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Abstract

Multi-Hop Question Answering (MHQA) is a significant area in question answering, requiring
multiple reasoning components, including document retrieval, supporting sentence prediction,
and answer span extraction. In this work, we present the first application of label smoothing to
the MHQA task, aiming to enhance generalization capabilities in MHQA systems while miti-
gating overfitting of answer spans and reasoning paths in the training set. We introduce a novel
label smoothing technique, F1 Smoothing, which incorporates uncertainty into the learning pro-
cess and is specifically tailored for Machine Reading Comprehension (MRC) tasks. Moreover,
we employ a Linear Decay Label Smoothing Algorithm (LDLA) in conjunction with curricu-
lum learning to progressively reduce uncertainty throughout the training process. Experiment
on the HotpotQA dataset confirms the effectiveness of our approach in improving generaliza-
tion and achieving significant improvements, leading to new state-of-the-art performance on the
HotpotQA leaderboard.

1 Introduction

Multi-Hop Question Answering (MHQA) is a rapidly evolving research area within question answering
that involves answering complex questions by gathering information from multiple sources. This requires
a model capable of performing several reasoning steps and handling diverse information structures. In
recent years, MHQA has attracted significant interest from researchers due to its potential for addressing
real-world problems. The mainstream approach to MHQA typically incorporates several components,
including a document retriever, a supporting sentence selector, and a reading comprehension module (Tu
et al., 2020; Wu et al., 2021; Li et al., 2022). These components collaborate to accurately retrieve and
integrate relevant information from multiple sources, ultimately providing a precise answer to the given
question.

Despite the remarkable performance of modern MHQA models in multi-hop reasoning, they continue
to face challenges with answer span errors and multi-hop reasoning errors. A study by S2G (Wu et
al., 2021) reveals that the primary error source is answer span errors, constituting 74.55%, followed by
multi-hop reasoning errors. This issue arises from discrepancies in answer span annotations between the
training and validation sets. As illustrated in Figure 1(a), the training set answer includes the quantifier
“times”, while the validation set answer does not. Upon examining 200 samples, we found that around
13.7% of answer spans in the HotpotQA validation set deviate from those in the training set.

Concerning multi-hop reasoning, we identified the presence of unannotated, viable multi-hop reason-
ing paths in the training set. As depicted in Figure 1(b), the non-gold document contains the necessary
information to answer the question, similar to gold doc1, yet is labeled as an irrelevant document. Dur-
ing training, the model can only discard this reasoning path and adhere to the annotated reasoning path.
Given that current MHQA approaches primarily use cross-entropy loss for training multiple components,
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(a) Different Answer Span

Training set:
Gold Doc1: Love or Leave
"Love or Leave" was the Lithuanian entry in the Eurovision Song Contest 2007,
performed in English by 4FUN.
Gold Doc2: Lithuania in the Eurovision Song Contest
Lithuania has participated in the Eurovision Song Contest (known in Lithuania
as "Eurovizija") 18 times since its debut in 1994, where Ovidijus Vyšniauskas
finished last, receiving nul points.
Question: How many times does the song writer of "Love or Leave" have
participated in the Eurovision Song Contest?
Answer: 18 times

Validation set:
Gold Doc1: Binocular (horse)
"Love or Leave" was the Lithuanian entry in the Eurovision Song Contest
2007, performed in English by 4FUN.
Gold Doc2: Tony McCoy
Based in Ireland and the UK, McCoy rode a record 4,358 winners, and was
Champion Jockey a record 20 consecutive times, every year he was a
professional.
Question: The primary jockey of Binocular was Champion Jockey how many
consecutive times?
Answer: 20

(b) Multiple Feasible Reasoning Paths

Gold Doc1: Woolworth Building
(1) The Woolworth Building, at 233 Broadway, Manhattan, New York 

City, designed by architect Cass Gilbert and constructed between 
1910 and 1912, is an early US skyscraper.

Non-Gold Doc: F. W. Woolworth Building (Watertown, New York)
(1) The Woolworth Building is an historic building in Watertown, New 

York.
(2) It is a contributing building in the Public Square Historic District.
(3) Plans for the Woolworth Building were begun in 1916 by Frank W. 

Woolworth, the founder of the Woolworth's chain of department 
stores.

Question: Which was built first Woolworth Building or 1 New York 
Plaza?
Answer: Woolworth Building
Evidence Sentences: ["Woolworth Building", 0], ["1 New York 
Plaza",0]

Gold Doc2: 1 New York Plaza
(1) 1 New York Plaza is an office building in New York City's Financial 

District, built in 1969 at the intersection of South and Whitehall 
Streets.

(2) It is the southernmost of all Manhattan skyscrapers.

Figure 1: Causes of errors in answer span and multi-hop reasoning within the HotpotQA dataset. In
Figure (a), the answer from the training set contains a quantifier, while the answer from the validation
set does not. Figure (b) demonstrates that the correct answer can be inferred using a non-gold document
without requiring information from gold doc1.

they tend to overfit annotated answer spans and multi-hop reasoning paths in the training set. Conse-
quently, we naturally pose the research question for this paper: How can we prevent MHQA models from
overfitting answer spans and reasoning paths in the training set?

Label smoothing is an effective method for preventing overfitting, widely utilized in computer vi-
sion (Szegedy et al., 2016). In this study, we introduce label smoothing to multi-hop reasoning tasks
for the first time to mitigate overfitting. We propose a simple yet efficient MHQA model, denoted as
R3, comprising Retrieval, Refinement, and Reading Comprehension modules. Inspired by the F1 score,
a commonly used metric for evaluating MRC task performance, we develop F1 Smoothing, a novel
technique that calculates the significance of each token within the smooth distribution. Moreover, we
incorporate curriculum learning (Bengio et al., 2009) and devise the Linear Decay Label Smoothing
Algorithm (LDLA), which gradually reduces the smoothing weight, allowing the model to focus on
more challenging samples during training. Experimental results on the HotpotQA dataset (Yang et al.,
2018) demonstrate that incorporating F1 smoothing and LDLA into the R3 model significantly enhances
performance in document retrieval, supporting sentence prediction, and answer span selection, achieving
state-of-the-art results among all published works.

Our main contributions are summarized as follows:

• We introduce label smoothing to multi-hop reasoning tasks and propose a baseline model, R3, with
retrieval, refinement, and reading comprehension modules.

• We present F1 smoothing, a novel label smoothing method tailored for MRC tasks, which alleviates
errors caused by answer span discrepancies.

• We propose LDLA, a progressive label smoothing algorithm integrating curriculum learning.

• Our experiments on the HotpotQA dataset demonstrate that label smoothing effectively enhances
the MHQA model’s performance, with our proposed LDLA and F1 smoothing achieving state-of-
the-art results.
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2 Related Work
Label Smoothing Label smoothing is a regularization technique first introduced in computer vision to
improve classification accuracy on ImageNet (Szegedy et al., 2016). The basic idea of label smoothing
is to soften the distribution of true labels by replacing their one-hot encoding with a smoother version.
This approach encourages the model to be less confident in its predictions and consider a broader range
of possibilities, reducing overfitting and enhancing generalization (Pereyra et al., 2017; Müller et al.,
2019; Lukasik et al., 2020a). Label smoothing has been widely adopted across various natural language
processing tasks, including speech recognition (Chorowski and Jaitly, 2017), document retrieval (Penha
and Hauff, 2021), dialogue generation (Saha et al., 2021), and neural machine translation (Gao et al.,
2020; Lukasik et al., 2020b; Graça et al., 2019).

In addition to traditional label smoothing, several alternative techniques have been proposed in recent
research. For example, Xu et al. (2020) suggested the Two-Stage LAbel smoothing (TSLA) algorithm,
which employs a smoothing distribution in the first stage and the original distribution in the second stage.
Experimental results demonstrated that TSLA effectively promotes model convergence and enhances
performance. Penha and Hauff (2021) introduced label smoothing for retrieval tasks and proposed using
BM25 to compute the label smoothing distribution, which outperforms the uniform distribution. Zhao et
al. (2020) proposed Word Overlapping, which uses maximum likelihood estimation (Su et al., 2020) to
optimally estimate the model’s training distribution.

Multi-hop Question Answering Multi-hop reading comprehension (MHRC) is a demanding task in
the field of machine reading comprehension (MRC) that closely resembles the human thought process
in real-world scenarios. Consequently, it has gained significant attention in the field of natural language
understanding in recent years. Several datasets have been developed to foster research in this area,
including HotpotQA (Yang et al., 2018), WikiHop (Welbl et al., 2018), and NarrativeQA (Kočiský et al.,
2018). Among these, HotpotQA (Yang et al., 2018) is particularly representative and challenging, as it
requires the model to not only extract the correct answer span from the context but also identify a series
of supporting sentences as evidence for MHRC.

Recent advances in MHRC have led to the development of several graph-free models, such as
QUARK (Groeneveld et al., 2020), C2FReader (Shao et al., 2020), and S2G (Wu et al., 2021), which have
challenged the dominance of previous graph-based approaches like DFGN (Qiu et al., 2019), SAE (Tu
et al., 2020), and HGN (Fang et al., 2020). C2FReader (Shao et al., 2020) suggests that the performance
difference between graph attention and self-attention is minimal, while S2G’s (Wu et al., 2021) strong
performance demonstrates the potential of graph-free modeling in MHRC. FE2H (Li et al., 2022), which
uses a two-stage selector and a multi-task reader, currently achieves the best performance on HotpotQA,
indicating that pre-trained language models alone may be sufficient for modeling multi-hop reasoning.
Motivated by the design of S2G (Wu et al., 2021) and FE2H (Li et al., 2022), we introduce a our model
R3.

3 Framework

Figure 2 depicts the overall architecture of R3. The retrieval module serves as the first step, where our
system selects the most relevant documents, which is essential for filtering out irrelevant information. In
this example, document1, document3, and document4 are chosen due to their higher relevance scores,
while other documents are filtered out. Once the question and related documents are given, the refinement
module further selects documents based on their combined relevance. In this instance, the refinement
module opts for document1 and document4. Following this, the question and document1, document4 are
concatenated and used as input for the reading comprehension module. Within the reading comprehen-
sion module, we concurrently train supporting sentence prediction, answer span extraction, and answer
type selection using a multi-task approach.

3.1 Retrieval Module
In the retrieval module, each question Q is typically accompanied by a set of M documents
D1, D2 . . . , DM , but only C, |C| << M (two in HotpotQA) are genuinely relevant to question Q.
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Figure 2: Overview of our R3 model, which consists of three main modules: Retrieval, Refinement, and
Reading Comprehension.

We model the retrieval process as a binary classification task. Specifically, for each question-document
pair, we generate an input by concatenating [CLS], question, [SEP], document, and [SEP] in sequence.
We then feed the [CLS] token output from the model into a linear classifier. Lretrieve represents the cross-
entropy between the predicted probability and the gold label. In contrast to S2G (Wu et al., 2021), which
employs a complex pairwise learning-to-rank loss, we opt for a simple binary cross-entropy loss, as it
maintains high performance while being significantly more efficient.

Lretrieve = E[− 1

M

M∑
i=1

(yretrieve
i · log(ŷretrieve

i )

+(1− yretrieve
i ) · log(1− ŷretrieve

i ))],

(1)

where ŷretrieve
i is the probability predicted by the model and yretrieve

i is the ground-truth label. M is the
number of provided documents. E means the expectation of all samples.

yretrieve
i =

{
1 Di is a golden document.
0 Di is a non-golden document.

(2)

3.2 Refinement Module
In the refinement module, we select the top K relevant documents from the previous step and form pairs,
resulting in C2

K combinations. Emphasizing inter-document interactions crucial for multi-hop reasoning,
we concatenate the following sequence: [CLS], question, [SEP], document1, [SEP], document2, [SEP].
Similar to the retrieval module, we extract the [CLS] token output from the model and pass it through
a classifier. Pairs containing two gold-standard documents are labeled as 1, while others are labeled as
0. The refinement module thus filters out irrelevant documents, producing a more concise set for further
processing.

Lrefine = E[−
C2

K∑
i=1

yrefine
i log(ŷrefine

i )], (3)
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where ŷrefine
i is predicted document pair probability and yrefine

i is the ground-truth label, C2
K is number of

all combination.

yrefine
i =

{
1 Ci consists of two gold documents.
0 otherwise.

(4)

We use a single pretrained language model as the encoder for both the retrieval and refinement module,
and the final loss is a weighted sum of Lretrieve and Lrefine. λ1 and λ2 are accordingly coefficients of
Lretrieve and Lrefine .

Ltotal = λ1Lretrieve + λ2Lrefine. (5)

3.3 Reading Comprehension Module
In the reading comprehension module, we use multi-task learning to simultaneously predict supporting
sentences and extract answer span. HotpotQA (Yang et al., 2018) contains samples labeled as ”yes” or
”no”. The practice of splicing ”yes” and ”no” tokens at the beginning of the sequence (Li et al., 2022)
could corrupt the original text’s semantic information. To avoid the impact of irrelevant information, we
introduce an answer type selection header trained with a cross-entropy loss function.

Ltype = E[−
3∑

i=1

y
type
i log(ŷ

type
i )], (6)

where ŷfine
i denotes the predicted probability of answer type generated by our model, and yfine

i represents
the ground-truth label. answer type includes ”yes”, ”no” and ”span”.

y
type
i =


0 Answer is no.
1 Answer is yes.
2 Answer is a span.

(7)

To extract the span of answers, we use a linear layer on the contextual representation to identify the
start and end positions of answers, and adopts cross-entropy as the loss function. The corresponding loss
terms are denoted as Lstart and Lend respectively. Similar to previous work S2G (Wu et al., 2021) and
FE2H (Li et al., 2022), we also inject a special placeholder token < /e > and use a linear binary classifier
on the output of < /e > to determine whether a sentence is a supporting fact. The classification loss of
the supporting facts is denoted as Lsup, and we jointly optimize all of these objectives in our model.

Lreading = λ3Ltype + λ4(Lstart + Lend) + λ5Lsup. (8)

4 Label Smoothing

Label smoothing is a regularization technique that aims to improve generalization in a classifier by mod-
ifying the ground truth labels of the training data. In the one-hot setting, the probability of the correct
category q(y|x) for a training sample (x, y) is typically defined as 1, while the probabilities of all other
categories q(⌝y|x) are defined as 0. The cross-entropy loss function used in this setting is typically
defined as follows:

L = −
K∑
k=1

q(k|x) log(p(k|x)), (9)

where p(k|x) is the probability of the model’s prediction for the k-th class. Specifically, label smoothing
mixes q(k|x) with a uniform distribution u(k), independent of the training samples, to produce a new
distribution q′(k|x).

q′(k|x) = (1− ϵ)q(k|x) + ϵu(k), (10)

where ϵ is the weight controls the importance of q(k|x) and u(k) in the resulting distribution. u(k) is
construed as 1

K of the uniform distribution, where K is the total number of categories. Next, we introduce
two novel label smoothing methods.
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Algorithm 1 Linear Decay Label Smoothing.

Require: training epochs n > 0; smoothing weight ϵ ∈ [0, 1]; decay rate τ ∈ [0, 1]; uniform distribution
u

1: Initialize: Model parameter w0 ∈ W;
2: Input: Optimization algorithm A
3: for i = 0, 1, . . . , n do
4: ϵi ← ϵ− iτ
5: if ϵi < 0 then
6: ϵi ← 0
7: end if
8: sample(xt, yt)
9: yLSt ← (1− ϵi)yi + ϵu

10: wi+1 ← A−step(wi;xi, y
LS
i )

11: end for

4.1 Linear Decay Label Smoothing
Our proposed Linear Decay Label Smoothing Algorithm (LDLA) addresses the abrupt changes in

training distribution caused by the two-stage approach of TSLA, which can negatively impact the training
process. In contrast to TSLA, LDLA decays the smoothing weight at a constant rate per epoch, promoting
a more gradual learning process.

Given a total of n epochs in the training process and a decay size of τ , the smoothing weight ϵ for the
i-th epoch can be calculated as follows:

ϵi =

{
ϵ− iτ ϵ− iτ ≥ 0

0 ϵ− iτ < 0
(11)

Algorithm 1 outlines the specific steps of the LDLA algorithm. LDLA employs the concept of curricu-
lum learning by gradually transitioning the model’s learning target from a smoothed distribution to the
original distribution throughout the training process. This approach incrementally reduces uncertainty
during training, enabling the model to progressively concentrate on more challenging samples and tran-
sition from learning with uncertainty to certainty. Consequently, LDLA fosters more robust and effective
learning.

4.2 F1 Smoothing
Unlike traditional classification tasks, MRC requires identifying both the start and end positions of a
span. To address the specific nature of this task, a specialized smoothing method is required to achieve
optimal results. In this section, we introduce F1 Smoothing, a technique that calculates the significance
of a span based on its F1 score.

Consider a sample x that contains a context S and an answer agold. The total length of the context
is denoted by L. We use qs(t|x) to denote the F1 score between a span of arbitrary length starting at
position t in S and the ground truth answer agold. Similarly, qe(t|x) denotes the F1 score between agold
and a span of arbitrary length ending at position t in S .

qs(t|x) =
L−1∑
ξ=t

F1
(
(t, ξ), agold

)
. (12)

qe(t|x) =
t∑

ξ=0

F1
(
(ξ, t), agold

)
. (13)

The normalized distributions are noted as q
′
s(t|x) and q

′
e(t|x), respectively.

q
′
s(t|x) =

exp(qs(t|x))∑L−1
i=0 exp(qs(i|x))

. (14)
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(a1) Original start distribution. (b1) Label Smoothing start distribution. (c1) Word Overlapping start distribution. (d1) F1 Smoothing start distribution.

(a2) Original end distribution.
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(c2) Word Overlapping end distribution.
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(d2) F1 Smoothing end distribution.
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(b1) Label Smoothing end distribution.
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Figure 3: Visualization of original distribution and different label smoothing distributions, including
Label Smoothing, Word Overlapping, and F1 Smoothing. The first row shows the distribution of the
start token, and the second row shows the distribution of the end token. The gold start and end tokens
are highlighted in red.

q
′
e(t|x) =

exp(qe(t|x))∑L−1
i=0 exp(qe(i|x))

. (15)

To decrease the computational complexity of F1 Smoothing, we present a computationally efficient
version in Appendix 7. Previous research (Zhao et al., 2020) has investigated various label smoothing
methods for MRC, encompassing traditional label smoothing and word overlap smoothing. As illustrated
in Figure 3, F1 Smoothing offers a more accurate distribution of token importance in comparison to Word
Overlap Smoothing. This method reduces the probability of irrelevant tokens and prevents the model
from being misled during training.

5 Experiment

5.1 Dataset

We evaluate our approach on the distractor setting of HotpotQA (Yang et al., 2018), a multi-hop question-
answer dataset with 90k training samples, 7.4k validation samples, and 7.4k test samples. Each question
in this dataset is provided with several candidate documents, two of which are labeled as gold. In addition
to this, HotpotQA also provides supporting sentences for each question, encouraging the model to explain
the inference path of the multi-hop question-answer. We use the Exact Match (EM) and F1 score (F1) to
evaluate the performance of our approach in terms of document retrieval, supporting sentence prediction,
and answer extraction.

5.2 Implementation Details

Our model is built using the Pre-trained language models (PLMs) provided by HuggingFace’s Trans-
formers library (Wolf et al., 2020).

Retrieval and Refinement Module We used RoBERTa-large (Liu et al., 2019) and ELECTRA-
large (Clark et al., 2020) as our PLMs and conducted an ablation study on RoBERTa-large (Liu et al.,
2019). Training on a single RTX3090 GPU, we set the number of epochs to 8 and the batch size to 16.
We employed the AdamW (Loshchilov and Hutter, 2017) optimizer with a learning rate of 5e-6 and a
weight decay of 1e-2.

Reading Comprehension Module We utilized RoBERTa-large (Liu et al., 2019) and DeBERTa-v2-
xxlarge (He et al., 2021) as our PLMs, performing ablation studies on RoBERTa-large (Liu et al., 2019).
To train RoBERTa-large, we used an RTX3090 GPU, setting the number of epochs to 16 and the batch
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Model Answer Supporting
EM F1 EM F1

Baseline Model (Yang et al., 2018) 45.60 59.02 20.32 64.49
QFE (Nishida et al., 2019) 53.86 68.06 57.75 84.49
DFGN (Qiu et al., 2019) 56.31 69.69 51.50 81.62
SAE-large (Tu et al., 2020) 66.92 79.62 61.53 86.86
C2F Reader (Shao et al., 2020) 67.98 81.24 60.81 87.63
HGN-large (Fang et al., 2020) 69.22 82.19 62.76 88.47
FE2H on ELECTRA (Li et al., 2022) 69.54 82.69 64.78 88.71
AMGN+ (Li et al., 2021) 70.53 83.37 63.57 88.83
S2G+EGA (Wu et al., 2021) 70.92 83.44 63.86 88.68
FE2H on ALBERT (Li et al., 2022) 71.89 84.44 64.98 89.14
R3 (ours) 71.27 83.57 65.25 88.98
Smoothing R3 (ours) 72.07 84.34 65.44 89.55

Table 1: In the distractor setting of the HotpotQA test set, our proposed F1 Smoothing and LDLA has led
to significant improvements in the performance of the Smoothing R3 model compared to the R3 model.
Furthermore, the Smoothing R3 model has outperformed a number of strong baselines and has achieved
the highest results.

Model EM F1
SAElarge (Tu et al., 2020) 91.98 95.76
S2Glarge (Wu et al., 2021) 95.77 97.82
FE2Hlarge (Li et al., 2022) 96.32 98.02
R3 (ours) 96.50 98.10
Smoothing R3 96.85 98.32

Table 2: Comparison of our retrieval and refinement module with previous baselines on HotpotQA dev
set. Label smoothing can further enhance model performance.

size to 16. For the larger DeBERTa-v2-xxlarge model, we employed an A100 GPU, setting the number
of epochs to 8 and the batch size to 16. We used the AdamW optimizer (Loshchilov and Hutter, 2017)
with a learning rate of 4e-6 for RoBERTa-large and 2e-6 for DeBERTa-v2-xxlarge, along with a weight
decay of 1e-2 for optimization.

5.3 Experimental Results

We utilize ELECTRA-large (Clark et al., 2020) as the PLM for the retrieval and refinement modules, and
DeBERTa-v2-xxlarge for the reading comprehension module. The R3 model incorporating F1 Smooth-
ing and LDLA methods is referred to as Smoothing R3. LDLA is employed for document retrieval and
supporting sentence prediction, while F1 Smoothing is applied for answer span extraction. As shown in
Table 1, Smoothing R3 achieves improvements of 0.8% and 0.77% in EM and F1 for answers, and 0.19%
and 0.57% in EM and F1 for supporting sentences compared to the R3 model. Among the tested label
smoothing techniques, F1 smoothing and LDLA yield the most significant performance improvement.

We compare the performance of our retrieval and refinement module, which uses ELECTRA-large as
a backbone, to three advanced works: SAE (Tu et al., 2020), S2G (Wu et al., 2021), and FE2H (Li et
al., 2022). These methods also employ sophisticated selectors for retrieving relevant documents. We
evaluate the performance of document retrieval using the EM and F1 metrics. Table 2 demonstrates
that our R3 method outperforms these three strong baselines, with Smoothing R3 further enhancing
performance.

In Table 3, we evaluate the performance of the reading comprehension module, which employs
DeBERTa-v2-xxlarge (He et al., 2021) as the backbone, on documents retrieved by the retrieval and
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Model Answer Supporting
EM F1 EM F1

SAE 67.70 80.75 63.30 87.38
S2G 70.80 - 65.70 -
R3 71.39 83.84 66.32 89.54

Smoothing R3 71.89 84.65 66.75 90.08

Table 3: Performances of cascade results on the dev set of HotpotQA in the distractor setting.

Setting EM F1
Baseline 95.93±.05 97.91±.09

LS 96.06±.11 97.94±.04
TSLA 96.21±.01 98.05±.05
LDLA 96.57±.05 98.18±.04

Table 4: Various label smoothing methods applied
to retrieval modules.

Setting EM F1
Baseline 66.94±.05 90.50±.02

LS 66.88±.02 90.53±.02
TSLA 67.42±.05 90.72±.05
LDLA 67.63±.04 90.85±.03

Table 5: Various label smoothing methods applied
to supporting sentence prediction.

refinement module. Our R3 model outperforms strong baselines SAE and S2G, and further improve-
ments are achieved by incorporating F1 Smoothing and LDLA. These results emphasize the potential for
enhancing performance through the application of label smoothing techniques.

5.4 Label Smoothing Analysis

In our study of the importance of label smoothing, we used RoBERTa-large (Liu et al., 2019) as the
backbone for our model. To ensure the reliability of our experimental results, we conducted multiple
runs with different random number seeds (41, 42, 43, and 44) to ensure stability.

In our experiments, we compared three label smoothing strategies: Label Smoothing (LS), Two-Stage
Label smoothing (TSLA), and Linear Decay Label smoothing (LDLA). The initial value of ϵ in our
experiments was 0.1, and in the first stage of TSLA, the number of epochs was set to 4. For each epoch
in LDLA, ϵ was decreased by 0.01.

Retrieval Module As shown in Table 4, label smoothing effectively enhances the generalization per-
formance of the retrieval module. LDLA outperforms TSLA with a higher EM (0.36%) and F1 score
(0.13%), demonstrating superior generalization capabilities.

Supporting Sentence Prediction We assess the impact of label smoothing on the supporting sentence
prediction task. The results presented in Table 5 indicate that TSLA exhibits an increase of 0.48% in EM
and 0.22% in F1 compared to the baseline. Additionally, LDLA further enhances the performance by
0.21% in EM and 0.13% in F1 when compared to TSLA.

Answer Span Extraction Table 6 highlights the impact of label smoothing methods on answer span
extraction in the reading comprehension module. LS, TSLA, and LDLA exhibit slight improvements
compared to the baseline. The advanced Word Overlapping technique demonstrates an average improve-
ment of 0.49% in EM and 0.47% in F1, respectively, compared to the baseline. In contrast, our proposed
F1 Smoothing technique achieves an average EM improvement of 0.82% and an average F1 score im-
provement of 0.84%. These results suggest that F1 Smoothing can enhance performance on MRC tasks
more effectively than other smoothing techniques.

5.5 Error Analysis

To gain a deeper understanding of how label smoothing effectively enhances model performance, we ex-
amined the model’s output on the validation set, focusing on answer span errors and multi-hop reasoning
errors. First, we define these two types of errors as follows:
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Methods EM F1
Baseline 69.11±.02 82.21±.03
LS 69.30±.02 82.56±.09
TSLA 69.32±.10 82.66±.09
LDLA 69.39±.12 82.69±.03
Word Overlapping 69.60±.09 82.68±.13
F1 Smoothing 69.93±.07 83.05±.10

Table 6: Analysis of different label smoothing methods for Answer Span Extraction.

Model Answer Span Errors Multi-Hop Reasoning Errors
S2G 1612 550
R3 1556 562

Smoothing R3 1536 (↓ 1.3%) 545(↓ 3.0%)

Table 7: Error analysis on Answer Span Errors and Multi-hop Reasoning Errors.

• Answer Span Errors: The predicted answer and the annotated answer have a partial overlap after
removing stop words, but are not identical.

• Multi-hop Reasoning Errors: Due to reasoning errors, the predicted answer and the annotated an-
swer are entirely different.

By implementing label smoothing, as shown in Table 7, Smoothing R3 experienced a 1.3% reduction
in answer span errors, decreasing from 1556 to 1536, and a 3.0% decrease in multi-hop reasoning errors,
dropping from 562 to 545. Smoothing R3 shows a significant reduction in both types of errors compared
to the S2G model. This finding suggests that incorporating label smoothing during training can effec-
tively prevent the model from overfitting the answer span and reasoning paths in the training set, thereby
improving the model’s generalization capabilities and overall performance.

6 Conclusion

In this study, we first identify the primary challenges hindering the performance of MHQA systems and
propose using label smoothing to mitigate overfitting issues during MHQA training. We introduce F1
smoothing, a novel smoothing method inspired by the widely-used F1 score in MRC tasks. Additionally,
we present LDLA, a progressive label smoothing algorithm that incorporates the concept of curriculum
learning. Comprehensive experiments on the HotpotQA dataset demonstrate that our proposed model,
Smoothing R3, achieves significant performance improvement when using F1 smoothing and LDLA.
Our findings indicate that label smoothing is a valuable technique for MHQA, effectively improving the
model’s generalization while minimizing overfitting to particular patterns in the training set.
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7 Appendix A

In order to alleviate the complexity introduced by multiple for loops in the F1 Smoothing method, we
have optimized Eq. (12) and Eq. (13). We use La = e∗−s∗+1 and Lp = e−s+1 to denote respectively
the length of gold answer and predicted answer.

qs(t|x) =
L−1∑
ξ=t

F1
(
(t, ξ), agold

)
. (16)

If t < s∗, the distribution is

qs(t|x) =
e∗∑

ξ=s∗

2(ξ − s∗ + 1)

Lp + La
+

L−1∑
ξ=e∗+1

2La

Lp + La
, (17)

else if s∗ ≤ t ≤ e∗, we have the following distribution

qs(t|x) =
e∗∑
ξ=s

2Lp

Lp + La
+

L−1∑
ξ=e∗+1

2(e∗ − s+ 1)

Lp + La
. (18)

In equation 17 and 18, Lp = e− i+ 1.
We can get qe(t|x) similarly. If t > e∗,

qe(t|x) =
e∗∑

ξ=s∗

2(e∗ − ξ + 1)

Lp + La
+

s∗−1∑
ξ=0

2La

Lp + La
, (19)

else if s∗ ≤ t ≤ e∗,

qe(t|x) =
e∑

ξ=s∗

2Lp

Lp + La
+

s∗−1∑
ξ=0

2(e− s∗ + 1)

Lp + La
. (20)

In equation 19 and 20, Lp = i− s+ 1.
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