernel size 8)
ReLU()
Conv2d(3 input channels, 6 output

channels, kernel size 8)
ReLU()
MaxPool2d(kernel size 3, stride

length 3)
Conv2d(6 input channels, 8 output

channels, kernel size 8)
ReLU()
MaxPool2d(kernel size 3, stride

length 3)
Flatten()
Dense(72 input dims, 16 output

dims)
)

A pair of Dense(16, 16) layers project the en-
coded output to µ and σ.

All settings use a decoder with the following
structure:

Sequential(
ConvTranspose2d(16 input channels,

60 output channels, kernel size
8)

BatchNorm2d(60 channels)
ReLU()
ConvTranspose2d(60 input channels,

30 output channels, kernel size
8, stride length 2)

BatchNorm2d(30 channels)
ReLU()
ConvTranspose2d(30 input channels,

15 output channels, kernel size
8, stride length 2)

BatchNorm2d(15 channels)
ReLU()
ConvTranspose2d(15 input channels,

1 output channel, kernel size
15, stride length 1)

Sigmoid()
)

The VAE+LSTM model uses a single-layer uni-
directional LSTM with a hidden dimension of
size 16. The VAE+Transformer uses a 6-layer
TransformerEncoder with 8 heads per layer, in-
put and output dimensions of size 16, and 0.5
dropout. We apply a standard sinusoidal posi-
tional encoding to the Transformer inputs following
Vaswani et al. (2017).
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In the VAE+LSTM and VAE+Transformer mod-
els, we re-apply the reparameterization trick
from Kingma and Welling 2014 to the LM out-
puts before decoding the image sequence. We add
new Dense(16,16) layers to compute µ and σ at
this stage, separate from those used to compute µ
and σ within the VAE itself. When computing the
overall KL divergence loss for these models, we
sum the KL divergence from these projections with
that of the VAE projections.

We train on sequences of length 50 using the
Adam optimizer (Kingma and Ba, 2015) with learn-
ing rate 0.001. When computing the loss, we scale
the KL divergence loss term by 0.45. The LR and
loss scaling hyperparameters were tuned via a small
manual grid search. We recompute pseudolabel
assignments at the start of every 600th training
iteration.
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Abstract

Writing systems have traditionally been clas-
sified by whether they prioritize encoding
phonological information (phonographic) ver-
sus morphological or semantic information
(logographic). Recent work has broached the
question of how membership in these cate-
gories can be quantified. We aim to contribute
to this line of research by treating a definition
of logography which directly incorporates mor-
phological identity. Our methods compare mu-
tual information between graphic forms and
phonological forms and between graphic forms
and morphological identity. We report on pre-
liminary results here for two case studies, writ-
ten Sumerian and written Japanese. The results
suggest that our methods present a promising
means of classifying the degree to which a writ-
ing system is logographic or phonographic.

1 Introduction

Writing systems vary regarding how much they
encode phonological versus morphological (or se-
mantic) information: systems which prioritize con-
veying phonological information are convention-
ally labeled as phonographic, and systems which
prioritize morphological/lexical information are la-
beled as logographic (Daniels and Bright, 1996;
Joyce and Borgwaldt, 2013). While this taxonomic
split is convenient as a broad-strokes shorthand
for classifying different writing systems, more pre-
cise categories, as well as more precise definitions
for existing categories, remain a point of ongoing
research, and debate, among scholars of writing
systems.

Defining what it means to be logographic has
been a particular point of inconsistency in the litera-
ture on writing systems; see section 2 of Sproat and
Gutkin (2021) for a review. While cases where a
single character maps to an entire word would gen-
erally be considered logographic and cases where
a single character always maps to a particular seg-

ment would be considered phonographic, the nu-
merous in-between cases present points of possi-
ble contention. For example, the fact that English
spells many homophones differently (e.g., where,
wear, ware), while spelling distinct allomorphs of
a given morpheme the same way (e.g., the root in
heal and health), has motivated treating written
English as somewhat logographic. (Sproat, 2000;
Rogers, 2005; Sproat and Gutkin, 2021).

Relative to any particular category definitions is
the question of how one might quantify the degree
to which a writing system belongs to that taxo-
nomic category. While not always framed as a mat-
ter of typology, a few methods have been used to
quantify the consistency of character string-sound
string mappings (orthographic transparency/depth).
These include using binary consistent/inconsistent
distinctions (e.g., Ziegler et al. (1996, 1997)),
entropy-based measures (e.g. Treiman et al. (1995);
Borgwaldt et al. (2004); Protopapas and Vlahou
(2009); Siegelman et al. (2020)), and machine
learning (Marjou, 2019; Rosati, 2022). With re-
gards to consistency of mapping, results differ de-
pending on whether one considers the perspective
of the reader or the writer: it’s possible to have
ambiguity of reading but not spelling (e.g., English
bass), or vice versa (e.g. English /ô>aIt/). Penn
and Choma (2006) and Sproat and Gutkin (2021)
more directly focused on the question of quantify-
ing taxonomic category membership (rather than
orthographic transparency). We aim to build on
the work in this vein by proposing a simple metric
of logography which incorporates graphic forms,
phonological forms, and morphological identity.

1.1 The Study of Sproat and Gutkin (2021)

Recently, the question of quantifying category
membership has been directed at measuring how
logographic a system is. Responding to an earlier
attempt by Penn and Choma (2006), Sproat and
Gutkin (Sproat and Gutkin, 2021) propose a hand-
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ful of ways by which one might quantify degree
of logography, relative to a working definition of
logography.

Sproat and Gutkin discuss two different treat-
ments of logography. By their distinct homo-
phones notion of logography, a system is more
logographic if identical phonological forms are not
necessarily spelled the same. The rationale be-
hind the distinct homophones approach is: given
that a maximally phonographic system will spell
all words based solely on their phonological form
(thus not discriminating between homophones), de-
viation from this ideal constitutes a higher degree
of logography. Their uniform spelling treatment
of logography treats a system as more logographic
if the same morpheme is always spelled the same
(despite surface variation). Citing convenience and
availability of reliable data, Sproat and Gutkin use
their distinct homophones definition for their stud-
ies, though they note that the uniform spelling
approach is also valid.

Sproat and Gutkin compare three different
classes of methods for quantifying logography.
Their S measure is based on the attention mech-
anism of an RNN that maps phoneme strings to
written character strings, in context. A higher S
means that a system is more logographic, since
more attention needs to be given to surrounding
context in order to know how to spell a word. As
a simple baseline for comparison, their lexical L
measure computes the average number of spellings
s per pronunciation p (drawn from a dictionary D
or corpus C of p types/tokens). A higher L means
a system is more logographic.

Ltype =
1

|D|
∑

p∈D

|s(p)| and Ltoken =
1

|C|
∑

p∈C

c(p)|s(p)|

(1)

Their E measure is based on uncertainty of
spelling given pronunciation. For their type-based
analyses, this was done as the mutual information
between written formsW and pronunciations P:

Etype = H(W)−H(W|P) (2)

The data for Sproat and Gutkin’s main exper-
iment was the Bible in 9 languages: English,
Hebrew, French, Russian, Swedish, Finnish, Ko-
rean, Chinese (at the character- and word-level),
and Japanese (Christodouloupoulos and Steed-
man, 2015); they also ran studies using data from
Wikipedia for Finnish, Japanese, English, and Ko-
rean, as well as on the Bible again for additional

languages. These languages’ writing systems range
from more (Chinese, Japanese) to less (Finnish, Ko-
rean) logographic, in terms of how they are conven-
tionally treated by scholars of writing systems and
of those languages. It should be noted that the pro-
nunciations for their main data were automatically
generated from their target texts, and their pronun-
ciation generators did not have any homograph
disambiguation (a factor which they acknowledge
as a shortcoming, and address to some extent in
their section 6.5).

Sproat and Gutkin’s attention-based S measures
most closely aligned with how logographic their
target writing systems are generally considered to
be: S scores were lowest for Finnish, Swedish,
and Korean, and were highest for Japanese and
Chinese. Their L measures were less reliable, but
still somewhat consistent with expectations. While
their Etype performed decently, it had a few unex-
pected outcomes, such as ranking character-level
Chinese as too phonographic and Swedish as too
logographic, leading Sproat and Gutkin to favor
their S measure. However, it may be that these
E results were a consequence of only considering
pronunciations and spellings, without also incorpo-
rating morphology. A mutual information approach
which also includes morphological information still
has the potential to match, or outperform, their S
measure.

2 Logography via Morpheme Identity

One can view graphic forms and spoken forms as
two points of a triangle, with the third point being
semantics or lexical identity1. Since Sproat and
Gutkin (2021) focus on their distinct homophones
interpretation of logography, the role of morphol-
ogy (and semantics) do not play a role in their
experiments. We aim to add morpheme identity to
the mix, which helps to complete the missing side
of the triangle. Given that traditional definitions
of logography have placed emphasis on the role of
morphology or semantics in how words are read
and written, a complete account of how to quan-
tify logography would benefit from including the
graphic form-morphology leg of the triangle.

1This kind of ‘triangle’ model was popularized by Sei-
denberg and McClelland (Seidenberg and McClelland, 1989).
While it’s true that that work was focused on modelling how
humans read, not on writing system typology, this kind of
triangle schematic nonetheless serves as a useful representa-
tion of how the components of spoken/written language can
connect to each other, which is relevant for classifying writing
systems.
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Intuitively, if a system is more logographic, then
graphic forms and morphological identity will pro-
vide more information about each other; if a sys-
tem is more phonographic, then graphic forms and
phonological forms will provide more information
about each other. We propose that the degree to
which a writing system is logographic l can be
quantified by comparing the mutual information
between graphic forms G and morphemes M with
the mutual information between graphic forms G
and phonological forms P:

l = I(G;M)− I(G;P ) (3)

One advantage that mutual information has in
this context is its symmetry, with the consequence
that it’s agnostic as to whether the writing system is
being analyzed from the reader’s perspective or the
writer’s perspective. Measures such as Sproat and
Gutkin’s S and L metrics can only be done from
one of the two reader/writer perspectives at a time
(Sproat and Gutkin’s experiments only took the
writer’s perspective); while there’s nothing stop-
ping one from getting those measures from both
perspectives separately, this would give two sepa-
rate measures rather than the single unified measure
that mutual information offers.

3 Data - Sumerian and Japanese

As an initial testing ground, we focus on the writ-
ing systems of two unrelated languages: Modern
Japanese and Ur III Sumerian. These writing sys-
tems are considered to be highly logographic, with
morphemes often being spelled with a single char-
acter. Sumerian and Japanese happen to both be
agglutinating in their morphology, with additional
similarities including postnominal case marking,
root+affix verbal morphology, and extensive use
of compounding (Shibatani, 1990; Michalowski,
2004); given the role that morphology plays in our
analysis, it is convenient to start by considering
two languages which, by chance, have similar mor-
phological profiles and similar writing systems. In
addition, this choice of writing systems also al-
lowed us to have one writing system (Japanese)
which was considered by Sproat and Gutkin, and
one writing system (Sumerian) which hasn’t yet
been explored in this vein. To our knowledge, this
work constitutes the first attempt at quantifying how
logographic or phonographic written Sumerian is.
These systems were also chosen in part because of
data availability and author background.

To avoid any diachronic variation within Sume-
rian, all of the Sumerian data were from docu-
ments composed during the Ur III period (c. 2112-
2004 BC), drawn from 71,712 Ur III administra-
tive documents within ORACC, the Open Richly
Annotated Cuneiform Corpus (Tinney and Rob-
son, 2014). This corpus was chosen for its ro-
bust size and lexical and morphological annotation.
During cleaning, we removed tokens which con-
tained damaged written forms, had uncertain read-
ings/translations, or were proper nouns. Morpho-
logically complex tokens, including compounds
and inflected forms, were further processed into
morpheme-length (rather than word-length) tokens
via both automated and manual parsing by the
first author. This resulted in a total of 1,875,351
morpheme-sized tokens.

Japanese data were drawn from BCCWJ, the Bal-
anced Contemporary Corpus of Written Japanese
(Maekawa et al., 2014). BCCWJ tokenizes by
lemma, with each token annotated with graphic
form and phonological form information. Morpho-
logically complex tokens were further processed
into morpheme-length tokens by the first author.
The analyses reported here include the 5,000 most
frequent lemmas, with a total of 62,929,634 mor-
pheme tokens.

3.1 Morphological Parsing

BCCWJ and ORACC both tokenize at the word
rather than the morpheme level. As such, some
additional processing was needed to get morpheme-
sized tokens out of morphologically complex
words, particularly compounds and words with
grammatical affixes. For Sumerian compounds
(548 types), morphological parsing was done com-
pletely manually by the first author based on back-
ground knowledge and use of the electronic Penn-
sylvania Sumerian Dictionary (ePSD2)2; some
parses were also run by someone more knowledge-
able on Sumerian to double check their validity.
Parsing grammatical morphology on nouns and
verbs and aligning the parses with characters was
handled automatically by a Python script written
by the first author. Because of the complexities of
Sumerian verbal morphology, automating exactly
which characters mapped to which morphemes was
unreliable, so verbal affixes were excluded from
the analyses.

2http://oracc.museum.upenn.edu/epsd2/sux; http:
//oracc.museum.upenn.edu/epsd2/index.html.
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Japanese has a rich lexicon of two-character,
two-morpheme Sino-Japanese compounds called
jukugo (Ogawa and Saito, 2006; Joyce, 2013), as
well as suffixing morphology on verbs. Two Python
scripts were written that automatically parsed
jukugo into their component morphemes and that
separated verb roots from affixes. The Jukugo
Database at kanjidatabase.com (Tamaoka et al.,
2017) was used to help with jukugo parsing.

3.2 Phonographizing Sumerian and Japanese

The writing systems of both Japanese and Sume-
rian are considered highly logographic. However,
while Japanese texts are typically written using a
mix of logographic kanji and phonographic kana,
any Japanese text can be written using kana alone.
To ensure that we have a highly phonographic sys-
tem for comparison, we included in our analyses
a “phonographized” version of the Japanese data
that treated all tokens as if they were written in
katakana. For example, the morpheme abura “oil”
is typically written as 油, but can be written in
kana asあぶら or (rarely)アブラ; in our phono-
graphized Japanese, abura is only written asアブ
ラ.

For comparison, we also devised a phonogra-
phized version of Sumerian. Since Sumerian
doesn’t have a set of canonical phonographic char-
acters in the way Japanese does, we constructed a
hypothetical phonographized Sumerian using the
following method: for each phonological form in
the corpus, we found the spelling that most fre-
quently mapped to that form. We then rewrote
all instances of those phonological forms such
that they were written with that most common
spelling. This creates a system which would be
considered minimally logographic under Sproat
and Gutkin’s distinct homophones treatment of lo-
gography. Since surface phonetic information isn’t
available for Sumerian, phonological forms were al-
ways treated as the cited dictionary transliterations,
meaning that we treat each Sumerian morpheme as
having only one possible phonological form.

Sumerian was further treated in two separate
ways: the first way included all available (non-
discarded) data, such that graphic form types in-
cluded any character string which could map to
a single morpheme. To get a sense of how logo-
graphic Sumerian is at a character level, we also
ran the analyses on a subset of Sumerian that only
included morphemes which could be written with

a single character (“MonoChar Sumerian”). For
example, MonoChar Sumerian would include mor-
phemes such as i “oil”, but not morphemes such
as šegin “glue”.

4 Results and Discussion

Results are given in Table 1. Even though the
number of systems compared thus far is decid-
edly modest, the results are consistent with our
expectations: for the more logographic systems,
I(G;M) > I(G;P ), while the opposite is true for
the phonographic systems.

The results are most salient for Japanese. The
Sumerian results, while still in-line with expecta-
tions, are weaker in magnitude; whether or not this
is a consequence of the smaller dataset or of an
actual difference in how logographic written Sume-
rian was remains a point of future consideration.
Additional points of comparison will be needed to
get a more complete picture of whether the mag-
nitude of the results (rather than just the valence)
correlates with how logographic a system is.

With respect to the phonographized MonoChar
Sumerian, the fact that I(G;M) = I(G;P ) makes
sense given how phonographized Sumerian was
crafted, and given that, for reasons stated earlier,
each Sumerian morpheme only has one possible
pronunciation form.

It is interesting to note that the scores for phono-
graphized Sumerian are close to zero rather than
strongly negative, i.e. written forms were about as
informative about morpheme identity as they were
about phonological form. This system could thus
be viewed as more logographic than our phonogra-
phized Japanese, despite both systems being exem-
plar minimally logographic system in the distinct
homophones sense. The ability to capture such a
distinction marks another potential advantage of
incorporating morpheme identity when quantifying
logography.

5 Conclusion

The preliminary studies reported here offer a sim-
ple but promising means of measuring how logo-
graphic a writing system is. The inclusion of all
three of phonological forms, graphic forms, and
morphological identity paints a more complete pic-
ture of what it means for a writing system to be lo-
gographic. Ongoing work is focused on expanding
these methods to a wider range of writing systems,
as well as incorporating semantics.

108

kanjidatabase.com


Writing System I(G,M) I(G,P) l Writing System I(G,M) I(G,P) l
Sumerian 6.950 6.819 0.131 Sumerian (Ph) 6.818 6.851 -0.034
Sumerian (MC) 6.228 6.074 0.153 Sumerian (MC, Ph) 6.111 6.111 0.000
Japanese 9.382 8.341 1.041 Japanese (Ph) 8.307 8.734 -0.427

Table 1: Results for the six different writing system variations. MC and Ph are abbreviations for “MonoChar” and
“phonographized”, respectively. See section 3.2 for details on the six variations.

Limitations

The work described here is part of an ongoing
project, and our results, while promising, should
be viewed as preliminary. We only report results
for the writing systems of two languages, which is
a major limitation for a study focusing on typology
and cross-writing system variation; past studies in
this vein (e.g., Marjou (2019); Sproat and Gutkin
(2021); Rosati (2022)) have rightly considered a
wider range of languages. While the systems we
consider (including their “phonographized” ver-
sions) provide good points of comparison, the re-
sults would be strengthened by considering a wider
range of writing systems (which the authors intend
to do).

Finally, it should be noted that the morpholog-
ical parsing done on the data used in this study
may be imperfect, despite the first author’s best
efforts. Limitations in modern understanding of
Sumerian result in some cases that should per-
haps be viewed with some caution. Similarly, for
Japanese, the treatment of all jukugo words as bi-
morphemic may or may not accurately reflect how
such words should be analyzed in Modern Japanese.
It’s also possible that some non-jukugo two-kanji
words were accidentally categorized and parsed
as if they were jukugo. Certain non-jukugo com-
pounds may have also escaped detection.

Given the in-progress nature of this research,
code and (cleaned) datasets have not yet been made
publicly available, but it is the authors’ intention
that these resources will be released in the future.
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