@inproceedings{kang-etal-2023-rong,
title = "融合词典信息的古籍命名实体识别研究(A Study on the Recognition of Named Entities of Ancient Books Using Lexical Information)",
author = "Kang, Wenjun and
Zuo, Jiali and
Jie, Anquan and
Luo, Wenbin and
Wang, Mingwen",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-1.21/",
pages = "229--240",
language = "zho",
abstract = "{\textquotedblleft}古籍命名实体识别对于古籍实体知识库与语料库的建设具有显著的现实意义。目前古籍命名实体识别的研究较少,主要原因是缺乏足够的训练语料。本文从《资治通鉴》入手,人工构建了一份古籍命名实体识别数据集,以此展开对古籍命名实体识别任务的研究。针对古籍文本多以单字表意且存在大量省略的语言特点,本文采用预训练词向量作为词典信息,充分利用其中蕴涵的词汇信息。实验表明,这种方法可以有效处理古籍文本中人名实体识别的问题。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kang-etal-2023-rong">
<titleInfo>
<title>融合词典信息的古籍命名实体识别研究(A Study on the Recognition of Named Entities of Ancient Books Using Lexical Information)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenjun</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiali</namePart>
<namePart type="family">Zuo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anquan</namePart>
<namePart type="family">Jie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenbin</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingwen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Harbin, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“古籍命名实体识别对于古籍实体知识库与语料库的建设具有显著的现实意义。目前古籍命名实体识别的研究较少,主要原因是缺乏足够的训练语料。本文从《资治通鉴》入手,人工构建了一份古籍命名实体识别数据集,以此展开对古籍命名实体识别任务的研究。针对古籍文本多以单字表意且存在大量省略的语言特点,本文采用预训练词向量作为词典信息,充分利用其中蕴涵的词汇信息。实验表明,这种方法可以有效处理古籍文本中人名实体识别的问题。”</abstract>
<identifier type="citekey">kang-etal-2023-rong</identifier>
<location>
<url>https://aclanthology.org/2023.ccl-1.21/</url>
</location>
<part>
<date>2023-08</date>
<extent unit="page">
<start>229</start>
<end>240</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 融合词典信息的古籍命名实体识别研究(A Study on the Recognition of Named Entities of Ancient Books Using Lexical Information)
%A Kang, Wenjun
%A Zuo, Jiali
%A Jie, Anquan
%A Luo, Wenbin
%A Wang, Mingwen
%Y Sun, Maosong
%Y Qin, Bing
%Y Qiu, Xipeng
%Y Jiang, Jing
%Y Han, Xianpei
%S Proceedings of the 22nd Chinese National Conference on Computational Linguistics
%D 2023
%8 August
%I Chinese Information Processing Society of China
%C Harbin, China
%G zho
%F kang-etal-2023-rong
%X “古籍命名实体识别对于古籍实体知识库与语料库的建设具有显著的现实意义。目前古籍命名实体识别的研究较少,主要原因是缺乏足够的训练语料。本文从《资治通鉴》入手,人工构建了一份古籍命名实体识别数据集,以此展开对古籍命名实体识别任务的研究。针对古籍文本多以单字表意且存在大量省略的语言特点,本文采用预训练词向量作为词典信息,充分利用其中蕴涵的词汇信息。实验表明,这种方法可以有效处理古籍文本中人名实体识别的问题。”
%U https://aclanthology.org/2023.ccl-1.21/
%P 229-240
Markdown (Informal)
[融合词典信息的古籍命名实体识别研究(A Study on the Recognition of Named Entities of Ancient Books Using Lexical Information)](https://aclanthology.org/2023.ccl-1.21/) (Kang et al., CCL 2023)
ACL