@inproceedings{huang-etal-2023-ji-yu,
title = "基于深加工语料库的《唐诗三百首》难度分级(The difficulty classification of {\textquoteleft} Three Hundred Tang Poems ' based on the deep processing corpus)",
author = "Huang, Yuyu and
Chen, Xinyu and
Feng, Minxuan and
Wang, Yunuo and
Wang, Beiyuan and
Li, Bin",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-1.43/",
pages = "491--500",
language = "zho",
abstract = "{\textquotedblleft}为辅助中小学教材及读本中唐诗的选取,本文基于对《唐诗三百首》分词、词性、典故标记的深加工语料库,据诗句可读性创新性地构建了分级标准,共分4层,共计8项可量化指标:字层(通假字)、词层(双字词)、句层(特殊句式、标题长度、诗句长度)、艺术层(典故、其他修辞、描写手法)。据以上8项指标对语料库中313首诗评分,建立基于量化特征的向量空间模型,以K-means聚类算法将诗歌聚类以对应小学、初中和高中3个学段的唐诗学习。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2023-ji-yu">
<titleInfo>
<title>基于深加工语料库的《唐诗三百首》难度分级(The difficulty classification of ‘ Three Hundred Tang Poems ’ based on the deep processing corpus)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuyu</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinyu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minxuan</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunuo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beiyuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Harbin, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“为辅助中小学教材及读本中唐诗的选取,本文基于对《唐诗三百首》分词、词性、典故标记的深加工语料库,据诗句可读性创新性地构建了分级标准,共分4层,共计8项可量化指标:字层(通假字)、词层(双字词)、句层(特殊句式、标题长度、诗句长度)、艺术层(典故、其他修辞、描写手法)。据以上8项指标对语料库中313首诗评分,建立基于量化特征的向量空间模型,以K-means聚类算法将诗歌聚类以对应小学、初中和高中3个学段的唐诗学习。”</abstract>
<identifier type="citekey">huang-etal-2023-ji-yu</identifier>
<location>
<url>https://aclanthology.org/2023.ccl-1.43/</url>
</location>
<part>
<date>2023-08</date>
<extent unit="page">
<start>491</start>
<end>500</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于深加工语料库的《唐诗三百首》难度分级(The difficulty classification of ‘ Three Hundred Tang Poems ’ based on the deep processing corpus)
%A Huang, Yuyu
%A Chen, Xinyu
%A Feng, Minxuan
%A Wang, Yunuo
%A Wang, Beiyuan
%A Li, Bin
%Y Sun, Maosong
%Y Qin, Bing
%Y Qiu, Xipeng
%Y Jiang, Jing
%Y Han, Xianpei
%S Proceedings of the 22nd Chinese National Conference on Computational Linguistics
%D 2023
%8 August
%I Chinese Information Processing Society of China
%C Harbin, China
%G zho
%F huang-etal-2023-ji-yu
%X “为辅助中小学教材及读本中唐诗的选取,本文基于对《唐诗三百首》分词、词性、典故标记的深加工语料库,据诗句可读性创新性地构建了分级标准,共分4层,共计8项可量化指标:字层(通假字)、词层(双字词)、句层(特殊句式、标题长度、诗句长度)、艺术层(典故、其他修辞、描写手法)。据以上8项指标对语料库中313首诗评分,建立基于量化特征的向量空间模型,以K-means聚类算法将诗歌聚类以对应小学、初中和高中3个学段的唐诗学习。”
%U https://aclanthology.org/2023.ccl-1.43/
%P 491-500
Markdown (Informal)
[基于深加工语料库的《唐诗三百首》难度分级(The difficulty classification of ‘ Three Hundred Tang Poems ’ based on the deep processing corpus)](https://aclanthology.org/2023.ccl-1.43/) (Huang et al., CCL 2023)
ACL