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Abstract

Recent works in dialogue state tracking (DST) focus on a handful of languages, as collecting
large-scale manually annotated data in different languages is expensive. Existing models address
this issue by code-switched data augmentation or intermediate fine-tuning of multilingual pre-
trained models. However, these models can only perform implicit alignment across languages.
In this paper, we propose a novel model named Contrastive Learning for Cross-Lingual DST
(CLCL-DST) to enhance zero-shot cross-lingual adaptation. Specifically, we use a self-built
bilingual dictionary for lexical substitution to construct multilingual views of the same utterance.
Then our approach leverages fine-grained contrastive learning to encourage representations of
specific slot tokens in different views to be more similar than negative example pairs. By this
means, CLCL-DST aligns similar words across languages into a more refined language-invariant
space. In addition, CLCL-DST uses a significance-based keyword extraction approach to select
task-related words to build the bilingual dictionary for better cross-lingual positive examples.
Experiment results on Multilingual WoZ 2.0 and parallel MultiWoZ 2.1 datasets show that our
proposed CLCL-DST outperforms existing state-of-the-art methods by a large margin, demon-
strating the effectiveness of CLCL-DST.

1 Introduction

Dialogue state tracking is an essential part of task-oriented dialogue systems (Zhong et al., 2018), which
aims to extract user goals or intentions throughout a dialogue process and encode them into a compact set
of dialogue states, i.e., a set of slot-value pairs. In recent years, DST models have achieved impressive
success with adequate training data. However, most models are restricted to monolingual scenarios
since collecting and annotating task-oriented dialogue data in different languages is time-consuming and
costly (Chen et al., 2018). It is necessary to investigate how to migrate a high-performance dialogue state
tracker to different languages when no annotated target language dialogue data are available.

Previous approaches are generally divided into the following three categories: (1) Data augmenta-
tion methods with neural machine translation system (Schuster et al., 2019). Although translating dia-
logue corpora using machine translation is straightforward, it has inherent limitation of heavily depend-
ing on performance of machine translation. (2) Pre-trained cross-lingual representation (Lin and Chen,
2021). The approach applies a cross-lingual pre-trained model, such as mBERT (Devlin et al., 2019),
XLM (Conneau and Lample, 2019) and XLM-RoBERTa (XLM-R) (Conneau et al., 2020) as one of the
components of the DST architecture and then is trained with task data directly. However, the approach
does not introduce cross-lingual information during the training process. (3) Code-switched data aug-
mentation (Liu et al., 2020a; Liu et al., 2020b; Qin et al., 2021). The method replaces words randomly
from the source language to the target language with a bilingual dictionary as a way to achieve data
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augmentation. Nevertheless, a synonym substitution with some meaningless words may introduce noise
that impairs the semantic coherence of the sentence. Besides, the model only use the code-switched
corpus as the training data, ignoring the interaction between the original and code-switched sentences.
Consequently, these models can not sufficiently learn the semantic representation of the corpus.

To address the above-mentioned issues, we propose a novel model named Contrastive Learning for
Cross-Lingual DST (CLCL-DST), which utilizes contrastive learning (CL) for cross-lingual adaptation.
CLCL-DST first captures comprehensive cross-lingual information from different perspectives and ex-
plores the consistency of multiple views through contrastive learning (Lai et al., 2021). Simultaneously,
as dialogue state tracking is to predict the state of slots in each turn of the dialogue, we consider it as a
token-level task and then employ the same fine-grained CL. Specifically, we obtain the encoded feature
representation of each slot in the original sentence and the corresponding code-switched sentence from
the multilingual pre-trained model, respectively. We then employ fine-grained CL to align the represen-
tations of slot tokens in different views. By introducing CL, Our model is able to distinguish between
the code-switched utterance and a set of negative samples, thus encouraging representations of similar
words in different languages to align into a language-invariant feature space (Subsection 3.1).

Furthermore, CLCL-DST introduces a significance-based keyword extraction approach to obtain task-
related keywords with high significance scores in different domains. For example, in the price range
domain, some words like “cheap”, “moderate” and “expensive” are more likely to have higher signif-
icance scores than background words, such as “a”, “is” and “do”. Specifically, Our approach obtains
the semantic representation of sentences and corresponding subwords by encoder. Then the approach
gets the significance scores of the words by calculating the cosine similarity and get the keywords of
the dataset based on the scores. We then replace these keywords with the corresponding words in the
target language to generate multilingual code-switched data pairs. These code-switched keywords can be
considered as cross-lingual views sharing the same meaning, allowing the shared encoder to learn some
direct bundles of meaning in different languages. Thus, our keyword extraction approach facilitates the
transfer of cross-lingual information and strengthens the ties across different languages (Subsection 3.2).

We evaluate our model on two benchmark datasets. For the Multilingual WoZ 2.0 dataset (Mrkšić et
al., 2017) which is single-domain, our model outperforms the existing state-of-the-art model by 4.1%
and 4.8% slot accuracy for German (De) and Italian (It) under the zero-shot setting, respectively. For
the parallel MultiWoZ 2.1 dataset (Gunasekara, 2021) which is multi-domain, our method outperforms
the current state-of-the-art by 22% and 38.7% in joint goal accuracy and slot f1 for Chinese (Zh), re-
spectively. Moreover, further experiments show that introducing fine-grained CL performs better than
coarse-grained CL. We also investigate the impact of different keyword extraction approaches on the
model to demonstrate the superiority of our extraction approach.

Our main contributions can be summarized as follows:

• To the best of our knowledge, this is the first work on DST that leverages fine-grained contrastive
learning to explicitly align representations across languages.

• We propose to utilize a significance-based keyword selection approach to select task-related key-
words for code-switching. By constructing cross-lingual views through these keywords makes the
model more effective in transferring cross-lingual signals.

• Our CLCL-DST model achieves state-of-the-art results on single-domain cross-lingual DST tasks,
and it boasts the unique advantage of performing effective zero-shot transfer under the multi-domain
cross-lingual setting, demonstrating the effectiveness of CLCL-DST.

2 Related Work

2.1 Dialogue State Tracking
Methods of dialogue state tracking can be divided into two categories, ontology-based and open-
vocabulary DST. The first method selects the possible values for each slot directly from a pre-defined
ontology and the task can be seen as a value classification task for each slot (Lee et al., 2019; Goel et
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al., 2019; Lin et al., 2021; Wang et al., 2022). However, in practical applications, it is difficult to define
all possible values of slots in advance, and the computational complexity increases significantly with the
size of the ontology.

The open-vocabulary approach attempts to solve the above problems by extracting or generating slot
values directly from the dialogue history (Ren et al., 2019). (Wu et al., 2019) generates slot values
directly for each slot at every dialogue turn. The model uses GRU to encode the dialogue history and
decode the value with a copy mechanism. Some recent works (Kim et al., 2020; Zeng and Nie, 2020b)
adopt a more efficient approach by decomposing DST into two tasks: state operation prediction and value
generation. SOM-DST (Kim et al., 2020) firstly predicts state operation on each slot and then generates
the value of the slot that needs updating. (Zeng and Nie, 2020a) proposes a framework based on the
architecture of SOM-DST, with a single BERT as both the encoder and the decoder.

2.2 Zero-shot Cross-Lingual Dialogue State Tracking

There is a growing demand for dialogue systems supporting different languages, which requires large-
scale training data with high quality. However, these data are only available within a few languages. It
remains a challenge to migrate dialogue state tracker from the source language to the target language.

Cross-lingual dialogue state tracking can be divided into two categories: single-domain and multi-
domain. In single-domain, XL-NBT (Chen et al., 2018) first implements cross-lingual learning under
the zero-shot setting by pre-training a dialogue state tracker for the source language using a teacher net-
work. MLT (Liu et al., 2020a) adopts a code-mixed data augmentation framework, leveraging attention
mechanism to obtain the code-mixed training data for learning the interlingual semantics across different
languages. CLCSA (Qin et al., 2021) further explores the dynamic replacement of words from source
language to target language during training. Based on CLCSA architecture, XLIFT-DST (Moghe et al.,
2021) improves the performance by intermediate fine-tuning of pre-trained multilingual models using
parallel and conversational movie subtitles datasets.

In multi-domain, the primary benchmark is the Parallel MultiWoZ 2.1 dataset (Gunasekara, 2021)
originating from the Ninth Dialogue Systems and Technologies Challenge (DSTC-9) (Gunasekara,
2021). This challenge is designed to build a dialogue state tracker to evaluate a low-resource target lan-
guage dataset using the learned knowledge of the source language. All the submissions in this challenge
use the translated version of the dataset, transforming the problem into a monolingual dialogue state
tracking task. XLIFT-DST employs SUMBT (Lee et al., 2019) as the base architecture and achieves
competitive results on the parallel MultiWoZ 2.1 dataset through intermediate fine-tuning. Unlike these
works, we leverage code-switched data with CL to further align multiple language representations under
the zero-shot setting.

2.3 Contrastive Learning

Contrastive learning aims at pulling close semantically similar examples (positive samples) and pushing
apart dissimilar examples (negative samples) in the representation space. SimCSE (Gao et al., 2021)
proposes a simple dropout approach to construct positive samples and achieves state-of-the-art results in
semantic textual similarity tasks. Cline (Wang et al., 2021) constructs semantically negative instances
without supervision to improve the robustness of the model against semantically adversarial attacks.
GL-CLEF (Qin et al., 2022) leverages bilingual dictionaries to generate code-switched data as positive
samples, and incorporates different grained contrastive learning to achieve cross-lingual transfer. Our
model incorporates fine-grained CL to align similar representations between the source and target lan-
guages.

3 Methodology

In this section, we set up the notations that run throughout the paper first, before describing our CLCL-
DST model which explicitly uses contrastive learning to achieve cross-lingual alignment in dialogue
state tracking. Then, we introduce a significance-based code-switching approach on how to select task-
related keywords in the utterance and code-switch the input sentence dynamically in detail. The main
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Figure 1: The overview of the proposed CLCL-DST. The input of our model consists of previous turn
dialogue utterances Dt−1, current turn dialogue utterances Dt and previous dialogue state Bt−1. For
simplicity, we only put one turn of dialogue on the picture. The model constructs a bilingual dictionary
by obtaining keywords from the significance-based code-switching approach, and then generates code-
switched data. The data are fed to the encoder to obtain a feature representation of each slot subsequently.
ORG denotes the original sentence and CS denotes the corresponding code-switched sentence. In the
part of Fine-grained CL, different color denotes different representation spaces for origin utterance,
positive and negative samples. The decoder generates the value for the slot whose state operation is
predicted to UPDATE.

architecture of our model is illustrated in Figure 1.
Notation. Suppose the dialogue has T turns. We define the dialogue utterance at turn t as Dt =
Rt⊕;⊕Ut ⊕ [SEP], where Rt and Ut(1 ≤ t ≤ T ) are the system response and the user utterance
respectively. ⊕ denotes token concatenation, and the semicolon ; is a separation symbol, while [SEP]
marks the end boundary of the dialogue. Besides, we represent the dialogue states as B = {B1, ..., BT },
where Bt = [SLOT]1 ⊕ b1t ⊕ ... ⊕ [SLOT]I ⊕ bIt denotes I states combination at the t-th turn. I is the
total number of slots. The i-th slot-value pair bit is defined as:

bit = Si ⊕−⊕ V i
t , (1)

where Si is a slot and V i
t is the corresponding slot value. [SLOT]i and − are separation symbols. The

representations at [SLOT]i position are used for state operation prediction and contrastive learning. We
use the same special token [SLOT] for all [SLOT]i. The input tokens in CLCL-DST are spliced by
previous turn dialogue utterance Dt−1, current turn dialogue utterance Dt and previous turn dialogue
states Bt−1 (Kim et al., 2020):

Xt = [CLS]⊕Dt−1 ⊕Dt ⊕Bt−1, (2)

where [CLS] is a special token to mark the start of the context. Next, we will elaborate each part in detail.

3.1 Fine-grained Contrastive Learning Framework

We introduce our fine-grained contrastive learning framework (CLCL-DST) with an encoder-decoder
architecture consisting of two modules: state operation prediction and value generation. The encoder,
i.e., state operation predictor, uses a multilingual pre-trained model to predict the type of the operations
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to be performed on each slot. The decoder, i.e., slot value generator, generates values for those selected
slots.
Encoder The encoder of CLCL-DST is based on mBERT architecture. We feed the code-switched
sentence Xt,cs into the encoder and obtain the output representation Ht,cs ∈ R|Xt|×d, where

h
[CLS]
t,cs , h

[SLOT]i

t,cs ∈ Rd are the outputs corresponding to [CLS] and [SLOT]i. h
[SLOT]i

t,cs is passed into
a four-way classification layer to calculate the probability P i

enc,t ∈ R|O| of operations in the i-th slot at
the t-th turn:

P i
enc,t = softmax

(
Wench

[SLOT]i

t,cs + b

)
, (3)

where Wenc and b are learnable parameters. O = {CARRYOVER,DELETE,DONTCARE,UPDATE}
denotes four state operations of each slot (Kim et al., 2020). Specifically, CARRYOVER indicates that
the slot value remains unchanged; DELETE changes the value to NULL; and DONTCARE means
that the slot is not important at this turn and does not need to be tracked (Wu et al., 2019). Only when
the UPDATE is predicted does the decoder generate a value for the corresponding slot.

Our main learning objective is to train the encoder to match predicted state operation with the ground
truth operation. So the loss for state operation is formulated as:

Lenc,t = −1

I

I∑
i=1

(
Y i
enc,t

)⊤
log

(
P i
enc,t

)
, (4)

where Y i
enc,t ∈ R|O| is the ground truth operation for the j-th slot.

Decoder We employ GRU as decoder to generate the value of dialogue state for each domain-slot pair
whose operation is UPDATE. GRU is initialized with gi,0t = Wt and ei,0t = h

[SLOT]i

t . The probability
distribution of the vocabulary is calculated as:

P i,k
dec,t = softmax

(
GRU

(
gi,k−1
t , ei,kt

)
× E

)
∈ R|V |, (5)

where k is decoding step, E ∈ R|V |×d is the word embedding space shared with the encoder, and |V |
is the size of multilingual vocabulary. The overall loss for generating slot value is the average of the
negative log-likelihood loss:

Ldec,t = − 1

|Ut|
∑
i∈Ut

 1

Ki
t

Ki
t∑

k=1

(
Y i,k

)⊤
log

(
P i,k
dec,t

) , (6)

where |Ut| is the number of slots which require value generation, Ki
t indicates the number of ground

truth value to be generated for the i-th slot. Y i,k ∈ R|V | represents the one-hot vector of the ground truth
token generated for the i-th slot at the k-th decoding step.
Fine-grained Contrastive Learning In order to better capture the common features between the source
language and the target language, our model utilizes fine-grained CL to pull closer the representation of
similar sentences across different languages. The key to CL is to find high-quality positive and negative
pairs corresponding to the original utterance. The positive sample should be semantically consistent with
the original utterance and provides cross-lingual view as well. In our scenario, we choose code-switched
input Xt,cs as the positive sample of Xt, while other inputs in the same batch are treated as negative
samples.

As state operation of each slot is a token-level task, we utilize a fine-grained CL loss to facilitate token
alignment. To achieve fine-grained cross-lingual transfer, our method selects the output representation
h
[SLOT]i

t of the special token [SLOT]i for contrastive learning, as these I tokens are able to convey the
semantics of the slots in the query. The i-th slot token loss is defined as:

Li
cl,t = −1

I

I∑
j=1

log
cos

(
hit, h

j+

t

)
cos

(
hit, h

j+

t

)
+

∑I−1
k=0,k ̸=j cos

(
hit, h

k−
t

) , (7)
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where hit is the abbreviation of h[SLOT]i

t , hj
+

t and hk
−

t are positive and negative samples of h[SLOT]i

t

respectively. The total loss Lcl,t is calculated by adding up all tokens CL loss.
The overall objective in CLCL-DST at dialogue turn t is the sum of individual losses above:

Lt = Lenc,t + Lcl,t + Ldec,t. (8)

3.2 Significance-based Code-switching
The importance of different words in a dialogue utterance varies. For example, in the price range domain,
“cheap” and “expensive” are more likely to be keywords, while in the area domain, keyword set might
include orientation terms such as “center”, “north” and “east”. Assuming that a dataset contains v words
constituting a vocabulary V , we construct a subset of keywords K ⊆ V for code-switching. Subsequently,
the encoder of CLCL-DST serves to extract keywords in the training data.

Given the input token Xt = (w1
t , w

2
t , ..., w

n
t ) at the t-th turn, n denotes the number of words. We

feed Xt into encoder, and obtain the representation h
[CLS]
t ∈ Rd of the special token [CLS]. Then the

sentence embedding vector Wt is calculated as:

Wt = tanh(Wpoolh
[CLS]
t + b), (9)

where Wpool and b are learnable parameters. Then the cosine similarity between each token wt ∈ Xt and
the sentence embedding vector Wt is computed as:

Sim(wt) = cos(wt,Wt). (10)

Sim(wt) reflects the degree of associations between wt and sentence embedding Wt. A higher value of
the significance score Sim(wt) indicates a higher probability of wt to be a keyword. For words that are
tokenized into subwords, we average the significance scores of each subword to obtain the word score.

Equation 10 calculates the significance score of words in a sentence. To get the keyword set K in
training set, we add all significance scores for token w in training set and multiply them by the inverse
document frequency (IDF) (Yuan et al., 2020) of w:

S(w) = log
N

|{x ∈ X : w ∈ x}|
·

∑
x∈X:w∈x

Sim(w), (11)

where N denotes the number of the input in the training dataset, |{x ∈ X : w ∈ x}| indicates the number
of the input containing w. The IDF term can reduce the weight of words which appear frequently in the
dataset, assigning meaningless words (e.g., “for” and “an”) with a lower score.

We select top-k words according to the significance scores to get a keyword set K, and use
the bilingual dictionary MUSE (Lample et al., ) to construct the code-switched dictionary Dic =
((s1, t1), ...(sk, tk)), where s and t refer to the source and target language words respectively. k is
the number of keywords. In addition, we translate the whole words in ontology and add them to Dic due
to their important role in the sentence.

Inspired by (Qin et al., 2021), we randomly replace some words in source language sentence with
corresponding target words with a fixed probability if they appear in Dic. Since words from the source
language may have multiple translations in Dic, we randomly select one of them for substitution. No-
tably, the input token X in our model includes dialogue utterance D and dialogue states B, we just
replace source words in D as B shares the same slots across languages. Finally, we can get the code-
switched input tokens Xt,cs from Xt as:

Xt,cs = [CLS]⊕Dt−1,cs ⊕Dt,cs ⊕Bt−1, (12)

4 Experiments

4.1 Datasets
We evaluate our model on two datasets as follows:
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• Multilingual WoZ 2.0 dataset (Mrkšić et al., 2017): A restaurant domain dialogue dataset ex-
panded from WoZ 2.0 (Wen et al., 2017), which contains three languages (English, German, Italian)
and 1200 dialogues for each language. The corpus consists of three goal-tracking slot types: food,
price range and area. The task is to learn a dialogue state tracker only in English and evaluate it on
the German and Italian datasets, respectively.

• Parallel MultiWoZ dataset (Gunasekara, 2021): A seven domains dialogue dataset expanded from
MultiWoZ 2.1 (Eric et al., 2020). Parallel MultiWoZ contains two languages (English, Chinese) and
10K dialogues. The Chinese corpus is obtained through Google Translate and manually corrected
by experts.

4.2 Compared Methods
We compare our approach with the following methods:

• XL-NBT (Chen et al., 2018) utilizes bilingual corpus and bilingual dictionaries to transfer the
teacher’s knowledge of the source language to a student tracker in the target languages.

• MLT (Liu et al., 2020a) constructs code-switched data through the attention layer for training.

• CLCSA (Qin et al., 2021) dynamically constructs multilingual code-switched data by randomly
replacing words, so as to better fine-tune mBERT and achieve outstanding results in multiple lan-
guages.

• SUMBT (Lee et al., 2019) uses a non-parametric distance measure to score each candidate slot-
value pair. We replace BERT with mBERT on the cross-lingual setup.

• SOM-DST (Kim et al., 2020) employs BERT as the encoder and uses a copy-based RNN to decode
upon BERT outputs.

• DST-as-PROMPTING (Lee et al., 2021) introduces an approach that uses schema-driven prompt-
ing to provide history encoding and then utilizes T5 to generate slot values directly. Here, we use
the multilingual version of T5 - mT5 (Xue et al., 2021).

• XLIFT-DST (Moghe et al., 2021) leverages task-related parallel data to enhance transfer learning
by intermediate fine-tuning of pre-trained multilingual models. For parallel MultiWoZ, XLIFT-DST
uses the architecture of SUMBT, while uses the state tracker in CLCSA for Multilingual WoZ 2.0.

4.3 Implementation Details
Our method leverages the pre-trained mBERT-base0 implemented by HuggingFace as the encoder, with
12 Transformer blocks and 12 self-attention heads. One layer GRU is used as the decoder. The encoder
shares the same hidden size s with the decoder, which is 768. Adam optimizer (Kingma and Ba, 2014)
is applied to optimize all parameters with a warmup strategy for the 10% of the total training steps. The
peak learning rate is set to 4e-5 for encoder and 1e-4 for decoder, respectively. Besides, we use greedy
decoding for generating slot values.

For Multilingual WoZ dataset, the batch size is set to 64 and the maximum sequence length to 200. For
parallel MultiWoZ dataset, the batch size and the maximum sequence length are 16 and 350 respectively.
We replace the word for each dialogue with a fixed probability of 0.6. The training is performed for 100
epochs as default, and we choose the best checkpoint on the validation set to test our model.

4.4 Evaluation Metrics
The metrics in dialogue state tracking are turn-level which include Slot Accuracy, Joint Goal Accuracy
and Slot F1. Slot Accuracy is the proportion of the correct slots predicted in all utterances. Joint Goal
Accuracy is the proportion of dialogue turns where all slot values predicted at a turn exactly match the
ground truth values, while Slot F1 is the Macro-average of F1 score computed over the slot values at
each turn.

0https://huggingface.co/bert-base-multilingual-uncased
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Model German Italian

slot acc. joint acc. slot acc. joint acc.

XL-NBT (Chen et al., 2018) 55.0 30.8 72.0 41.2
MLT (Liu et al., 2020a) 69.5 32.2 69.5 31.4
Transformer based
mBERT 57.6 15.0 54.6 12.6
CLCSA (Qin et al., 2021) 83.0 63.2 82.2 61.3
XLIFT-DST (Moghe et al., 2021) 85.2 65.8 84.3 66.9
CLCL-DST (ours) 89.3 63.2 89.1 67.0

Table 1: Slot accuracy and joint goal accuracy on Multilingual WoZ 2.0 dataset under zero-shot setting
when trained with English task data. Please see text for more details. Bold indicates the best score in
that column. CLCL-DST denotes our approach.

Model joint acc. slot f1.

SUMBT (Lee et al., 2019) † 1.9 14.8
SOM-DST (Kim et al., 2020) ‡ 1.7 10.6
DST-as-PROMPTING (Lee et al., 2021) ‡ 2.5 17.6
XLIFT-DST † 5.1 40.7
CLCL-DST (ours) 27.1 79.4
In-language training † 15.8 70.2
Translate-Train † 11.1 54.2
Translate-Test † 26.5 77.0

Table 2: Joint goal accuracy and slot F1 on parallel MultiWoZ dataset under zero-shot learning setting
when trained with English task data and tested on Zh language. ’†’ denotes results from (Moghe et
al., 2021). ’‡’ denotes our re-implemented results for the models based on corresponding multilingual
pretrained models.

4.5 Main Results

Results for the Multilingual WoZ dataset are illustrated in Table 1. We can see that CLCL-DST out-
performs the state-of-the-art model (XLIFT-DST) by 4.1% and 4.8% in slot accuracy for De and It
respectively. This demonstrates that our model is able to explicitly bring similar representations of dif-
ferent languages closer together through contrastive learning than augmenting transfer learning process
with intermediate fine-tuning of pre-trained multilingual models.

To further study the effectiveness of our model under the zero-shot setting, We also test CLCL-DST
on parallel MultiWoZ in Table 2. As there are only a few baselines available for this dataset, we re-
implement some monolingual models such as SUMBT, SOM-DST, DST-as-PROMPTING into multilin-
gual scenarios. We find that our model has 22% and 38.7% improvement over XLIFT-DST in joint goal
accuracy and slot f1 for target language Zh under the zero-shot setting. It is worth noting that the joint
goal accuracy of all these baseline models is relatively low. The possible reason is that these models
do not learn considerable cross-lingual representations in the multi-domain cases, making it difficult to
migrate for complex slots. Specifically, In the SOM-DST model, its decoder utilizes the soft-gated copy
mechanism (See et al., 2017) in addition to GRU, which introduces additional noise from the source
language and is not applicable to multilingual settings. In DST-as-PROMPTING, the model only lever-
ages mT5 to generate slot values directly without learning deeply cross-lingual interaction information.
Besides, we also refer to the results of translation-based methods from (Moghe et al., 2021) in Table 2.
Our model still outperforms all of them. These results further indicate that our proposed CLCL-DST
leveraging code-switched data with contrastive learning boosts the performance of dialogue state tracker.

5 Ablation Studies

We conduct ablation experiments to explore the effect of fine-grained contrastive learning and the
significance-based keyword extraction approach on the overall performance for the Multilingual WoZ
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2.0 dataset.

5.1 The Effect of Fine-grained Contrastive Learning

In addition to fine-grained CL, we also introduce coarse-grained CL for aligning similar sentences across
different languages. To be specific, we align the sentence embedding Wt from equation 9 with its corre-
sponding code-switched positive representations W+

t . The objective for coarse-grained CL is written as
follows:

Lsl,t = − log
cos

(
Wt,W

+
t

)
cos

(
Wt,W

+
t

)
+
∑I−1

k=0,k ̸=j cos
(
Wt,W k−

t

) , (13)

where W k−
t is the negative sample for Wt at the t-th turn.

Method German Italian

slot acc. joint acc. slot acc. joint acc.

w/o CL 82.5 52.0 86.8 60.0
Coarse-grained CL 87.9 57.7 79.8 41.0
Fine-grained CL 89.3 63.2 89.1 67.0

Table 3: Slot accuracy and joint goal accuracy for different grained contrastive learning under zero-shot
setting. ”CL” denotes the abbreviation of contrastive learning.

As results shown in Table 3, we can conclude that different granularities of contrastive learning are
effective for our model, especially fine-grained CL since it can bring more improvement to CLCL-DST.
Using fine-grained CL improves 1.4% and 5.5% in slot accuracy and joint goal accuracy for De, and
9.3% and 26% for It, respectively, compared to coarse-grained CL. Since the goal of dialogue state
tracking is to predict the state of slots in each turn of the dialogue, it can be considered as a token-level
task, so fine-grained CL is better suited for this task compared to coarse-grained CL. Also, our approach
selects specific tokens representing slots instead of all tokens in the dialogue for contrastive learning,
which can reduce the noise caused by other semantically irrelevant tokens.

5.2 The Effect of significance-based code-switching

In this section we further explore the impact of keyword extraction algorithm on CLCL-DST. Table 4
shows the performance of different keyword extraction strategies. We try other four approaches to obtain
the mapping dictionaries and compare them with the significance-based code-switching approach: (1)
choosing words based on their frequency in our training set and converting them to target languages
by MUSE; (2) using the whole ontology, which contains 90 words approximately; (3) combining the
dictionaries obtained from (1) and (2) to form a new dictionary; (4) extracting keywords using only
TF-IDF algorithm.

Method German Italian

slot acc. joint acc. slot acc. joint acc.

MUSE 86.4 59.4 84.0 54.5
Onto 86.2 56.0 81.8 46.8
MUSE+Onto 88.0 57.8 88.4 66.3
TF-IDF+Onto 86.5 55.3 87.9 66.0
Significance-based 87.9 60.4 89.1 63.5
Significance-based+Onto 89.3 63.2 89.1 67.0

Table 4: Slot accuracy and joint goal accuracy on Multilingual WoZ 2.0 dataset for different keywords
extraction approaches under zero-shot setting. The Method column represents the strategy for extracting
keywords. ”Onto” is the abbreviation of ontology. ”+” denotes the merging of dictionaries obtained by
the two methods.
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Number of keywords German Italian

slot acc. joint acc. slot acc. joint acc.

200 86.5 60.4 85.1 61.5
500 88.2 62.3 86.8 64.4

1000 89.3 63.2 89.1 67.0
2000 88.6 63.3 86.9 66.3
5000 88.9 62.9 87.4 66.5

Table 5: Slot accuracy and joint goal accuracy on Multilingual WoZ 2.0 dataset for different number of
keywords under zero-shot setting.

Compared with only considering the frequency of words in the corpus, our significance-based code-
switching approach can also make use of the numerous linguistic information carried in the multilingual
pretrained model, so that the selected words are more representative of the utterance. This approach
enables the selected words to better express the main idea of the text. At the same time, words in ontology
such as place names, food names, etc. are originally special words in the dataset, which occupy an
important position in the text. Adding these words to our dictionary can further improve the performance
of the model.

Table 5 shows the influence of different number of keywords on our model. We can see that the model
has the best or second-best performance when k is 1000. As k continues to increase, the additional
keywords are less indicative, so they even have a negative impact on model performance.

6 Conclusion

In this paper, we propose a novel zero-shot adaptation method CLCL-DST for cross-lingual dialogue
state tracking. Our approach leverages fine-grained contrastive learning to explicitly align representations
across languages. Besides, we introduce the significance-based code-switching approach to replace task-
relevant words with target language for generating code-switched sentences on downstream tasks. Our
method obtains new state-of-the-art results on Multilingual WoZ dataset and parallel MultiWoZ dataset,
which demonstrates its effectiveness. In the future, we would investigate better training objectives for
cross-lingual DST task, especially on multi-domain area, to further boost the dialogue system on multi-
lingual scenarios. We would also explore better positive and negative samples when applying contrastive
learning on DST task.
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