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Abstract

Relation Extraction (RE) task aims to discover the semantic relation that holds between two entities
and contributes to many applications such as knowledge graph construction and completion.
Reinforcement Learning (RL) has been widely used for RE task and achieved SOTA results, which
are mainly designed with rewards to choose the optimal actions during the training procedure,
to improve RE’s performance, especially for low-resource conditions. Recent work has shown
that offline or online RL can be flexibly formulated as a sequence understanding problem and
solved via approaches similar to large-scale pre-training language modeling. To strengthen the
ability for understanding the semantic signals interactions among the given text sequence, this
paper leverages Transformer architecture for RL-based RE methods, and proposes a generic
framework called Transformer Enhanced RL (TERL) towards RE task. Unlike prior RL-based
RE approaches that usually fit value functions or compute policy gradients, TERL only outputs
the best actions by utilizing a masked Transformer. Experimental results show that the proposed
TERL framework can improve many state-of-the-art RL-based RE methods.

1 Introduction

Relation Extraction (RE) aims to discover the binary semantic relation between two entities in a sequence
of words. E.g., given a sentence “· · ·Carey will succeed Cathleen P. Black, who held the position for 15
years and will take on a new role as chairwoman of Hearst Magazines, the company said· · · ” (Xue et al.,
2020), and we aim to predict the relation type between two entities “Cathleen P. Black” and “chairwoman”
and the result is “per:title”.

Deep neural network (DNN) driven methods have gained decent performance when labeled data is
available (Hu et al., 2021b; Guo et al., 2020). While Reinforcement Learning (RL) based RE methods
gain a lot of attention recently and show encouraging effects (Takanobu et al., 2018; Hu et al., 2021b;
Wang and Zhang, 2021), especially in low-resource and few-shot conditions. Since this kinds of work
requires fewer labeled data or could expand limited labeled data by exploiting information on unlabeled
data to iteratively improve the performance (Hu et al., 2021b).

Recent works have shown Transformers (Vaswani et al., 2017) can model high-dimensional distribu-
tions of semantic concepts at scale, and several attempts have demonstrated the combination between
transformers and RL architecture (Parisotto and Salakhutdinov, 2021; Parisotto et al., 2020; Zambaldi et
al., 2019). These works have shown that the Transformer’s efficiency for modeling beneficial semantic
interactions in the given sequence (Chen et al., 2021a; Zheng et al., 2022), which is very enlightening for
RE task. Given the diversity of successful applications of such models (Chen et al., 2021a), this paper
seeks to investigate their application to sequential RE problems formalized as RL, because of the three
main advantages of transformers: (i) Its ability to model long sequences has been demonstrated in many
tasks; (ii) It could perform long-term credit assignment via self-attention strategy, contrary to Bellman
backups (Lee et al., 2021) which slowly propagate rewards and are prone to distractor signals (Hung
et al., 2019) in Q-learning, which could enable Transformer-based architecture to still work effectively
in the presence of distracting rewards (Chen et al., 2021a); and (iii) It can model a wide distribution of
behaviors, enabling better generalization (Ramesh et al., 2021). Hence, inspired by (Chen et al., 2021a;
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Zheng et al., 2022), we try to view the RL-based RE as a conditional sequence understanding problem.
Especially, we model the joint distribution of the sequence of states, actions and rewards, and discuss
whether generative sequence understanding could can serve as a substitute for traditional RL algorithms in
RE task. Overall, we propose Transformer Enhanced Reinforcement Learning (TERL), which abstracts
RL paradigm as autoregressively sequence understanding and utilize Transformer architecture in BERT 1

to model text sequences with minimal modification to native transformer’s architecture, and we investigate
whether the sequence understanding paradigm can perform policy optimization by evaluating TERL on
RL benchmarks in RE task. This enables us to leverage the scalability of the Transformer’s architecture,
as well as the related advancements in pre-training language modeling (such as the BERT’s series).

Especially, following the backbone proposed in (Chen et al., 2021a), we train Transformer architecture
on collected experience with a sequence understanding objective for RE task, instead of training a policy
through conventional RL algorithms (Hu et al., 2021b; Wang and Zhang, 2021). This transformer is
trained to predict next token in a sequence of rewards (forward-cumulative-rewards emphasized here),
states, and actions. This paper shows that leveraging Transformers can open up another paradigm to solve
RL-based RE problem. The main differences between this work and previous RL-based RE methods, can
be concluded as follows: (i) RL is transformed into sequence understanding; (ii) We learn the natural
projection from reward and state to action, instead of maximizing cumulative discount rewards or only
modeling state and action in conventional behavior cloning paradigm (Chen et al., 2021b); (iii) Q/V-
functions are no need to be learned, while we directly model it as a sequence problem, wherein as long
as given the expected return, we can get the corresponding action; and (iv) Bellman backups or other
temporal difference frameworks is no need; In RE tasks (even relation and entity joint extraction tasks)
with our work, the expected target return is highly correlated with the actual observed return. Under
certain conditions, the proposed TERL could successfully generate sequences that almost completely
match the required returns. In addition, we can prompt TERL with a higher return than the maximum
event available in the dataset, indicating that our TERL can sometimes be extrapolated. Moreover, the
proposed framework can also be used as a plug-in unit for any RL-based RE architecture, and be extended
to relation and entity joint extraction task (Zhou et al., 2019). Experimental results show that the proposed
TERL framework can improve many state-of-the-art RL-based RE methods.

2 Related Work

Relation Extraction (RE) aims to predict the binary relation between two entities in a sequence of words.
Recent work leverages deep neural network (DNN) for learning the features among two entities from
sentences, and then classify these features into pre-defined relation types (Hu et al., 2021b). These
methods have achieved satisfactory performance when labeled data is sufficient (Zeng et al., 2015; Guo et
al., 2020), however, it’s labor-intensive to obtain large amounts of manual annotations on corpus. Hence,
few-shot (even zero-shot) RE methods gained a lot of attention recently, since these methods require fewer
labeled data and could expand limited labeled information by exploiting information on unlabeled data to
iteratively improve the performance. Wherein, Reinforcement Learning (RL) based methods have grown
rapidly (Zeng et al., 2019; Wang and Zhang, 2021), which has been widely used in Nature Language
Processing (NLP) (Narasimhan et al., 2016; Zhou et al., 2019; Li et al., 2021). These methods are all
designed with rewards to force the correct actions to be chosen during the model’s training procedure.
For RE task, (Qin et al., 2018) proposes a RL strategy to generate the false-positive indicator, where it
automatically recognizes false positives for each relation type without any supervised information. (Li
et al., 2021) addresses the RE task by capturing rich contextual dependencies based on the attention
mechanism, and using distributional RL to generate optimal relation information representation. (Hu et
al., 2021b) proposes gradient imitation RL method to encourage pseudo label data to imitate the gradient
descent direction on labeled data.For relation and entity joint extraction task, (Takanobu et al., 2018)
proposes a hierarchical RL framework which decomposes the whole extraction process into a hierarchy
of two-level RL policies for relation extraction and entity extraction, respectively. (Zeng et al., 2019)
applies policy gradient method to model future reward in a joint entity and relation extraction task. (Wang

1Other transformer architecture is also applicable.
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and Zhang, 2021) jointly extracts entities and relations, and propose a novel bidirectional interaction RL
model.

Recently, there exist many exciting works which formulate the Reinforcement Learning (RL) problem
as a context-conditioned “sequence understanding” problem (Chen et al., 2021a; Zheng et al., 2022).
For offline RL settings, (Chen et al., 2021a) trains a transformer (Vaswani et al., 2017) as a model-free
context-conditioned policy, and (Janner et al., 2021) trains a transformer as both a policy and model and
shows that beam search can be used to improve upon purely model-free performance. These works focus
on exploring fixed datasets that transformers are traditionally trained with in NLP applications, which
is similar to our focus. For online RL settings, (Zheng et al., 2022) proposes a RL algorithm based on
sequence understanding that blends offline pre-training with online fine-tuning in a unified framework. To
best of our knowledge, this work is the first test to leverage Transformer for enhancing RL-based RE task.

3 Methodology

This section presents the proposed TERL for RE task, as summarized in Fig. 1.
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𝐩[SEP]
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𝐨[SEP]
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Figure 1: The architecture of TERL for RE task.

3.1 Relation Extraction with RL

The RL policy π for Relation Extraction (RE), usually aims to detect the relations in the given word
sequence τ1 = {w0, w1, w2, · · · , wT }, which can be regarded as a conventional RL policy over actions.
A Markov Decision Process (MDP) described by the tuple (S,A,P,R) (Wang and Zhang, 2021), is
usually used for learning procedure. Especially, the MDP tuple consists of states s ∈ S, actions a ∈ A,
transition probability P (s′|s, a) and rewards r ∈ R. At timestep t, st, at, and rt = R(st, at) denote the
state, action, and reward, respectively. The goal in RL is to learn a desired policy which maximizes the
expected reward E(

∑T
t=1 ri) in MDP (Chen et al., 2021a).

Action: The action at is selected from A = R
⋃
None, wherein notation None indicates that no

relation exists in the given context, and R is the pre-defined relation-type set.
State: The state st ∈ S of the relation extraction RL process at timestep t, can be represented by (Wang

and Zhang, 2021; Takanobu et al., 2019): (i) the current hidden state vector ht, (ii) the relation-type vector
at−1 (the embedding of the latest action at−1 that at−1 6= None, a learnable parameter), and (iii) the state
from the last timestep st−1, formally represented as follows:

st = f(WS [ht; at−1; st−1]) (1)

where f(·) denotes a non-linear function implemented by MLP (Other encoder architecture is also
applicable, which is not the focus of this paper). To obtain the current hidden state ht, sequence Bi-
LSTM over the current input word embedding xt, character embedding ct, token-type embedding vt, and
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token-position embedding pt, can be used here, as follows:
−→
ht =

−−−→
LSTM(

−−→
ht−1, xt, ct, vt,pt)

←−
ht =

←−−−
LSTM(

←−−
ht+1, xt, ct, vt,pt)

ht = [
−→
ht ;
←−
ht ]

(2)

Policy: The stochastic policy for detecting relation-type can be defined as π : S → A, which specifies a
probability distribution over actions:

at ∼ π(at|st) = SoftMax(Wπst) (3)

Reward: The environment provides intermediate reward rt to estimate the future return when chose
action at. The reward is computed as follows:

rt =


1, at conforms to τ1,

0, at = None,

-1, at not conforms to τ1.

(4)

If at equals to None at certain timestep t, the agent transfers to a new relation extraction state at the next
timestep t+1. Such a MDP procedure mentioned above continues until the last action about the last word
wT of current sequence is sampled. Finally, a final reward r∗ is obtained to measure the RE’s performance
that the RL’s policy π detects, which is obtained by the weighted harmonic mean of precision and recall
in terms of the relations in given sentence sequence τ1 (Wang and Zhang, 2021): r∗ =

(1+β2)·Prec·Rec
β2·Prec+Rec .

Wherein, notation Prec and Rec indicate the precision value and recall value respectively, computed over
the current sequence τ1.

3.2 Transformer
For simplicity, we take BERT as an example. BERT (Devlin et al., 2019) is the first bidirectional language
model, which makes use of left and right word contexts simultaneously to predict word tokens. It is trained
by optimizing Masked Language Model (MLM) objective etc.,. The the architecture of conventional
BERT is a multi-layer bidirectional transformer encoder (Vaswani et al., 2017), and the inputs are a
sequence of tokens {x1, x2, · · · , xn}. The tokens go through several layers of transformers. At each
layer, a new contextualized embedding is generated for each token by weighted-summing all other tokens’
embeddings. The weights are decided by several attention matrices (multi-head attention). Note that:
(i) tokens with stronger attentions are considered more related to the target word; (ii) Different attention
matrices capture different types of token relations, such as exact match and synonyms.

The entire BERT model is pre-trained on large scale text corpora and learns linguistic patterns in
language. It can be viewed as an interaction-based neural ranking model (Guo et al., 2016). Given the
widespread usage of BERT, we do not detail the architecture here. See (Devlin et al., 2019) for more
details about the conventional architecture of BERT and its variants for various applications.

3.3 Input Generation
Given sequence under RL’s paradigm {s0, r0, a0, s1, r1, a1, · · · , sT , rT , aT }, the reward of a sequence at
step t, is defined as the forward-cumulative-rewards from the current timestep, similar to (Chen et al.,
2021a): r̂t =

∑T
i=t ri, without discount. Wherein, ri denotes the reward from environment at timestep i.

Because we want to generate actions based on future (forward direction) expected returns rather than past
(backward direction) rewards. Hence the input sequence towards our Transformer, is defined as follows,
which consists of states, actions and rewards:

τ = {a−1, s0, r̂0, a0, s1, r̂1, a1, s2, r̂2, a2, · · · , sT , r̂T , aT } (5)

It represents the whole sequence from the beginning to the end, but in the actual training process, we
often only intercept K timesteps (i.e., context length) as input (details in Sec. 3.4). Wherein, K is a
hyper-parameter with different values towards different tasks, and a−1 in E.q. (5) is a padding indicator.
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3.4 Procedure

We feed the last K timesteps into TERL, for a total of 3×K tokens (one for each type: states, actions and
rewards). As shown in Fig. 1, to obtain token embeddings: (i) for state and action, E.q. (1) and E.q. (2)
are used to generate state embedding and action embedding, which consider word embeddings, character
embeddings, type embeddings and position embeddings (Wang and Zhang, 2021; Zhou et al., 2019);
(ii) for forward-cumulative-rewards, we learn a linear-layer, which projects inputs to the embedding
dimension, followed by layer-normalization (Chen et al., 2021a; Xiong et al., 2020).

Moreover, a token-position (respect to timestep) embedding, a token-type embedding for each token
as well as a token-character embedding respect to action token or state token, is learned and added to
each token, as one timestep corresponds to 4 types of tokens in our framework. Wherein, we define the
token-type projection as: {[CLS], action, state, reward, [SEP]} → {0,1,2,3,4}. The tokens are then
processed by a BERT (Devlin et al., 2019) or GPT (Radford and Narasimhan, 2018) model (as well as
their variants), which predicts future (forward) action: {at−1, st, r̂t} → at.

With efforts above, after executing the generated actions for the current state, we reduce the target
return by the rewards we receive and repeat until the end of the episode. The output is action sequence
{a0, a1, a2, · · · , aT }, which is generated with a linear layer (on top of Fig. 1). Note that, the output
can also includes sequence of states or rewards. For simplicity, we do not use them and leave for future
discussion.

The details about training procedure and testing procedure, can be concluded as follows:
(i) In training procedure, we sample mini-batches of sequence length K (i.e., context length) from

the training dataset, and mainly use the self-attention paradigm in Transformer. a−1 with zero-padding
is added before the entire sequence. As shown in Fig. 1, predicting action at each timesetp at with
cross-entropy loss, is used as the training objective.

(ii) At test time, we use the definition of E.q. (4) as the desired performance. At the beginning, given
the desired performance (e.g., r̂0 = 1) as well as the initial state s0, transformer generates action a0. Let
the agent perform actions a0, the environment will give return r0 and the next state s0, and we can get r̂1.
Then {a0, s1, r̂1} can be added into the input sequence, and we can get a1. The aforementioned testing
procedure is autoregressive, because the output at−1 in previous timestep will intuitively be the viewed as
input in the following timestep: {at−1, st, r̂t} → at.

4 Experiments

This paper constructs relation extraction task and relation and entity joint extraction task for evaluations.

4.1 Datasets and Metrics

For relation extraction (RE) task examination, we follow (Hu et al., 2021b) to leverage two public RE
datasets for conducting experiments on, including SemEval 2010 Task 8 (SemEval) (Hendrickx et al.,
2010), and TAC Relation Extraction Dataset (TACRED) (Zhang et al., 2017): (i) SemEval dataset is a
standard benchmark dataset for testing RE models, which consists of training, validation and test set with
7,199, 800, 1,864 relation-mentions respectively, with totally 19 relations types (including None). (ii)
TACRED dataset is a more large-scale crowd-sourced RE dataset, which is collected from all the prior
TAC KBP relation schema. It consists of training, validation and test set with 75,049, 25,763, 18,659
relation-mentions respectively, with totally 42 relation types (including None).

We also test the extension of the proposed framework for relation and entity joint extraction task. For
this task, we conduct experiments on two public datasets NYT (Riedel et al., 2010) and WebNLG (Gardent
et al., 2017): (i) NYT dataset is originally produced by a distant supervision method, which consists of
1.18M sentences with 24 predefined relation types; (ii) WebNLG dataset is created by Natural Language
Generation (NLG) tasks and adapted by (Zeng et al., 2018) for relational triple extraction task. It consists
of 246 predefined relation types.

For both datasets, we follow the evaluation setting used in previous works. A triple (head entity, relation-
type, tail entity) is regarded as correct if the relation-type (belongs toR) and the two corresponding entities
(head entity and tail entity head entity) are all correct. Precision, Recall and F1-score are introduced here
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as metrics for all the compared models. For each dataset, we randomly chose 0.5% data from the training
set for validation (Wang and Zhang, 2021).

4.2 Baselines
For relation extraction task, the baselines include three categories:

(i) When comparing with supervised relation encoders with only labeled data, we choose LST-
M(Hochreiter and Schmidhuber, 1997), PCNN(Zeng et al., 2015), PRNN(Zhang et al., 2017),
and BERT(Devlin et al., 2019) as baselines.

(ii) When comparing with semi-supervised relation encoders with both labeled data and unlabeled (or
pseudo labeled) data, we choose Self-Training(Rosenberg et al., 2005), Mean-Teacher(Tarvainen
and Valpola, 2017), DualRE(Lin et al., 2019), and MetaSRE(Hu et al., 2021a) as baselines.

(iv) When comparing with the RL-based models, we choose RDSRE(Qin et al., 2018), DAGCN(Li
et al., 2021) and GradLRE(Hu et al., 2021b) as baselines. RDSRE is a RL strategy to generate
the false-positive indicator, where it automatically recognizes false positives for each relation type
without any supervised information. DAGCN addresses the RE task by capturing rich contextual
dependencies based on the attention mechanism, and using distributional RL to generate optimal
relation information representation. GradLRE is gradient imitation RL method to encourage pseudo-
label data to imitate the gradient descent direction on labeled data and bootstrap its optimization
capability through trial and error. As our work can be viewed as a plug-in unit for this kind of
RL-based model, the variant model with help of our work is named with suffix “+TERL”.

Our framework can be easily extended to relation and entity joint extraction method based on RL. For
evaluating joint extraction task, the baselines include four categories:

(i) The traditional pipeline models are FCM (Kim, 2014) and LINE (Gormley et al., 2015). Wherein,
FCM is a conventional and compositional joint model by combining hand-crafted features with
learned word embedding for relation extraction task. LINE is a network embedding method which
embeds very large information networks into low-dimensional vectors. Note that, following (Wang
and Zhang, 2021), both of them obtain the NER results by CoType (Ren et al., 2017), and then the
results are fed into the two models to predict relations.

(ii) The joint learning baselines used here include feature-based methods (e.g., DS-Joint (Yu and Lam,
2010), MultiR (Hoffmann et al., 2011) and CoType (Ren et al., 2017)), and neural-based methods
(e.g., SPTree (Li and Ji, 2014) and CopyR (Zeng et al., 2018)). Wherein, DS-Joint is an incremental
joint framework extracting entities and relations based on structured perceptron and beam-search.
MultiR is a joint extracting approach for multi-instance learning with overlapping relation types.
CoType extracts entities and relations by jointly embedding entity mentions, relation mentions, text
features, and type labels into two meaningful representations. SPTree is a joint learning model that
represents both word sequence and dependency tree structures using bidirectional sequential and
tree-structured LSTM-RNNs. CopyR is a sequence-to-sequence learning framework with a copy
mechanism for relation and entity jointly extracting.

(iii) The tagging mechanism based models include Tagging-BiLSTM (Zheng et al., 2017) and Tagging-
Graph (Wang et al., 2018). Wherein, Tagging-BiLSTM utilizes a Bi-LSTM-based architecture to
capture the context representation of the input sentences through and then uses an LSTM network to
decode the tag sequences. Tagging-Graph converts the joint extraction task into a directed graph by
designing a novel graph scheme.

(iv) RL-based joint extraction models include HRL(Takanobu et al., 2018), JRL(Zhou et al., 2019),
Seq2SeqRL(Zeng et al., 2019) and BIRL(Wang and Zhang, 2021). Wherein, HRL presents a
hierarchical RL framework decomposing the whole joint extraction process into a hierarchy of
two-level RL policies for relation extraction and entity extraction, respectively. JRL consists of two
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components, including a joint network and a RL agent (which refines the training dataset for anti-
noise). Seq2SeqRL applies RL strategy into a sequence-to-sequence model to take the extraction
order into consideration. BIRL proposes a novel bidirectional interaction RL model for jointly
extracting entities and relations with both inter-attention and intra-attention.

4.3 Experimental Settings

For a fair comparison, we build our TERL implementation for RE and joint extraction task with BERT
(Devlin et al., 2019), as BERT-based work has achieved the state-of-the-art performance in RE task.
Besides, we adopt BERT as the base encoder for both our TERL and other RL-based baselines for a fair
comparison. Although GPT is also tested, the experimental trend is consistent. All hyper-parameters are
tuned on the validation set. The word vectors are initialized using Word2Vec vectors and are updated
during training. DQN encoder (Mnih et al., 2015) with an additional linear layer is introduced here
for projecting to the embedding dimension. The main list of hyper-parameters is concluded as follows:
Number of layers is 6; Number of attention heads is 8; Embedding dimensionality is 256; Batch size is
512; Context length K = 30; Max epochs is 5; Dropout is 0.1; Learning rate is 10−4.

4.4 Performance Summary

F1 results with various labeled data on Relation Extraction (RE) task, are shown in Table 1. Average
results over 20 runs are reported, and the best performance is bold-typed. As our work can be viewed
as a plug-in unit for RL-based model, the variant model with help of our work is named with suffix
“+TERL”. RL-based methods outperforms all baseline models consistently. We could observe that
+TERL improve all the RL-based methods. More specifically, compared with the previous SOTA model
GradLRE, which defeats other models across various labeled data, +TERL is also more robust than
all the baselines. Considering low-resource RE when labeled data is very scarce, e.g. 5% for SemEval
and 3% for TACRED, the improvement from +TERL is significant: +TERL could achieve an average
3.15% F1 boost compared with GradLRE. Moreover, the improvement is still robust when more labeled
data can be used (i.e., 30% for SemEval and 15% for TACRED), and the average F1 improvement is
1.15%. Especially, RDSRE fall behinds DualRE in most cases, while it outperforms DualRE when
plugged with our TERL (i.e., RDSRE+TERL). This because the attention mechanism gives our TERL
an excellent ability of long-term credit assignment, which can capture the effect of actions on rewards
in a long sequence. We believe this phenomenon is meaningful and important for document-level RE
task. Moreover, a key difference between our TERL and previous RL-based RE SOTA methods, can
be concluded that this work dos not require policy regularization or conservatism to achieve optimal
performance, which is consistent with the observation in (Chen et al., 2021a) and (Zheng et al., 2022).
Especially, our speculation is that an algorithm based on time difference learning paradigm learns an
approximation function and improves the strategy by optimizing the value function.

Relation and entity joint extraction is a more challenging task, and the proposed Transformer enhanced
RL framework can be easily extend to this task. The experimental results on NYT and WebNLG datasets
are shown in Table 2. It can be concluded that, the proposed model consistently outperforms all previous
SOTA models in most cases, especially RL-base methods. Especially, RL-based methods usually defeats
encoder-decoder based methods. E.g., RL-based HRL and JRL significantly surpass Tagging-BiLSTM
and CopyR. Compared with HRL, JRL and BIRL, the their +TERL’s variants improve the F1 score by
3.94%, 3.66% and 4.22% on WebNLG dataset, respectively. This phenomenon shows that, our TERL-
based variant matches or exceeds the performance of SOTA model-free RL algorithms, even without using
dynamic programming. Note that, the behavior of optimizing the learning function in previous work,
may unfortunately exacerbate and exploit any inaccuracies in the approximation of the value function,
leading to the failure of policy improvement. Due to the fact that the proposed TERL does not require
explicit optimization with learning functions as the objective, it avoids the need for regularization or
conservatism, to a certain degree. Moreover, when we represent the distribution of policies, just like
sequence understanding, context allows the converter to identify which policies generate actions, thereby
achieving better learning and improving training dynamics.
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Table 1: Performance comparisons on Relation Extraction (RE) task (F1).

Model
SemEval TACRED

5%↑ 10%↑ 30%↑ 3%↑ 10%↑ 15%↑
LSTM(Hochreiter and Schmidhuber, 1997) 0.226 0.329 0.639 0.287 0.468 0.494
PCNN(Zeng et al., 2015) 0.418 0.513 0.637 0.400 0.504 0.525
PRNN(Zhang et al., 2017) 0.553 0.626 0.690 0.391 0.522 0.546
BERT(Devlin et al., 2019) 0.707 0.719 0.786 0.401 0.532 0.556
Self-Training(Rosenberg et al., 2005) 0.713 0.743 0.817 0.421 0.542 0.565
Mean-Teacher(Tarvainen and Valpola, 2017) 0.701 0.734 0.806 0.443 0.531 0.538
DualRE(Lin et al., 2019) 0.744 0.771 0.829 0.431 0.560 0.580
MetaSRE(Hu et al., 2021a) 0.783 0.801 0.848 0.462 0.570 0.589
RDSRE(Qin et al., 2018) 0.729 0.756 0.812 0.422 0.549 0.568
RDSRE+TERL(Ours) 0.787 0.801 0.853 0.435 0.560 0.574
DAGCN(Li et al., 2021) 0.781 0.801 0.838 0.464 0.570 0.587
DAGCN+TERL(Ours) 0.804 0.817 0.846 0.478 0.582 0.593
GradLRE(Hu et al., 2021b) 0.797 0.817 0.855 0.474 0.582 0.599
GradLRE+TERL(Ours) 0.820 0.833 0.864 0.488 0.594 0.605

4.5 Analysis and Discussion

This section investigates whether our TERL variant can remain robust performance on metric of imitation
learning (like GradLRE etc.,) on a subset of the dataset. Hence, we adopt baseline GradLER which is
based on imitation learning, by following the experimental setting of Percentile Behavior Cloning strategy
proposed by (Chen et al., 2021a), wherein we run behavior cloning on only the top X% of timesteps in
the corresponding dataset, following (Chen et al., 2021a). The Percentile Behavior Cloning variant of
GradLER is denoted as %GradLER here in Table 3. The percentile X% interpolates between standard
behavior cloning (X = 100%) that trains on the complete dataset and only cloning the best observed
sequence (X ≈ 0%), which in a manner trades off between better generalization by training on more data
with training a specialized model that focuses on a subset of the dataset. Table 3 shows experimental
results comparing %GradLRE to +TERL, when the value of X are chosen in {10%, 30%, 50%, 100%}.
From the experimental results, we conclude that, lower X reduces the performances of GradLRE,
however +TERL successfully exceeds the performance and pulls F1 metric back. Especially, when X
is 30, with enhancement from our TERL, 30%GradLRE+TERL could even defeats 50%GradLRE,
while 30%GradLRE lags behind 50%GradLRE obviously. Moreover, 50%GradLRE+TERL nearly
matches the performance of 100%GradLRE. This phenomenon indicates that, the improvement of our
TERL can be made to the specific subset, after training the distribution of the complete dataset.

Then, to evaluate the importance of accessing previous states, actions, and returns, we discuss the
context length K. This is interesting because when using frame stacking, it is usually assumed that the
previous state is sufficient for the RL algorithm. Fig. 2 and Fig. 3 is evaluated on RE task (with TACRED
dataset and 15% labeled data) and joint extraction task (with WebNLG dataset), respectively. TERL
with different K is loaded into baselines RDSRE, DAGCN and GradLRE, as well as baselines JRL,
Seq2SeqRL and BIRL. Experimental results show that performance of TERL is significantly worse when
K is small (i.e., K = 1 or K = 5), indicating that past information (i.e., previous states st, actions at,
and returnsr̂t) is useful for RE task. Especially, when K becomes small, the performances have fallen off
a cliff, even falling behind the original with side effect. Note that, the proposed framework still match the
MDP properties when K = 1, while the results is worse, which demonstrates the sequence understanding
is highly context dependent. When K = 20 and K = 30, +TERL defeats the corresponding original
comparative baseline and the performances have changed little when K becomes larger. Besides, the
context information (i.e., larger K) enables the transformer to figure out which actions are generated,
which can lead to higher returns.
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Table 2: Performance comparisons on relation and entity joint extraction task (Precision, Recall, and F1).

Model
NYT WebNLG

Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑
FCM(Kim, 2014) 0.561 0.118 0.193 0.472 0.072 0.124
LINE(Gormley et al., 2015) 0.340 0.251 0.277 0.286 0.153 0.193
MultiR(Hoffmann et al., 2011) 0.344 0.250 0.278 0.289 0.152 0.193
DS-Joint(Yu and Lam, 2010) 0.572 0.201 0.291 0.490 0.119 0.189
CoType(Ren et al., 2017) 0.521 0.196 0.278 0.423 0.175 0.241
SPTree(Li and Ji, 2014) 0.492 0.557 0.496 0.414 0.339 0.357
CopyR (Zeng et al., 2018) 0.569 0.452 0.483 0.479 0.275 0.338
Tagging-BiLSTM(Zheng et al., 2017) 0.624 0.317 0.408 0.525 0.193 0.276
Tagging-Graph(Wang et al., 2018) 0.628 1.632 0.844 0.528 0.194 0.277
HRL(Takanobu et al., 2018) 0.714 0.586 0.616 0.601 0.357 0.432
HRL+TERL(Ours) 0.750 0.604 0.641 0.631 0.368 0.449
JRL(Zhou et al., 2019) 0.691 0.549 0.612 0.581 0.334 0.410
JRL+TERL(Ours) 0.712 0.582 0.613 0.610 0.344 0.425
Seq2SeqRL(Zeng et al., 2019) 0.779 0.672 0.690 0.633 0.599 0.587
Seq2SeqRL+TERL(Ours) 0.802 0.692 0.711 0.665 0.617 0.611
BIRL(Wang and Zhang, 2021) 0.756 0.706 0.697 0.660 0.636 0.617
BIRL+TERL(Ours) 0.794 0.727 0.725 0.693 0.655 0.643

Table 3: Performance comparisons on Percentile Behavior Cloning (F1).

Model
TACRED

3%↑ 10%↑ 15%↑
10%GradLRE 0.190 0.233 0.240
10%GradLRE+TERL 0.342 0.416 0.424
30%GradLRE 0.356 0.437 0.449
30%GradLRE+TERL 0.410 0.499 0.508
50%GradLRE 0.379 0.466 0.479
50%GradLRE+TERL 0.464 0.564 0.575
100%GradLRE 0.474 0.582 0.599
100%GradLRE+TERL 0.488 0.594 0.605

5 Conclusion

In this work, we try to combine transformers and Reinforcement Learning (RL) based sequence relation
extraction (RE), and extend Transformer paradigm to RL. We design a novel framework (TERL) that
abstracts RL-based RE as a sequence understanding task, which could leverage the simplicity and
scalability of the Transformer-based architecture for understanding textual sequence, as well as the
advancements released by pre-training language modeling (such as the BERT/GPT series). Moreover, the
proposed framework can also be used as a plug-in unit for any RL-based RE architecture, and be extended
to relation and entity joint extraction task. Experimental results show that the proposed TERL framework
can improve many state-of-the-art RL-based RE methods.
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Figure 2: Effect of context length K on RE task.
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Figure 3: Effect of context length K on joint extraction task.
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