
Learning on Structured Documents for Conditional Question Answering

Zihan Wang, Hongjin Qian, Zhicheng Dou∗

Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
Engineering Research Center of Next-Generation Intelligent Search and Recommendation, MOE

{wangzihan0527, ian, dou}@ruc.edu.cn

Abstract

Conditional question answering (CQA) is an important task in natural language processing that
involves answering questions that depend on specific conditions. CQA is crucial for domains
that require the provision of personalized advice or making context-dependent analyses, such as
legal consulting and medical diagnosis. However, existing CQA models struggle with generating
multiple conditional answers due to two main challenges: (1) the lack of supervised training data
with diverse conditions and corresponding answers, and (2) the difficulty to output in a complex
format that involves multiple conditions and answers. To address the challenge of limited super-
vision, we propose LSD (Learning on Structured Documents), a self-supervised learning method
on structured documents for CQA. LSD involves a conditional problem generation method and
a contrastive learning objective. The model is trained with LSD on massive unlabeled structured
documents and is fine-tuned on labeled CQA dataset afterwards. To overcome the limitation of
outputting answers with complex formats in CQA, we propose a pipeline that enables the gen-
eration of multiple answers and conditions. Experimental results on the ConditionalQA dataset
demonstrate that LSD outperforms previous CQA models in terms of accuracy both in providing
answers and conditions.

1 Introduction

Recently, question answering (QA) has gained increasing interest in the field of Natural Language Pro-
cessing. Various types of question answering tasks, such as knowledge-based QA (Cui et al., 2017),
open domain QA (Kwiatkowski et al., 2019), and multi-hop QA (Yang et al., 2018), have been exten-
sively studied. Among them, conditional question answering (CQA) (Sun et al., 2022a) is becoming
increasingly important in various contexts, such as medical diagnosis, legal consultation, financial analy-
sis, and more. Unlike the traditional question answering problem that only accepts a question and returns
an answer, CQA involves understanding a complex and lengthy document, finding all possible answers
under different conditions, and determining under what condition the answer is applicable. Figure 1
shows an example for CQA, where the answer could be different when the questioner is under different
conditions. The CQA task includes providing potential answers “yes” and “no” and their corresponding
conditions based on the given question and scenario.

Previous studies on CQA can be broadly categorized into two groups: extractive and generative meth-
ods. Extractive methods (Ainslie et al., 2020) (Sun et al., 2021) extract the most relevant span from a
document as answers and conditions. In contrast, generative methods (Izacard and Grave, 2021) (Sun
et al., 2022b) use a generative model to generate answers along with their corresponding conditions di-
rectly. However, current CQA models face two common challenges. Firstly, the supervised data for
CQA is limited and expensive to obtain. Unlike traditional QA datasets, CQA requires specific annota-
tions that include scenarios, answers, and conditions, making the data collection process more extensive
and time-consuming. Secondly, current CQA models are unable to provide multiple conditional answers
in a coherent and controlled format. Extractive methods for CQA are mostly only able to provide a
single answer or condition for a question, limiting their ability to produce multiple conditional answers.

*Corresponding author.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

583

Computational Linguistics

Scenario: My partner earn less than £50,000. I also
earn less than £50,000 but receiving a dividend.
My pay and dividend when added together will be
more than £50,000.
Question: Will I be eligible to apply for child
benefit ?

Document:

 Section 1: How it works
 You get Child Benefit if you’re responsible for bringing up a child
who is:
 a) under 16,
 b) under 20 if they stay in approved education or training.
Section 2: What you’ll get
 · You can get Child Benefit if your (or your partner’s) individual
income is over £50,000, but you may be taxed on the benefit.
 · If your partner’s income is also over £50,000 but yours is higher,
you’re responsible for paying the tax charge.
 · Once you earn £60,000 you lose all of your benefit through tax.
Section 3: Eligibility
...

Question:

Answer:
Answer: Yes
Conditions: you’re responsible for bringing up a
child who is: a) under 16, b) under 20 if they stay
in approved education ...
Answer: No
Conditions: you earn £60,000

Document:

Figure 1: An example for CQA. The right side is a snapshot of a document discussing the policy of
claiming Child Benefits. The green text span is the condition that has been satisfied. The yellow and
blue text spans are the conditions for “Yes” and “No” respectively.

Conversely, generative methods may generate inconsistent and incoherent answers and conditions due to
their inherent randomness, especially when generating multiple conditional answers. These challenges
underscore the need for improved approaches to effectively handle the generation of multiple conditional
answers in CQA.

In order to solve the problem of limited supervision, we propose a self-supervised learning method
called LSD (Learning on Structured Documents). LSD consists of two main components: conditional
question generation and contrastive learning. For conditional question generation, our intuition is that if
a more precise context that contains sufficient information to answer a conditional question can be passed
to the QA model, then the conditional answers given through this context will have high accuracy and
can be used for subsequent training. To achieve this goal, we propose a selective extraction process that
extracts parts of a structured document that are likely to be able to answer a conditional question. For
a certain selected part of the document, we use a state generator to generate a conditional question and
user scenario, and use a label generator to generate highly believed answers. For contrastive learning,
we use four methods of document perturbation to perturb the structure of the document, including node
reordering, repetition, masking, and deletion. These methods will change the content of the document
but have little impact on its semantics. We design a contrastive learning objective that encourages the
model to give similar representations of document corresponding sentences before and after perturbation,
enabling the model to learn effective semantic representations from complex documents and helping with
conditional question answering.

To solve the problem of complex output formats, we propose a pipeline that can generate multiple
answers and their corresponding conditions. Our pipeline extracts answer spans from sentences, generat-
ing query vectors for each answer and key vectors for each candidate condition. Afterward, we calculate
the query-key matching score for each answer and condition, and choose the best matches as the final
output. Unlike existing methods, our pipeline utilizes the structure of documents to generate questions
and conditions, and can generate controllable multiple conditional answers.

To verify the effectiveness of our method, we conduct experiments on the conditionalQA dataset (Sun
et al., 2022a). The experimental results showed that our method outperformed all baseline models in
terms of answer and condition accuracy, indicating that our method can provide accurate answers and
corresponding conditions to effectively answer conditional questions.

In summary, our contributions are three-fold:
(1) We propose LSD, a self-supervised learning method for structured documents based on problem

generation and contrastive learning, which effectively solves the problem of insufficient supervision for
conditional question answering;

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

584

Computational Linguistics

(2) We propose a pipeline that generates a query and key vectors for candidate answers and conditions
and matching similarity for them, which can provide controllable conditional answers;

(3) The experimental results indicate that our method can answer conditional questions more effec-
tively compared to previous conditional question answering methods.

2 Related Work

2.1 Conditional Question Answering
Conditional question answering (CQA) has been studied using extractive and generative methods. Ex-
tractive methods, such as ETC (Ainslie et al., 2020) and DocHopper (Sun et al., 2021), use two separate
models to extract answers and conditions. ETC pipeline uses two separate encoders to extract answers
from supporting documents and identify conditions. DocHopper, on the other hand, iteratively attends to
different sentences to predict evidences, answers and conditions step-by-step. Generative methods such
as FiD (Izacard and Grave, 2021) use a single generative model to generate answers with conditions.
FiD splits documents into sentences, encodes the sentences separately, and jointly decodes all encoded
representations to generate answers with conditions. TReasoner (Sun et al., 2022b) is a discriminative-
generative model that first checks whether each sentence could be a condition and then generates the
answer with the context. However, these models suffer from several limitations, including a lack of
sufficient supervised data, which can lead to overfitting and poor reasoning capabilities. Furthermore,
pipeline designs have a limited ability to generate multiple hybrid-type answers and conditions. There-
fore, improving the performance of CQA through a suitable pipeline is crucial, and our work aims to
address these challenges.

2.2 Self-Supervised Learning
Self-supervised learning methods have gained significant traction in recent years, as they allow models
to learn powerful representations without relying on large amounts of labeled data. Various language
models, such as GPT-3 (Brown et al., 2020), BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019),
BART (Lewis et al., 2020), have leveraged unsupervised pre-training to achieve remarkable results on
extensive natural language tasks. There have also been multilingual approaches like XLM (Conneau et
al., 2020), unsupervised machine translation (Lample et al., 2018), question generation techniques such
as QA-based multiple-choice question generation (Le Berre et al., 2022), Web-pretraining (Guo et al.,
2022), and deep reinforcement learning (Chen et al., 2019). On the other hand, contrastive learning has
emerged as a powerful method for representation learning, with models like SimCSE (Gao et al., 2021),
ELECTRA (Clark et al., 2020), DPR-QA (Karpukhin et al., 2020) and XMOCO (Yang et al., 2021)
achieving state-of-the-art results across various natural language understanding and generation tasks by
learning to distinguish between semantically similar and dissimilar inputs.

3 Preliminaries: Structured Documents

Structured documents contain complex and rich structural information, which is beneficial for learning
conditional question answering. In this work, our model is trained on HTML documents, a widely used
type of structured document. HTML documents are easily accessible and often contain rich semantic
information, including tables, lists, and more. The underlying structure of an HTML document is rep-
resented by the Document Object Model (DOM) tree, wherein the entire document constitutes the root
node, and individual elements are organized as child nodes within the hierarchy.

A diagram of a DOM tree is shown in Figure 2. Since HTML does not always demonstrate a clear
hierarchy among elements, we adopt a tag precedence order to convert HTML documents into trees, thus
making the relationships between elements explicit. We order commonly used tags as: ⟨title⟩ - ⟨h⟩ - ⟨p⟩
- ⟨li⟩ / ⟨tr⟩. Each node’s parent is the closest preceding higher-level node. For example, the ⟨h1⟩ tag is a
section title and is the parent of ⟨h2⟩ subsection titles. The ⟨h2⟩ tag is a subheading and is the parent of
⟨p⟩ text elements. We omit tags that do not contain important information, such as ⟨b⟩ (bold),⟨i⟩ (italic),
and ⟨a⟩ (hyperlink) tags. With our approach, each sentence within the HTML document can be clearly
represented as a node in the document tree.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

585

Computational Linguistics

Claiming child benefit

<title>claiming child benefit</title>
<h1>How it works</h1>
 <p>You get Child Benefit if you’re ... </p>
 under 16
 under 20 if they stay in approved education or training.
<h1> What you’ll get </h1>
 <p> You can get Child Benefit if your (or your partner’s) individual income is
over £50,000, but you may be taxed on the benefit. </p>
 <p> If your partner’s income is also over £50,000 but yours is higher, you’re
responsible for paying the tax charge. </p>
 <p> Once you earn £60,000 you lose all of your benefit through tax. </p>
<h1> Eligibility </h1>
...

 Tl

 h1

 h1

 h1

 p

 p

 li

 li

Eligibiltiy

How it works

 p

 p

Figure 2: An example of the schematic diagram of a DOM tree. HTML tags can be used to create a
hierarchy of sentences in a document, with some tags considered more senior than others. The nearest
former superior tag of a node is its parent node.

Figure 3: An overall illustration of our approach.

To compile a corpus of structured documents for the CQA task, we consider the following criteria:

• Logical Structure: Documents should possess clear logical structures, including specific conditions
and provisions, to facilitate conditional reasoning in the CQA task

• Standardized Format: Documents should adhere to a standardized HTML format with minimal
noise, such as advertisements.

• Data Quality: The corpus should comprise formal, authoritative, and reviewed documents to ensure
data reliability and accuracy.

Based on these criteria, we propose to train our model to learn on national government websites,
which are known for their formal and authoritative nature. We conduct web scraping to gather documents,
filtering for policy documents, laws and regulations, and administrative guidelines, as they tend to exhibit
clear logical structures and contain specific conditions relevant to the CQA task. For additional details
regarding the construction of the corpus, which is referred to as DATASET, please refer to Appendix A.

4 Our Approach

In this section, we will introduce our proposed method LSD, which includes a conditional question gen-
eration module and a contrastive learning method for self-supervised learning on structured documents.
After that, we will illustrate our pipeline that generates multiple conditional answers by calculating the
matching score of answers and candidate conditions with query and key vectors. The overall process of
our method is shown in Figure 3.

4.1 Decomposed Conditional Question Generation with Document Extraction
Let the conditional question generator be G and the conditional question answering model be M . Recall
that the intuition of our approach is that if we can provide G with a more precise context with suffi-
cient information for a conditional question, then G can answer the question correctly, and the obtained
question-answer data can be used to train M . To achieve this, we adopt a two-step method: selective
extraction and question generation. A specific overview of conditional question generation is in Algo-
rithm 1.

4.1.1 Selective Extraction
Selective extraction aims for precise context to generate conditional questions. The main requirement for
the selected context is to contain sufficient information to answer a conditional question. To guide our

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

586

Computational Linguistics

Algorithm 1 Conditional Question Generation
Require: Structured doc set DATASET
Ensure: Cond. question q, scenario sc, answer a, condition c

1: procedure QUESTIONGEN(DATASET)
2: Init: state gen. GS , label gen. GL

3: Sample doc D from DATASET
4: Select non-leaf text node s ∈ D as potential answer
5: Construct extracted D by selecting anc., child., sibl., and sibl. child. of s
6: Gen. question q, scenario sc using GS(D)
7: Gen. cond. answers A = (ai, ci) using GL(q, sc,D)
8: end procedure

answers conditions

leaf node 86.93% 92.53%
text node 92.49% 98.33%

(a) Features of answers and condition nodes:
whether they are leaf nodes or text nodes.

a-a pairs c-c pairs a-c pairs

sibling-sibling 66.55% 53.67% -

parent-child - - 39.59%

(b) Features of answer and condition pairs: answer pairs (a-a), condi-
tion pairs (c-c), and answer-condition pairs (a-c).

Table 1: Statistics of the ConditionalQA train dataset for guiding selective extraction.

extraction strategy, we analyzed the ConditionalQA dataset, which also leverages structural documents
for the CQA task. (Table ??). We analyzed the occurrence and correlations between answers and con-
ditions, and observed several features: (1) answers and conditions are mainly located in leaf text nodes,
such as ⟨p⟩ and ⟨li⟩ nodes; (2) answers are usually siblings; (3) conditions for extractive answers may be
their child nodes; (4) sibling nodes with the same parent node can serve as parallel answers.

Guided by these insights, our extraction method involves the following steps. Firstly, we randomly
select a non-leaf text node as a potential answer, because conditional answers are most likely to be such
nodes. Then, we then extract its ancestors, children, siblings, and their children from the document
tree, because: (1) ancestor nodes provide the macro context of higher-level topics; (2) child nodes offer
potential conditions; (3) siblings, along with their children, provide parallel answers. Afterward, we
obtain an extracted document that enables generating conditional questions aligned with the original text
and answerable with accuracy.

4.1.2 Question Generation
The question generation approach are decomposed into two tasks: state generation and label generation.
The first task is to generate question q and scenario sc given the extracted structured document D, and the
second task is to generate highly accurate conditional answers A = {(a1, c1), (a2, c2), . . .}, where ai is
an answer and ci denotes the corresponding conditions. We leverage a state generator GS , a sequence-to-
sequence (Sutskever et al., 2014) generative model to provide diverse content, and a conditional answer
extraction model GL, an extractive model to provide accurate answers. More information on the network
structure and training process of G can be found in Appendix C.

In general, by leveraging structured documents for precise document extraction and supervised gen-
erator training, we ensure that we can identify the locations of potential answers and conditions within
structured documents, thereby achieving the generation of high-quality conditional questions and ensur-
ing the correct answering of questions for subsequent training.

4.2 Purturbation-based Document Contrastive Learning

Our contrastive learning approach on structured documents involves the following steps: document per-
turbation, positive sample generation, and contrastive loss computation. At the training stage, the com-
puted loss is added to the total training loss for optimization.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

587

Computational Linguistics

Operation Description Advantages
Node masking Mask node with [MASK] of same length Focus on structure & context
Node deletion Delete non-root node & descendants Learn node dependencies & impor-

tance
Node cloning Clone node & descendants as another

child
Identify semantically similar elements

Node shuffling Shuffle child nodes within parent Understand impact of node order

Table 2: Basic operations for Contrastive Learning.

4.3 Document Perturbation
To perturb the original document D and obtain a perturbed document D̂, we introduce a set of basic
operations T that can be applied to the document structure. These operations, detailed in Table 2, include
node masking, node deletion, node cloning, and node shuffling. Assume the original document D has
a title s0 and m nodes (n1, n2, ..., nm). Starting with the original document D0, we apply k random
operations from the set T to generate the perturbed document D̂ = Dk. Each operation Ti is applied as
Ti(Dj) = Dj+1 for any Ti selected from T .

4.3.1 Positive Pair Generation
We get positive pairs from D and D̂ for loss calculation. For the ith node n′

i in the perturbed document D̂,
there is a corresponding source node nki in the original document D. We form positive pairs using tags
t′i and tki that serves as global tokens of the nodes, which effectively convey node type and semantics
despite structural changes during document perturbation.

4.3.2 Contrastive Loss Computation
We use the InfoNCE loss LCL(D, D̂) for contrastive learning, defined as:

LCL(D, D̂) =
m′∑
i=1

esim(t′i,tki)

esim(t′i,tki) +
∑
t−ki

e
sim(t′i,t

−
ki
)
, (1)

where m′ is the total number of nodes in D̂, t′i and tki represents a positive pair, and t−ki represents tags
of any nodes other than nki in D. sim computes the similarity between tags using the dot product of
their hidden states from a neural document encoder, detailed in 4.3. The loss encourages high similarity
between each t′i and tki while minimizing similarity with negative tags t−ki .

In general, our contrastive learning approach enables self-supervised training by perturbing structured
documents to construct contrastive pairs. By reinforcing node correspondence in structured documents,
the method supports conditional question answering models in accurately capturing semantic connec-
tions between conditions and answers in complex contexts.

4.4 Pipeline for Answering Conditional Questions
Our proposed pipeline, illustrated in Figure 4, comprises three steps: (1) document encoding, (2) mul-
tiple answer extraction, (3) condition determination. An auxiliary task Evidence Node Finding is added
when necessary (Appendix D).

4.4.1 Document Encoding
In the document encoding process, we first construct the input sequence, which consists of special tokens
“[yes]” and “[no]” document content, question, and scenario. The special tokens are used to represent
affirmative/negative answers. We represent the input sequence as follows:

Input = “[yes][no]document : ” +D

+ “question : ” + q + “Scenario : ” + sc,

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

588

Computational Linguistics

...

Transformer Encoder

Condition Classification Layer

Qi Qk Kj

+ Evidence
Classifier

<yes> ...<no> document: <h1> How it ... question:

...<yes> ...<no> document: <h1> How it <p>... ... question: ...

...

<p> If ...

<p> ... <p>You If ...

- Span
Classifier

-Node
Classifier

You

-

Condition
Matching

Figure 4: Our pipeline to answer conditional questions.

where [yes] and [no] are special tokens for yes / no answers. It is passed to E returning hidden states:

Output = Transformer(Input)

= h[yes], h[no], ...hti , haij , ...,

where h[yes], h[no] are hidden states of special tokens, hti represents hidden state of the tag of the ith node
in the document, and haij represents hidden state of the ith node’s jth token. These hidden states are
used by the multi-layer perceptron (MLP) classifiers PS , PN , PV to calculate probabilities for answer
extraction and condition determination.

4.4.2 Multiple Answer Extraction
To simplify the answer extraction process, we assume that a node has no more than one answer, and we
retain only one answer if multiple exist. Since it’s rare that a node has multiple answers, this process
simplifies extraction by identifying potential answer nodes and determining the answer’s start and end
positions within the node.

We use two classifiers: a node classifier PN to identify answer-containing nodes (or yes/no tokens)
and an answer span classifier PS to locate the answer’s position within selected nodes.

For node classification, we set:

pNyes/no = PN (h[yes]/[no]),

pNi = PN (hti),
(2)

where p represents probabilities given by these classifiers. From the above, we can obtain yes/no answers
and sentences containing extractive answers from node classification results. At training, We set a Binary
Cross Entropy (BCE) loss for node classification:

Lbool =
BCE(pNyes, INyes) + BCE(pNno, INno)

2
, (3)

Lextractive =
1

m

m∑
i=1

BCE(pNi , INi), (4)

LN = Lbool + Lextractive, (5)

where I represents boolean labels to indicate whether the given element satisfies some requirements, e.g.,
INi represents whether the ith node is a potential answer node, assuming totally m nodes.

For answer span localization, we adopt a span locator PS for any positive nodes of the above process
by:

pSi
j1, p

Si
j2, ... = PSi(a

A
j1), PSi(a

A
j2), ...,

(i ∈ (1, 2), j ∈ (1, 2, ..., k)),
(6)

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

589

Computational Linguistics

where PS1 , PS2 predict start / end of the answer, aAju denotes the uth token of the jth predicted node nA
j

to have an answer, and pSi
ju are the predicted probabilities. At training, we adopt a span loss:

LS =
1

2kr

2∑
i=1

kr∑
j=1

l
nA
j∑

u=1

1

lnA
j

BCE(pSi
ju, I

Si
ju), (7)

where kr represents the real count of answers and lnA
j

represents the number of tokens of nA
j .

4.4.3 Condition Determination
To align with the document structure, we define that a potential condition must be a node in the document.
Therefore, the condition determination process is to predict the probability of a node being the condition
of an answer. To model this, we assign query vectors to answers, and key vectors to nodes:

hQi = WQ ReLU(WHhi),

hKj = WK ReLU(WHhj),
(8)

where hi, hj denotes the hidden state of ith answer and jth sentence. WH ,WQ,WK are transformation
matrices, hQi , h

K
j denotes the query vector of ith answer and the key vector of jth sentence.

Then, we calculate on conditions:

pCij = sigmoid(hQi · hKj), (9)

where pCij denotes the probability of jth node to be the condition of the ith answer. We adopt the following
loss for training:

LC =
1

krm

kr∑
i=1

m∑
j=1

BCE(pCij , ICij). (10)

From the above process, we can fuse the representations of answers and conditions to model the
condition determination process. Therefore, our pipeline has resolved the conditional question answering
task. At training, we linearly mix up all losses mentioned:

Ltrain = LN + LS + LC + LCL. (11)

5 Experiments

5.1 Datasets and Evaluation Metrics

To construct a dataset of structured documents, we scrape web pages from English websites. Our data
collection process is detailed in Appendix A. To evaluate LSD’s effectiveness on CQA, we conduct
experiments on ConditionalQA (Sun et al., 2022a) dataset. It consists of extractive questions, yes / no
questions, and not-answerable questions. The task is to find all answers with corresponding conditions
on a structured document based on the given questions and scenarios.
Evaluation To evaluate model performance, we adopt the metrics of EM / F1 and EM / F1 with condi-
tions, which are introduced in the ConditionalQA (Sun et al., 2022a) dataset. EM / F1 are conventional
metrics, and EM / F1 with conditions jointly measures the correctness of the answer and the predicted
conditions. For not answerable questions, EM and F1 are 1.0 if and only if no answer is predicted.

5.2 Results

We compared the LSD model with all of the baseline models for CQA. To evaluate the model’s perfor-
mance in both answering questions and providing conditions, we present results for the entire Condition-
alQA dataset and its subset of conditional questions.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

590

Computational Linguistics

Yes / No Extractive Conditional Overall
EM / F1 w/ conds EM / F1 w/ conds EM / F1 w/ conds EM / F1 w/ conds

ETC-pipeline 63.1 / 63.1 47.5 / 47.5 8.9 / 17.3 6.9 / 14.6 39.4 / 41.8 2.5 / 3.4 35.6 / 39.8 26.9 / 30.8
DocHopper 64.9 / 64.9 49.1 / 49.1 17.8 / 26.7 15.5 / 23.6 42.0 / 46.4 3.1 / 3.8 40.6 / 45.2 31.9 / 36.0
FiD 64.2 / 64.2 48.0 / 48.0 25.2 / 37.8 22.5 / 33.4 45.2 / 49.7 4.7 / 5.8 44.4 / 50.8 35.0 / 40.6
TReasoner 73.2 / 73.2 54.7 / 54.7 34.4 / 48.6 30.3 / 43.1 51.6 / 56.0 12.5 / 14.4 57.2 / 63.5 46.1 / 51.9

LSD (ours) 71.6 / 71.6 51.6 / 51.6 39.9 / 56.4 31.6 / 43.8 57.3 / 61.8 21.4 / 25.1 58.7 / 66.2 45.0 / 50.5

Table 3: The results of our experiments on the ConditionalQA dataset. “EM / F1” shows the standard EM
/ F1 metrics based on the answer span only. “w/ conds” shows the conditional EM / F1 metrics introduced
in (Sun et al., 2022a). The results for the baseline models are taken from (Sun et al., 2022a) (Sun et al.,
2022b)

Answer Conditions
(w / conds) (P / R / F1)

ETC-pipeline / /
DocHopper / /
FiD 3.2 / 4.6 98.3 / 2.6 / 2.7
FiD (cond) 6.8 / 7.4 12.8 / 63.0 / 21.3
TReasoner 10.6 / 12.2 34.4 / 40.4 / 37.8

LSD (ours) 21.4 / 25.1 69.3 / 39.4 / 50.2

Table 4: Experimental results on the subset of questions in ConditionalQA (dev) with conditional an-
swers. Results of the baseline models are obtained from (Sun et al., 2022a) (Sun et al., 2022b). The
first two models “do not provide any conditions when they achieved the best performance on the overall
dataset”.

5.2.1 Main Result
Table 3 shows the results on the entire conditionalQA dataset. The result indicates that:

(1) LSD outperforms all baselines in EM / F1 and conditional EM / F1 for extractive and conditional
questions, demonstrating the effectiveness of our conditional question generation and contrastive learn-
ing.

(2) LSD performs not as well as TReasoner in Yes / No questions. We speculate that its attributed
to LSD inclination to provide conditional answers due to training with our question generation system
(Appendix B), which is penalized by the evaluation metric in (Sun et al., 2022a).

(3) In “w/ conds” overall results, LSD performs less well than TReasoner, potentially due to TRea-
soner’s specialized multi-hop reasoning for condition determination, which may warrant further enhance-
ment in LSD.

5.2.2 Conditional Accuracy
To further evaluate our model’s ability to provide conditions for answers, we additionally report results
on the subset of conditional questions in Table 4. We evaluate the results using the “w/ conds” metric,
as well as precision, recall, and F1 of retrieved conditions for conditional answers. The result shows that
our method significantly outperforms the current model in providing conditions.

6 Analysis

In this section, we conduct an ablation study to investigate the impact of our document modeling designs
and contrastive learning. We further analyze the question generation process by evaluating the quality of
generated questions and the accuracy of generated labels.

6.1 Ablation Study
We conduct an ablation study on the dataset to investigate the impact of conditional question generation
and contrastive learning. Results on the dev set of ConditionalQA in Table 5 show that both conditional

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

591

Computational Linguistics

Yes / No Extractive Conditional Overall
EM / F1 w/ conds EM / F1 w/ conds EM / F1 w/ conds EM / F1 w/ conds

LSD (ours) 71.6 / 71.6 51.6 / 51.6 39.9 / 56.4 31.6 / 43.8 57.3 / 61.8 21.4 / 25.1 58.7 / 66.2 45.0 / 50.5
w/o CL 69.6 / 69.6 49.9 / 49.9 38.0 / 55.7 29.8 / 43.2 54.6 / 59.1 19.4 / 23.2 56.9 / 64.8 43.3 / 49.4
w/o QG 67.9 / 67.9 47.1 / 47.1 37.2 / 54.9 29.0 / 42.5 54.0 / 58.6 17.8 / 21.6 55.7 / 63.7 41.6 / 47.6

Table 5: Ablation study of our model on the dev set of ConditionalQA.

ROUGE (%) BLEU (%)

question 42.07 38.19
scenario 39.57 41.65

(a) Evaluation on state generator’s output quality.

Yes / No Extractive Conditional Overall

EM / F1 (%) 79.6 / 79.6 51.2 / 67.2 69.9 / 73.8 67.8 / 75.0
w / conds (%) 50.8 / 50.8 38.9 / 51.3 33.4 / 35.5 47.9 / 53.4

(b) Evaluation on accuracy of generated labels.

Table 6: Evaluation on our question generation method.

question generation and contrastive learning are of importance, as removing either of them causes a
significant performance drop in the final results.

6.2 State Generator’s Output Quality
We use BLEU and ROUGE-L to measure the state generator’s generated questions and scenarios’ sim-
ilarity to questions and scenarios from the evaluation dataset for question generation, QG-dev (detailed
in Appendix C). The results are shown in Table 6a. Some examples are shown in Appendix E.

6.3 Label Generator’s Output Accuracy
We evaluate our label generator’s capability in providing accurate answers for questions given the ex-
tracted documents from QG-dev, shown in Table 6b. The result shows that the label generator can
provide accurate answers given a selected context from the document.

7 Conclusion and Limitations

In this paper, we present Learning on Structured Documents (LSD), a self-supervised learning method
for conditional question answering. LSD uses a conditional question generation method to leverage
massive structured documents while improving conciseness, and applies contrastive learning to learn
effective semantic representations from complex documents. We further propose a pipeline that could
generate multiple answers and conditions to better handle the CQA task. We verify the effectiveness of
the proposed method on the ConditionalQA dataset. For future work, we plan to investigate how to better
generate conditional questions and improve our model’s performance in providing correct answers.

Despite the effectiveness of LSD in utilizing the structure of massive unsupervised data, there are still
some potential points for improvement. One issue is that the state generator is only trained on answerable
questions, leading to a distribution bias that there might be unanswerable questions. In addition, our
pipeline can still not handle the position where a sentence has more than one answer, which limits our
model’s performance for broader scenarios. We will resolve these issues in future work.

Acknowledgements

This work was supported by National Natural Science Foundation of China No. 62272467, Beijing Out-
standing Young Scientist Program No. BJJWZYJH012019100020098, and Public Computing Cloud,
Renmin University of China. The work was partially done at Beijing Key Laboratory of Big Data Man-
agement and Analysis Methods.

References
Joshua Ainslie, Santiago Ontañón, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham, Anirudh Ravula,

Sumit Sanghai, Qifan Wang, and Li Yang. 2020. ETC: encoding long and structured inputs in transformers.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

592

Computational Linguistics

In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages
268–284. Association for Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The long-document transformer. CoRR,
abs/2004.05150.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. 2019. Natural question generation with reinforcement learning
based graph-to-sequence model. CoRR, abs/1910.08832.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020. ELECTRA: Pre-training text
encoders as discriminators rather than generators. In ICLR.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán,
Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual repre-
sentation learning at scale. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 8440–8451. Association for Computational Linguistics.

Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang, and Wei Wang. 2017. KBQA:
learning question answering over QA corpora and knowledge bases. Proc. VLDB Endow., 10(5):565–576.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume
1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive learning of sentence embeddings.
In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November, 2021, pages 6894–6910. Association for Computational
Linguistics.

Yu Guo, Zhengyi Ma, Jiaxin Mao, Hongjin Qian, Xinyu Zhang, Hao Jiang, Zhao Cao, and Zhicheng Dou. 2022.
Webformer: Pre-training with web pages for information retrieval. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’22, page 15021512,
New York, NY, USA. Association for Computing Machinery.

Gautier Izacard and Edouard Grave. 2021. Leveraging passage retrieval with generative models for open domain
question answering. In Paola Merlo, Jörg Tiedemann, and Reut Tsarfaty, editors, Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, EACL
2021, Online, April 19 - 23, 2021, pages 874–880. Association for Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for open-domain question answering. In Bonnie Webber,
Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 6769–6781. Association
for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kel-
cey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural questions: a
benchmark for question answering research. Trans. Assoc. Comput. Linguistics, 7:452–466.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

593

Computational Linguistics

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. 2018. Unsupervised machine
translation using monolingual corpora only. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

Guillaume Le Berre, Christophe Cerisara, Philippe Langlais, and Guy Lapalme. 2022. Unsupervised multiple-
choice question generation for out-of-domain Q&A fine-tuning. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pages 732–738, Dublin, Ireland, May.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin
Stoyanov, and Luke Zettlemoyer. 2020. BART: denoising sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R.
Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692.

Haitian Sun, William W. Cohen, and Ruslan Salakhutdinov. 2021. End-to-end multihop retrieval for compositional
question answering over long documents. CoRR, abs/2106.00200.

Haitian Sun, William W. Cohen, and Ruslan Salakhutdinov. 2022a. Conditionalqa: A complex reading com-
prehension dataset with conditional answers. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio,
editors, Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 3627–3637. Association for Computational
Linguistics.

Haitian Sun, William W. Cohen, and Ruslan Salakhutdinov. 2022b. Reasoning over logically interacted conditions
for question answering. CoRR, abs/2205.12898.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks.
In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3104–3112.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. In Ellen
Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages
2369–2380. Association for Computational Linguistics.

Nan Yang, Furu Wei, Binxing Jiao, Daxing Jiang, and Linjun Yang. 2021. xMoCo: Cross momentum contrastive
learning for open-domain question answering. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6120–6129, Online, August. Association for Computational Linguistics.

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James
Demmel, Kurt Keutzer, and Cho-Jui Hsieh. 2020. Large batch optimization for deep learning: Training
BERT in 76 minutes. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

594

Computational Linguistics

Appendix

A DATASET curation details

UK US CA Overall

count 17,881 577 12,115 30,573
Avg. w 709 179 2,538 1423
Avg. s 54 26 128 83
Avg. w/s 12.9 6.9 19.8 17.0
Tag dist. 14:45:41 38:40:22 10:40:50 12:41:57

Table 7: Statistics of our scraped dataset. We present document count, average document length mea-
sured by word (Avg. w) and sentences (Avg. s), average sentence length (Avg w/s) and tag distribution
(h:p:li/tr).

DATASET contains a total of 30,573 documents, approximately 362MB in size (1× 108 tokens). The
statistics of our scraped dataset are shown in Table 7. The data curation process are detailed below.

A.1 Data Acquisition

To build DATASET, we scrape web pages from government websites: https://www.gov.uk,
https://www.ca.gov, and https://www.usa.gov, as they have professional English material and have a
massive number of well-structured documents, such as policies, regulations, and proposals.

A.2 Data Filtering

Page Category Filtering We use automated web scraping to categorize pages on the selected govern-
ment websites based on URL. We retaine only pages related to policy documents, regulatory provisions,
administrative guidelines, etc.
Content Validity Check We further examined the retained pages to exclude invalid, redundant, or dupli-
cate documents.

A.3 Data Cleaning

Tag Normalization We use automated cleaning and standardization tools to fix irregular HTML tags and
attributes in documents, close unclosed tags, and standardize attribute values.
Irrelevant Content Removal We remove nodes without text, advertisements, hyperlinks, images, videos,
and other irrelevant information, retaining textual content for better model understanding of document
structure and content.
Node Filtering We filtere nodes containing document content, i.e., <h1> to <h6> (headings), <p> (para-
graphs), (list items), <tr> (table rows), etc.
DOM Tree Construction We use an HTML parser to parse the filtered nodes and construct the Document
Object Model (DOM) tree following the method proposed in section 3.

A.4 Dataset Splitting

We split the processed dataset into training and validation sets for model training and performance eval-
uation with a ratio of 4:1.

B Question Generation details

We present the statistics to show our question generation module’s behavior on the scraped augmentation
corpus. We randomly generate 1,000 samples with the QG module and present results in Table 8.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

595

Computational Linguistics

Our Dataset Yes / No Extractive Conditional

Percentage 52.4 47.5 45.1
Avg. answer 1.36 1.46 1.86
Avg. condition 0.89 1.04 2.14
Avg. context 292 350 413
Avg. document 1,467 1,260 1,525

ConditionalQA Yes / No Extractive Conditional

Percentage 51.1 44.6 23.4
Avg. document 1358

Table 8: Statistics of our generated dataset and ConditionalQA dataset in comparison. We present the
percentage of every type of questions, average answer count, condition count, condition count, context
length and document length (by word) if applicable.

C Implementation Details

C.1 Network Structure and Setup

For the conditional question generator G: we adopt BART 1 (Lewis et al., 2020), a seq-to-seq transformer
for state generator GS ; for label generator GL, we adopt the same setting of M , as detailed below.

For conditional question answering model M : We adopt Longformer 2 (Beltagy et al., 2020), a Trans-
former designed for long complex context, for the neural document encoder E; for MLP classifiers
PN , PS , PV , we set num_layers=2 and dim_hidden_states=768; for transformation matrices, we set
dim(WH) = (3072, 768) and dim(WQ) = Dim(WK) = (768, 3072).

To setup Longformer, we set the HTML tags as its global tokens. For extremely long documents
beyond length limit, we chunk them into pieces with overlap and aggregate predicted answers from these
pieces.

C.2 Training Conditional Question Generator

To train conditional question generator G, we use 80% data of the ConditionalQA train set, named QG-
train, and the rest for evaluation, named QG-dev. We take the descendants and ancestors of all given
evidence sentences from the document for extraction. We train G on QG-train for 10 epochs, adopting
the Adam (Kingma and Ba, 2015) optimizer, setting learning rate to 3e-5 and batch size to 32.

C.3 Training Conditional Question Answerer

Training conditional question answering model M consists of two stages. In the self-supervised stage,
we train M on our scraped dataset for 20 epochs, with a newly generated question and answer data for
every epoch. We use the LAMB (You et al., 2020) optimizer for this stage, with the learning rate set to
1e-4 and the batch size set to 256. In the supervised stage, we adopt the Adam (Kingma and Ba, 2015)
optimizer, setting the learning rate to 3e-5 and batch size to 32, and trained on ConditionalQA train set
for 50 epochs. For both stages of training, we adopt a warm-up episode of 10% proportion with linear
learning rate decay. For document chunking, We set the maximum of document length to 2000 to fit into
the GPU memory, with an overlap of 100 tokens. For contrastive learning, we adopt k=5.

D Auxiliary Task: Evidence Node Finding

To improve model reasoning for yes / no questions, we introduce an auxiliary task to identify evidence
nodes supporting the answer. The task is jointly trained with others and is active when datasets provide
evidence information. We use an evidence classifier PV for this task and define:

pVi = PV (hti), (12)

1https://huggingface.co/facebook/bart-large
2https://huggingface.co/allenai/longformer-large-4096

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

596

Computational Linguistics

LE =
1

m

m∑
i=1

BCE(pVi , IVi), (13)

When the evidence node finding task is activated, the training loss turns to:

Ltrain = LN + LS + LC + LCL + LE. (14)

E Case Studies for Question Generation

In this section, we provide 3 generated questions and the model-generated questions and conditional
answers.
Example 1
Context:
⟨title⟩Funding Opportunities⟨/title⟩
⟨h1⟩Funding Opportunities⟨/h1⟩
⟨h2⟩Current Opportunities⟨/h2⟩
⟨p⟩Winter Collaborative Networks⟨/p⟩
⟨li⟩GC Key access⟨/li⟩
⟨li⟩SecureKey Concierge (Banking Credential) access⟨/li⟩
⟨li⟩Personal Access Code (PAC) problems or EI Access Code (AC) problems⟨/li⟩
⟨li⟩Social Insurance Number (SIN) validation problems⟨/li⟩
⟨li⟩Other login error not in this list⟨/li⟩

Generated Contents:
Question:

What type of access is required for the Winter Collaborative Networks funding opportunity?

Scenario:
I am interested in applying for the Winter Collaborative Networks funding opportunity, but I am

unsure of what type of access is required.

Answers and Conditions:
[GC Key access, None],
[SecureKey Concierge (Banking Credential) access, None],
[Personal Access Code (PAC) problems or EI Access Code (AC) problems, None],
[Social Insurance Number (SIN) validation problems, None],
[Other login error not in this list, None]

Example 2, 3
Context:
⟨title⟩Claim Capital Allownces⟨/title⟩
⟨h1⟩What you can claim on⟨/h1⟩
⟨p⟩You can claim capital allowances on items that you keep to use in your business - these are known as
plant and machinery.⟨/p⟩
⟨p⟩In most cases you can deduct the full cost of these items from your profits before tax using annual
investment allowance (AIA).⟨/p⟩
⟨p⟩If youre a sole trader or partnership and have an income of č150,000 or less a year, you may be able
to use a simpler system called cash basis instead.⟨/p⟩
⟨h2⟩What does not count as plant and machinery⟨/h2⟩
⟨p⟩You cannot claim plant and machinery allowances on:⟨/p⟩
⟨li⟩things you lease (unless you have a hire purchase contract or long funding lease) - you must own
them⟨/li⟩
⟨li⟩items used only for business entertainment, for example a yacht or karaoke machine⟨/li⟩

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

597

Computational Linguistics

⟨li⟩land⟨/li⟩
⟨li⟩structures, for example bridges, roads, docks⟨/li⟩
⟨li⟩buildings, including doors, gates, shutters, mains water and gas systems⟨/li⟩
⟨p⟩You may be able to claim structures and buildings allowance on structures and buildings.⟨/p⟩
⟨h2⟩What counts as plant and machinery⟨/h2⟩
⟨p⟩Plant and machinery includes:⟨/p⟩
⟨li⟩items that you keep to use in your business, including cars⟨/li⟩
⟨li⟩costs of demolishing plant and machinery⟨/li⟩
⟨li⟩parts of a building considered integral, known as integral features⟨/li⟩
⟨li⟩some fixtures, for example, fitted kitchens or bathroom suites⟨/li⟩
⟨li⟩alterations to a building to install plant and machinery - this does not include repairs⟨/li⟩
⟨p⟩Claim repairs as business expenses if youre a sole trader or partnership - deduct from your profits as
a business cost if youre a limited company.⟨/p⟩
⟨h3⟩Integral features⟨/h3⟩
⟨p⟩Integral features are:⟨/p⟩
⟨li⟩lifts, escalators and moving walkways⟨/li⟩
⟨li⟩space and water heating systems⟨/li⟩
⟨li⟩air-conditioning and air cooling systems⟨/li⟩
⟨li⟩hot and cold water systems (but not toilet and kitchen facilities)⟨/li⟩
⟨li⟩electrical systems, including lighting systems⟨/li⟩
⟨li⟩external solar shading⟨/li⟩
⟨h3⟩Fixtures⟨/h3⟩
⟨p⟩You can claim for fixtures, for example:⟨/p⟩
⟨li⟩fitted kitchens⟨/li⟩
⟨li⟩bathroom suites⟨/li⟩
⟨li⟩fire alarm and CCTV systems⟨/li⟩
⟨p⟩You can claim if you rent or own the building, but only the person who bought the item can claim.⟨/p⟩
⟨p⟩When you buy a building from a previous business owner you can only claim for integral features and
fixtures that they claimed for.⟨/p⟩
⟨p⟩You must agree on the value of the fixtures with the seller. If you do not you cannot claim for them.
Agreeing the value also means the person selling the assets can account correctly for them.⟨/p⟩
⟨h2⟩If you let residential property⟨/h2⟩
⟨p⟩You can only claim for items to be used in a residential property if either:⟨/p⟩
⟨li⟩you run a furnished holiday lettings business⟨/li⟩
⟨li⟩the item is to be used in the common parts of a residential building, for example, a table in the hallway
of a block of flats⟨/li⟩
⟨h2⟩Care workers⟨/h2⟩
⟨p⟩There are special rules if you run a care business.⟨/p⟩

Generated Contents:
Question:

Can I claim capital allowances on a yacht used for entertaining clients?

Scenario:
I am a business owner and I want to purchase a yacht to entertain clients. I want to know if they can

claim capital allowances on it.

Answers and Conditions:
[No, None]

Question:

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

598

Computational Linguistics

Can I claim capital allowances on the commercial building I purchased for my business?

Scenario:
I am a business owner and I recently purchased a commercial building to use as a location for my

business.

Answers and Conditions:
[No, [⟨p⟩You cannot claim plant and machinery allowances on:⟨/p⟩, ⟨li⟩buildings, including doors,

gates, shutters, mains water, and gas systems⟨/li⟩]]
[Yes, ⟨p⟩You may be able to claim structures and buildings allowance on structures and buildings.⟨/p⟩]

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 583-599, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

599

