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Abstract

Entity relation extraction, as a core task of information extraction, aims to predict the relation of
entity pairs identified by text, and its research results are applied to various fields. To address
the problem that current distantly supervised relation extraction (DSRE) methods based on large-
scale corpus annotation generate a large amount of noisy data, a DSRE method that incorporates
selective gate and noise correction framework is proposed. The selective gate is used to reason-
ably select the sentence features in the sentence bag, while the noise correction is used to correct
the labels of small classes of samples that are misclassified into large classes during the model
training process, to reduce the negative impact of noisy data on relation extraction. The results
on the English datasets clearly demonstrate that our proposed method outperforms other base-
line models. Moreover, the experimental results on the Chinese dataset indicate that our method
surpasses other models, providing further evidence that our proposed method is both robust and
effective.

1 Introduction

Entity Relation Extraction (RE) is a crucial task in information extraction that aims to identify the rela-
tion between entity pairs in text. The findings of RE have practical applications in several fields, such
as the construction of knowledge graphs (KG), semantic web annotation, and the development and opti-
mization of question-and-answer systems and search engines, which have a significant impact on daily
life. However, the task of RE is challenging due to the limited availability of annotated data. To address
this challenge, distant supervision has been proposed, which automatically annotates data, significantly
increasing the number of annotated samples.

However, distant supervision suffers from a strong hypothesis, leading to a large number of noisy
labels during data annotation. Training on a dataset with noisy labels can result in model overfitting to
the noise, which adversely impacts the model’s performance (Li et al., 2022b; Christou and Tsoumakas,
2021).

To mitigate these issues, this paper proposes a novel method for RE that incorporates selective gate
and the end-to-end noise correction method. In our model, selective gate is utilized to rationally select
sentence features in the sentence bag, while noise correction is used to correct the labels of small classes
of samples that are misclassified into larger classes during model training. These techniques reduce the
negative impact of noisy data on the distant DSRE model. Additionally, since common word embedding
models, such as Word2Vec and Glove, produce static vectors that overlook contextual semantics and
the flexible use of multiple-meaning words, this paper introduces a pre-trained language model (PLM) to
encode and extract features from sentences. This approach provides richer sentence semantic features, ef-
fectively improving prediction accuracy and reducing training time. Experiment results demonstrate that
this method significantly outperforms the baseline models, improving the DSRE model’s performance.

The major contributions of this paper can be summarized as follows:
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• We propose a DSRE method, named PLMG-Pencil, which combines PLM and selective gate and
introduces an end-to-end noise correction training framework called pencil. Selective gate prevents
the propagation of noisy representations and pencil corrects noise labels during the training process,
reducing the impact of noise on the dataset and improving the performance of the DSRE model.

• We present a novel algorithm for DSRE that combines selective gate mechanism and pencil frame-
work within a three-stage training process. This process involves training the backbone model,
gradually correcting noisy labels, and subsequently fine-tuning our model using the corrected data.
Empirical experiments demonstrate the robustness and effectiveness of our proposed method.

• Our experiments on three different Chinese and English datasets demonstrate that effective
sentence-level feature construction methods and training methods, combined with noise correction,
are crucial for improving the performance of models on DSRE tasks.

2 Related Work

2.1 Distantly Supervised Relation Extraction Models

Numerous RE models have been proposed, with deep learning-based models like convolutional neural
networks (CNNs) being the current mainstream. CNNs can automatically extract features from sen-
tences, making them a fundamental model for future research(Zhang and Wallace, 2015). However, the
maximum pooling operation used in this model ignores important structural and valid information about
the sentence.

Socher (2012) was the first to propose a recurrent neural network (RNN) to train relational extractors
by encoding sentences. In addition, Zeng (2018) proposed a piecewise convolutional neural network
(PCNN) that uses maximum pooling processing based on CNN to effectively preserve the information
features of long texts while also reducing the time complexity. Zhou (2016) introduced an attention
mechanism based on the long short-term memory network (LSTM) to form the classical BiLSTM-ATT
model. The model can reasonably assign weights to features to obtain a better representation of the sen-
tence. Riedel (2010) proposed a multi-instance learning (MIL) framework with a basic annotation unit of
a sentence bag containing a common entity pair, rather than a single individual sentence. For sentence bag
level labeled data, the model can be made to implicitly focus on correctly labeled sentences through an
attention mechanism, thus learning from noisy data to become a stable and robust model. Subsequently,
Ye and Ling (2019) proposed a DSRE method based on the intra- and inter-sentence bag, combining
sentence-level and bag-level attention for noise correction. Alt(2019) introduced a transformer-based
PLM for DSRE. Chen (2021) proposed a new contrastive instance learning method (CIL) to further
improve the performance of DSRE models. Further, Li (2022a) introduces a hierarchical contrast frame-
work (HiCLRE) on top of Chen’s CIL method to enhance cross-layer semantic interaction and reduce
the impact of noisy data. These methods are generally neural network driven and use neural network
models that have strong generalization capabilities compared to traditional methods.

2.2 Noise Correction Methods

There are three categories of noise correction methods for DSRE: rule-based statistical methods, multi-
instance learning-based methods, and adversarial and reinforcement learning-based methods. Multi-
instance learning-based approaches have received the most attention from scholars, due to their effec-
tiveness in correcting noise labels as demonstrated by Yao (2018).

In deep neural networks, designing robust loss functions has also proven effective in coping with noise
by making models robust during training. Several studies have examined the robustness of different loss
functions such as mean square loss and cross-entropy loss. Zhang (2018) combined the advantages of
mean absolute loss and cross-entropy loss to obtain a better function. Li (2020a) proposed DivideMix
framework that separates noisy samples using a Gaussian mixture model before training the model.
Tanaka (2018) proposed an optimization strategy while Jiang(2018) introduced MentorNet technique for
regularizing deep CNNs on test data with weakly supervised labels.
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Moreover, Wu(2017) and Shi(2018) have investigated adversarial training based approaches where
simulated noise is mixed with real samples during training in order to improve model’s robustness against
noisy datasets by distinguishing between real versus noisy samples. Although this type of approaches
improves corpus quality up to some extent, it requires simultaneous training of two models which can
lead to instability and difficulty when applied directly into production systems at scale.

3 Methodology

To mitigate the impact of noise on the DSRE model, this paper proposes a two-pronged approach, PLM-
based selective gate pencil (PLMG-Pencil) method. As shown in Figure 1, first, we encode the text
using PLM and employ the selective gate mechanism to select sentence-level features that contribute to
the bag-level feature. Second, we replace all labels with soft labels and train the model in the pencil
framework. This framework uses soft labels that are updated during training and can be corrected for
noisy data. This approach reduces the chances of noise being selected in the selective gate, even if it
cannot be corrected in the pencil framework. These two methods complement each other, reducing the
degree of noise interference and improving the model’s RE performance. In this section, we will describe
our approach from the backbone model architecture, noise correction framework, and the RE algorithm.

Figure 1: Overview of PLMG-Pencil

3.1 Backbone Model

This paper proposes the PLM-based selective gate as the backbone model, inspired by the Entity-aware
Self-attention Enhanced selective gate (SeG) framework proposed by Li (2020b). The primary architec-
ture of our model is presented in the backbone model structure part in Figure 1, and it comprises two
main components: (1) PLM, structured to encode sentence, entity, and location features for semantic
enhancement. (2) Selective gate, which enhances the representation of bag-level features by assigning
weights to different sentences in the bag. The selective gate mechanism reduces the impact of noise on
the model by weighing the contribution of each sentence in the bag.

3.1.1 Input Embeddings
To convert a sentence into a sequence of tokens, we use the BERT tokenizer, which results in a token
sequence S = {t1, t2, . . . , e1, . . . , e2, . . . , tL}, where tn denotes tokens, e1 and e2 denote the head and
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tail entities, respectively, and L represents the maximum length of the input sentence. We add two special
tokens, [CLS] and [SEP], to signify the beginning and end of the sentence, respectively.

However, the [CLS] token is not ideal for RE tasks as it only serves as a pooling token to represent
the entire sentence. Therefore, to incorporate entity information into the input, we introduce four tokens:
[unused1], [unused2], [unused3], and [unused4], which mark the start and end of each entity.

3.1.2 Selective Gate Enhanced Bag Representation
To obtain an effective bag representation, we introduce the selective gate mechanism, which dynamically
calculates the weight of each sentence in the bag. We first represent each sentence using a PLM, such as
BERT, which accepts structured sequences of tokens S that integrate entity information e1 and e2. The
PLM’s sentence encoder then sums the embeddings, including tokens, entities, and position, to generate
context-aware sentence representations H = {ht1 , ht2 , . . . , he1 , . . . , he2 , . . . , htL}:

H = PLM(S) (1)

where htn denotes the hidden features of the token tn and PLM represents a pre-trained language model,
such as BERT, that serves as the sentence encoder. We use special tokens to encode sentences to generate
structural representations of sentences for RE task, including [CLS] for sentence-level pooling, its hidden
features denoted as h[CLS]. [unused1] and [unused2] mark the start and end of the head entity, [unused3]
and [unused4] for the tail entity.

heh = mean(ht[unused1]
, ht[unused2]

) (2)

het = mean(ht[unused3]
, ht[unused4]

) (3)

Representations of two entities, heh and het , are generated by Equation (2) and Equation (3). The
hidden features of these special tokens are denoted as ht[unused1]

, ht[unused2]
, ht[unused3]

and ht[unused4]
.

The sentence representations are generated using the following formulas:

hSi = σ([heh || het || h[CLS]] ·WS) + bS (4)

where || represents the concatenation operation, σ is the activation function, WS is a weight matrix, and
bS is the bias.

Bag Representation The use of PLMs allows us to obtain sentence representations Sn, which can be
stacked to form the initial bag representation B = {S1, S2, ..., Sn}. While selective attention modules are
commonly used to aggregate sentence-level representations into bag-level representations, our proposed
model leverages SeG’s novel selective gate mechanism for this purpose. Specifically, when dealing with
noisy data, the selective attention mechanism may be inefficient or ineffective if there is only one sentence
in the bag, or if that sentence is mislabeled. Given that approximately 80% of the RE benchmark datasets
contain single-sentence bags with mislabeled instances, our selective gate mechanism offers a more
effective solution by dynamically reducing the alignment of gating values with instances of mislabeling,
thereby preventing the propagation of noisy representations.

To generate gate values for each Sj , we employ a two-layer feed-forward network with the following
formula:

gj = σ(W (g1)σ(W (g2)Sj + b(g2)) + b(g1)),∀j = 1, ...,m (5)

We have W (g2) ∈ R3dc×dh and W (g1) ∈ Rdh×dh , σ(·)denotes the activation function and gi ∈ (0, 1),
after that, values of the gates are calculated and the mean pooling aggregation is performed in the bag to
generate bag-level representation thus the further relation classification can be performed. The formula
of this process is as follows, and m denotes the size of the sentence bag.

Q =
1

m

∑m

j=1
Sjgj (6)
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3.1.3 Classifier
We feed Q into a multi-layer perception (MLP) and apply the |c|-way softmax function to determine the
relation between the head and tail entities, where |c| represents the number of distinct relation classes.
The formula for this process is as follows:

p = Softmax(MLP(Q)) ∈ R|c| (7)

3.1.4 Model Learning
To train the model, we minimize the negative log-likelihood loss plus an L2 regularization penalty, which
is expressed by the following formula:

LNLL = − 1

|D|

|D|∑
k=1

log pk + β||θ||22 (8)

where pk represents the predicted distribution of the k-th example in the dataset D from Equation (8).
The term β||θ||22 is the L2 regularization penalty, where θ is the set of model parameters, and β controls
the strength of the regularization.

By minimizing this loss function using an optimization algorithm such as stochastic gradient descent,
the model learns to predict the correct relation between the head and tail entities.

3.2 Noise Correction Framework

Figure 2: Pencil Framework

In this section, we introduce pencil, a noise correction framework based on the end-to-end noise-
labeled learning correction framework proposed by Yi and Wu (2019). The framework is illustrated in
Figure 2, with solid arrows representing forward computation and dashed arrows indicating backward
propagation.

The pencil framework is designed to update both the network parameters and the data labels simulta-
neously using gradient descent and backpropagation. To accomplish this, the model generates a vector ỹ
to construct soft labels.

yd = Softmax(ỹ) (9)

With Equation (9), ỹ can be updated by gradient descent and backpropagation. The following equation
shows the initialized representation of the label with noise in the initial value.
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ỹ = Kŷ (10)

where ŷ is the original label with noise, and K is a large constant which ensures yd and ŷ has the most
similar distribution in Equation (9), i.e., yd ≈ ŷ.

An intricately devised loss function is employed to correct the noise labels during the model training
procedure, with Le and Lo as penalty terms and Lc as the classification loss. This loss function incorpo-
rates two hyperparameters, denoted as α and β, which can be flexibly adjusted to accommodate diverse
datasets with varying proportions of noisy data. Specifically, increasing the value of α and reducing the
value of β will yield a diminished degree of label correction. In a c-class classification problem, the loss
function is presented as follows.

L =
1

c
Lc + αLo +

β

c
Le (11)

where c denotes the number of classes.
The classification loss, which works as the main loss of the model guiding the model to learn, is

measured using the dual form of the KL divergence between the predicted distribution and the soft
labels. The formula for the classification loss Lc is given by:

Lc =
1

n

n∑
i=1

c∑
j=1

fj(xj ; θ) log

(
fj(xi; θ)

ydij

)
(12)

where n denotes the batch size and ydij denotes the corresponding soft label. In this equation, KL di-
vergence is used in a symmetric form, which has been shown to perform better than using it directly
in this framework in previous studies (Wu et al., 2017). Based on the gradient of the loss function Lc,
it can be observed that a larger gap between the predicted value and the true label tends to correspond
to a larger gradient. In this framework, the model parameter and noise labels can be updated together,
which effectively serves to balance the disparity between the prediction and the true label, facilitating
the gradual correction of noisy labels.

To avoid falling into a local optimum, the model sets the entropy loss Le, using the predicted values
of the network and its calculation of the cross-entropy loss. The formula is as follows.

Le = −
1

n

n∑
i=1

c∑
j=1

fj(xi; θ) log fj(xi; θ) (13)

The compatibility loss function Lo is formulated as follows, which uses noise labels and soft labels
to calculate the cross-entropy loss so as to avoid large deviations between the corrected label and the
original noise label.

Lo = −
1

n

∑n

i=1

∑c

j=1
ŷij log y

d
ij (14)

3.3 PLMG-Pencil Relation Extraction Method
This paper presents a RE algorithm that utilizes selective gate and noise correction, as shown in Algo-
rithm 1. The complete training process of the algorithm is described below.

• Stage 1 - Backbone Network Learning Phase: Initially, the PLMG-Pencil network is trained from
scratch with a larger fixed learning rate. The noise in the data is not processed in this stage, and
the loss calculation formula only utilizes the classification loss. The network parameters obtained
at this stage serve as the initialized network parameters for the next training step.

• Stage 2 - Model Learning and Noise Correction Phase: In this stage, the network parameters
and label distributions are updated together using the model, thus, noisy labels can be corrected.
To avoid overfitting the label noise, the label distribution is corrected for the noise in the original
labels. We obtain a vector of label distributions for each sentence bag at the end of this stage. Due
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to the dissimilarity of the learning rate used for soft labels update and the global model parameters
update, a hyperparameter λ is set to adjust it.

• Stage 3 - Final Fine-Tuning Phase: The label distribution learned by the model in the previous
stages are utilized to fine-tune the network in this stage. Sample labels in the training set are not
updated, and the network parameters are updated using the classification loss as the loss function of
the model. There are no additional adjustments to the learning rate, and the same decay rules are
followed for general neural network training.

Algorithm 1: PLMG-Pencil Distantly Supervised Relation Extraction Algorithm
Input: Dataset D = xi, ỹi(1 < i < n), epoch of stages T1, T2.

Stage 1:
Initialization: t← 1.
while t ≤ T1 do

Train and update the model parameters θ, while calculating the loss in equation (14) with
α = 0 and β = 0. Hold off on using ỹi;

t← t+ 1;

Stage 2:
Initialization: ỹi = Kŷi.
while T1 ≤ t ≤ T2 do

Train and update the model parameters θ and ydi ;
t← t+ 1;

Stage 3:
while T2 ≤ t do

Train and update the model parameters θ and ydi ;
Train and update the model parameters θ, while calculating the loss in equation (14) with
α = 0 and β = 0. Do not update sample labels.

t← t+ 1;
Output: θ, noise-corrected labels.

4 Experiments

4.1 Datasets
We evaluate our proposed model on three different datasets: the New York Times (NYT10) dataset and
the GDS dataset in English, the SanWen dataset in Chinese. Datasets statistics are shown in Appendix
A.
NYT10 (Riedel et al., 2010): This dataset is widely used in models based on DSRE, which is annotated
with 58 different relations and the NA relation account for over 80% of the total. It has 522K and 172K
sentence sets in the training and test sets respectively.
GDS (Jat et al., 2018): This dataset is created from the Google RE corpus, which contains 5 relations. It
has 18K and 5K instances in the training and test sets, respectively.
SanWen (Xu et al., 2017): This dataset contains 9 relations from 837 Chinese documents. It has 10K,
1.1K, and 1.3K sentences in the training set, test set, and validation set respectively.

4.2 Baselines
To validate the effectiveness of the RE model proposed in this paper, we compare it with mainstream
RE methods on the three datasets mentioned above. The following baseline methods are used.
Mintz (Mintz et al., 2009): It concatenates various features of sentences to train a multi-class logistic
regression classifier.
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PCNN+ATT (Lin et al., 2016): It uses selective attention to multiple instances to alleviate the problem
of mislabelling.
RESIDE (Vashishth et al., 2018): It exploits the information of entity type and relation alias to add a
soft limitation for relation classification.
MTB-MIL (Baldini Soares et al., 2019): It proposes a method for matching gaps and learning sentence
representations through entity-linked text.
DISTRE (Alt et al., 2019): It combines the selective attention with its PLM.
SeG (Li et al., 2020b): It uses an entity-aware embedding-based self-attentive enhancement selective
gate based on PCNN+ATT to rationally select sentence features within sentence bags to reduce the
interference of noise.
CIL (Chen et al., 2021): It proposes a comparative instance learning method in the MIL framework.
HiCLRE (Li et al., 2022a): It incorporates global structural information and local fine-grained
interactions to reduce sentence noise.

4.3 Parameter Settings
Table 1 presents the hyperparameter settings used in our experiments. The English datasets are trained
on the bert-base-uncased model from the Huggingface platform, while the Chinese dataset uses the bert-
base-chinese model. To effectively train our model, we use the parameter settings from Yi and Wu (2019)
as initialization settings for our experiments. The model’s dropout rate, learning rate, α, β, batch size,
and epoch settings are shown in the table.

Params Dropout LR α β BatchSize Epoch 1 Epoch 2

Value 0.5 0.035 0.1 0.4 64 15 20

Table 1: Parameter Settings. Epoch 1 and Epoch 2 mark the end of Stage 1 and Stage 2, respectively,
and LR stands for the learning rate.

It is important to note that the optimal values for α and β may vary based on the level of noise in
different datasets. Therefore, these values should be adjusted accordingly to improve the loss calculation
and enhance the overall performance of the model.

4.4 Results
To evaluate the performance of our model in DSRE tasks, we use AUC and P@N values as evaluation
metrics. AUC measures the area under the ROC curve, while P@N indicates the average accuracy of top
N instances. Finally, P@M represents the average of these three P@N results.

4.4.1 Evaluation on English Dataset
Table 2 and Table 3 present a comparison of our proposed model with baseline models on dataset GDS
and NYT10, respectively. Our model achieves promising results, as shown by the following observations:
(1) Our proposed model shows competitive performance in terms of AUC values on both datasets. As
shown in Table 2, on the GDS dataset, the AUC values of our model reach comparable levels with CIL
and HiCLRE. Furthermore, as shown in Table 3, on the NYT10 dataset, our model outperforms CIL and
DISTRE by 4.1% and 5.2% in AUC values respectively. (2) Our model demonstrates a clear advantage
in terms of P@N values. On the NYT10 dataset, the P@100 value is 2.5% higher than CIL, which uses
a contrast learning framework. The maximum difference in P@N values appears on the P@300 value,
of which our method is 5.9% higher. In comparison to the DISTRE model, which also uses the PLM and
MIL framework, our model outperforms it by 16%, 13.5%, and 12.7% on P@100, P@200, and P@300
values respectively.

We further conduct ablation experiments to highlight the benefits of the pencil framework. Specifi-
cally, we train our model using a conventional MIL training framework. When comparing the results
of the PLMG model with the PLMG-Pencil model on the GDS dataset, we observe a 0.2% decrease in
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the AUC value and a 0.1% decrease in the P@1K value for the PLMG model. These findings provide
compelling evidence for the effectiveness of the pencil framework and our proposed algorithm. On the
dataset NYT10, the proposed model shows a significant improvement compared to the model without
pencil framework. Precisely, we observe a 6%, 2.5% and 2% improvement in P@100, P@200 and
P@300 values respectively.

Dataset Models AUC P@500 P@1K P@2K P@M

GDS

Mintz† (Mintz et al., 2009) - - - - -
PCNN-ATT† (Lin et al., 2016) 79.9 90.6 87.6 75.2 84.5
MTB-MIL† (Baldini Soares et al., 2019) 88.5 94.8 92.2 87.0 91.3
RESIDE† (Alt et al., 2019) 89.1 94.8 91.1 82.7 89.5
REDSandT† (Christou and Tsoumakas, 2021) 86.1 95.6 92.6 84.6 91.0
DISTRE† (Alt et al., 2019) 89.9 97.0 93.8 87.6 92.8
CIL† (Chen et al., 2021) 90.8 97.1 94.0 87.8 93.0
HiCLRE(Li et al., 2022a) 90.8 96.6 93.8 88.8 93.1

PLMG-Pencil 91.0 95.4 94.1 88.8 92.8
-without pencil (PLMG) 90.8 95.4 94.0 89.0 92.8

Table 2: Model Performances on GDS. (†) marks the results are reported in the previous research.

Dataset Models AUC P@100 P@200 P@300 P@M

NYT10

Mintz† (Mintz et al., 2009) 10.7 52.3 50.2 45.0 49.2
PCNN-ATT† (Lin et al., 2016) 34.1 73.0 68.0 67.3 69.4
MTB-MIL† (Baldini Soares et al., 2019) 40.8 76.2 71.1 69.4 72.2
RESIDE† (Alt et al., 2019) 41.5 81.8 75.4 74.3 77.2
REDSandT† (Christou and Tsoumakas, 2021) 42.4 78.8 75.0 73.0 75.3
DISTRE† (Alt et al., 2019) 42.2 68.0 67.0 65.3 66.8
CIL† (Chen et al., 2021) 43.1 81.5 75.5 72.1 76.9
HiCLRE(Li et al., 2022a) 45.3 82.0 78.5 74.0 78.2

PLMG-Pencil 47.0 84.0 80.5 78.0 80.8
-without pencil (PLMG) 47.0 78.0 78.0 76.0 77.3

Table 3: Model Performances on NYT10. (†) marks the results are reported in the previous research.

Figure 3 shows the PR curves for our proposed model and the baseline model. Our model clearly
outperforms the baselines, particularly compared to the DISTRE model, which also uses PLM and MIL.
Based on the ablation experiments conducted on the NYT10 dataset, it can be observed that the PLMG-
Pencil method demonstrates a notable superiority in terms of precision at N (P@N) values. These results
suggest that the selective gate has a positive impact on constructing sentence bag features and improving
model performance. Furthermore, the pencil framework effectively corrects for noisy samples during
training, leading to improved performance.

4.4.2 Evaluation on Chinese Dataset
We conduct additional experiments on the SanWen dataset to further validate the effectiveness of the
pencil framework and selective gate mechanism. Figure 4 presents the model performances on this
dataset.

Our model exhibits superior performance compared to HiCLRE, which utilizes the contrast learning
framework, with a notable increase of 4.4% in AUC values. Furthermore, when compared to the SeG
model that employs the selective gate mechanism, our PLMG-Pencil model, which incorporates the
pencil approach, demonstrates a significant enhancement in AUC values. The ablation experiment further
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Figure 3: PR-Curve on NYT10

validates the effectiveness and robustness of our method. These results highlights the positive influence
of the PLM and noise correction framework on the RE task.

Figure 4: AUC Values of Models on SanWen

Based on the experimental results and the analysis of the dataset features described in Section 4.1, our
model tends to perform better on datasets with more relations, such as NYT and SanWen. Compared
with baselines, our model can achieve greater advantages on such datasets. In addition, the experimental
results on the NYT10 dataset reveal that the pencil framework generates more significant performance
enhancements compared to those obtained through experiments performed on the GDS dataset. The GDS
dataset employs various methods to mitigate noise interferences and thus has higher quality annotations
(Jat et al., 2018). Moreover, the pencil framework is designed to conduct a noise correction process
for optimizing model performance, thus, it tends to bring larger improvements on datasets with greater
amounts of noisy data.

5 Conclusion

In this paper, we propose the PLMG-Pencil method for DSRE. Our approach automatically learns the
weights of different sentences in a sentence bag and selects the features that best represent the sentence
bag through a gate mechanism. Additionally, we introduce a noise correction framework based on end-
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to-end probability with noise label learning for improved performance in RE. The experimental results
clearly demonstrate that our proposed model outperforms baselines and achieves significant improvement
in the RE task. Our approach shows great potential for practical application in the field of information
extraction.
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A Datasets statistics

Dataset #Relation #Train #Dev #Test Language

NYT 58 520K - 172K English
GDS 5 18K - 5K English

SanWen 9 10K 1.1K 1.3K Chinese

Table 4: Datasets statistic.
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