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Abstract

Cascade decoding framework has shown superior performance on event extraction tasks. How-
ever, it treats a sentence as a sequence and neglects the potential benefits of the syntactic struc-
ture of sentences. In this paper, we improve cascade decoding with a novel module and a self-
supervised task. Specifically, we propose a syntax-aware aggregator module to model the syntax
of a sentence based on cascade decoding framework such that it captures event dependencies as
well as syntactic information. Moreover, we design a type discrimination task to learn better syn-
tactic representations of different event types, which could further boost the performance of event
extraction. Experimental results on two widely used event extraction datasets demonstrate that
our method could improve the original cascade decoding framework by up to 2.2% percentage
points of F1 score and outperform a number of competitive baseline methods.

1 Introduction

As an important yet challenging task in natural language processing, event extraction has attracted much
attention for decades (Chen et al., 2015; Nguyen and Grishman, 2018; Zheng et al., 2019; Lai et al., 2021;
Wang et al., 2021; Li et al., 2022; Ma et al., 2022; Zhou et al., 2022). This task aims at predicting event
types, triggers and arguments from a given sentence. We display three examples in Figure 1. Given an
example sentence (a) “In 2018, Chuangwei Tech acquired equity of Qianhong Electronics for 1.5 billion
...”, an event extraction system is able to recognize the trigger “acquired”, that corresponds to the event
type “invest”, and the argument “Chuangwei Tech”, that plays the subject role of “sub” in the event.

A great number of methods have been developed for event extraction. Early methods formulate the
event extraction as a sequence labeling task, where each token is considered as a candidate for labeling.
They perform trigger extraction and argument extraction with joint learning (Li et al., 2013; Nguyen
et al., 2016; Nguyen and Nguyen, 2019), which easily causes the label conflict issue. Considering the
precedence relationship between the components in an event, pipeline methods are explored to perform
trigger and argument extraction in separate stages (Chen et al., 2015; Du and Cardie, 2020; Liu et al.,
2020; Ma et al., 2022). But the error is accumulated along with the pipeline. Recently, a cascade
decoding framework (Xu et al., 2020; Sheng et al., 2021) is proposed to extract events with a cascade
tagging strategy, which could not only handle the label conflict issue, but also avoid error propagation.

In above methods, a sentence is treated as a sequence, and methods suffer from the low efficiency
problem in capturing long-range dependency. We take sentence (a) in Figure 1 as an example. The argu-
ment “1.5 billion” is far from the trigger “acquired” based on the sequential order while they are closely
connected via the dependency arc. Therefore, it is necessary to take advantage of the syntactic structure
to capture the relations between triggers and arguments. Some researches managed to include syntactic
information of sentences in event extraction. Chen et al.(Chen et al., 2015) first employed dependency
trees to conduct event extraction. Nguyen et al.(Nguyen and Grishman, 2018) and Yan et al.(Yan et al.,
2019) treated each dependency tree as a graph and adopted Graph Convolution Network (GCN) (Kipf
and Welling, 2017) to represent the sentence. More recent studies strengthened the graph representation
via gate mechanism to filter out noisy syntactic information (Lai et al., 2020) or empowered the graph
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Figure 1: Three examples of event extraction. We annotate the event types with blue boxes under the
triggers, and label the argument roles with orange boxes under the arguments.

encoder with more advanced Transformer (Ahmad et al., 2021). These methods could effectively solve
the long-range dependency issue. However, they either follow the joint learning paradigm or pipeline
paradigm thus still encounter the issue of label conflict or error propagation. In this paper, we develop
our approach modeling syntactic information for event extraction based on cascade decoding framework.
To achieve this, two main challenges should be addressed.

First, cascade decoding represents event types, triggers as well as arguments in the format of a triple.
It sequentially predicts components in triples as subtasks and learns the implicit dependencies of the
subtasks. It is not trivial to design a syntax encoder which is customized for the cascade decoders. In this
paper, we propose a novel Syntax-enhanced Aggregator which could not only integrate the information
from the precedent subtask with the current subtask but also model the syntactic structure of sentences.
Moreover, this module could fuse the heterogeneous features together. In detail, our aggregator processes
both subtask dependency and syntactic information via two channels. The final representation will be
fused based on the alignment between tokens of a sentence and components in a dependency tree. Such
aggregators are deployed in cascade decoders.

Second, existing methods involving syntactic structure rarely consider the interaction among event
types. As examples (a) and (b) shown in Figure 1, the sentences of the same event type usually have
similar syntactic structure despite different involved entities. In contrast, the sentences of the different
event types usually have different syntactic structure despite similar involved entities, as examples (a)
and (c). We design Contrastive Learning of syntactic representation to capture the interactions between
sentences. Specifically, we define a type discrimination task to distinguish whether two sentences be-
long to the same event type based on their syntactic representations. This is jointly trained with event
extraction task.

We conduct experiments on two event extraction datasets, FewFC (Zhou et al., 2021) and DuEE (Li
et al., 2020b). The experiments show that compared with original cascade framework, our method can
clearly perform better on both datasets. Our method also outperforms competitive baseline methods that
represent the state-of-the-art on event extraction tasks. To reveal the working mechanism of our method,
we also conduct ablation study and visualization that shed light on where the improvement comes from.

We summarize the contributions of this paper as follows: (1) We propose a novel syntax-enhanced
aggregator to model the syntactic structure of sentences, which is a good fit for the cascade decoding
framework. This aggregator is able to model syntax and fuse with dependencies of events. (2) To

CC
L 
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 748-760, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

749



Computational Linguistics

further benefit from the syntax modeling, we design a type discrimination task to refine the syntactic
representation via contrastive learning. (3) We empirically show the effectiveness of our method on two
datasets. Our proposed method outperforms the baseline methods with remarkable margins based on F1
score of all measurement metrics.

2 Background

2.1 Problem Formulation
The task of event extraction aims at identifying event triggers with their types and event arguments with
their roles. Specifically, a pre-defined event schema contains an event type set C and an argument role set
R. Given a sentence x = {w1, w2, ..., wn}, the goal is to predict all events in gold set Ex of the sentence
x, where the components of Ex are in the format of triples (c, t, ar). Here, c ∈ C is an event type, t is a
trigger word in sentence x, and ar is an argument word corresponding to the role r ∈ R. A dataset D
consists of a set of (x, Ex).

2.2 A Cascade Decoding Framework
To solve the task, we follow the existing cascade decoding approach, CasEE method (Sheng et al., 2021),
which is proposed to predict the events by maximizing the following joint likelihood:∏

(x,Ex)∈D

[
∏

(c,t,ar)∈Ex

P ((c, t, ar)|x)]

=
∏

(x,Ex)∈D

[
∏
c∈C

P (c|x)
∏
t∈Tx

P (t|x, c)
∏

ar∈Ax,r

P (ar|x, c, t)], (1)

where Tx and Ax,r denote trigger and argument sets of x, respectively.
The joint likelihood explicates the dependencies among the type, trigger, and argument. The order

of cascade decoding indicates that the framework first learns a Type Decoder P (c|x) to identify the
event types in the sentence. Then, it extracts the trigger words from the sentence via a Trigger Decoder
P (t|x, c) which corresponds to the detected type. After that, an Argument Decoder P (ar|x, c, t) is
developed to extract role-specific arguments.

In the cascade decoding approach, the decoders are built upon a sharing BERT encoder:

{h1,h2, ...,hn} = BERT(x), (2)

where H = {h1,h2, ...,hn} is the hidden representation of x for downstream decoding. Next, an
attention layer followed by a simple feed-forward neural network is leveraged as the type decoder to
predict the event type. We denote it as:

P (c|x) = TypeDecoder(H). (3)

After that, the predicted type embedding c is concatenated with each token representation. This will be
further processed via a conditional layer normalization (CLN) (Lee et al., 2021) layer and a self-attention
layer to form the hidden representation Hc. A pointer network takes charge of predicting the position of
start and end indexes based on Hc. We denote the above trigger extraction procedure as follows:

Hc = Aggregator(H, c),

P (t|x, c) = Pointer(Hc). (4)

For argument decoder, the trigger information is concatenated with Hc and processed with a CLN to
form the hidden representation Hct. Given Hct, the start and end indexes of role-specific arguments are
then predicted as follows:

Hct = Aggregator(Hc, t),

P (ar|x, c, t) = Pointer(Hct). (5)

More details could be found in the original paper (Sheng et al., 2021).
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Figure 2: The overall architecture of our approach. The network modules are annotated with solid boxes
and data is annotated with imaginary boxes. The left part is the cascade decoding framework. We modify
the original aggregators to syntax-enhanced aggregators. The middle part shows the details of proposed
syntax-enhanced aggregator in trigger decoder, where dependency and syntactic information are carried
via two channels and eventually fuse together in fusion layer. The right part shows the details of type
discrimination task, where syntactic representations belonging to the same event type are learned to be
closer. Please note the imaginary line from the aggregator to the discriminator is meant to show the input
of the discriminator rather than forward pass of the architecture.

3 Our Approach

The cascade decoding framework that we described in Section 2.2 decodes different components of
events in a cascading manner, the inputs of which are hidden representations of tokens featured with
subtask dependencies. Our approach follows the framework, but we improve it by introducing a module
to fuse the syntactic information over the decoding process and a self-supervised task to further refine
the syntactic representation. Specifically, we propose Syntax-enhanced Aggregators to take place of the
original aggregators. The proposed aggregator elaborately models the syntactic structure of the sentence
and fuses syntax with the original hidden representation, as we will explain in Section 3.1. To better
capture the interactions among event types, we design a Type Discrimination Task to distinguish whether
the representations belonging to the same type are syntactically close or not, which will be presented in
Section 3.2. Eventually, event detection and type discrimination generate their training objectives and
we join them together, as we will describe in Section 3.3. The overall architecture of our approach is
displayed in Figure 2.

3.1 Syntax-enhanced Aggregator

Recall that we could prepare the hidden representations enriched with dependency information Hc and
Hct through the aggregators in trigger decoder and argument decoder, respectively. Now we describe,
in our syntax-enhanced aggregator, how we obtain the syntactic representations and fuse these heteroge-
neous features to form new representations H̃c and H̃ct. For simplicity, we take Hc in trigger decoder
as the example. The similar procedure is conducted for Hct in argument decoder.

We first extract the dependency tree of the sentence via existing parsing tools. To avoid one way
message transition from the root to leaf nodes, we add reversed edges and distinguish them with different
edge labels in the dependency tree. This results in a syntactic graph G(v, e), where v is the entity in a
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dependency tree and e is the grammatical link between these entities. The representation of entities are
updated along with the graph structure. Let us use V = {v1, ...vm} to denote the representations of m
entities in G. Each entity is initially represented via the average embeddings of their tokens.

To model the syntactic structure of sentences, we adopt the commonly used Relational Graph Con-
volutional Network (R-GCN) (Schlichtkrull et al., 2018) as our graph encoder to capture the message
transition of the syntactic graph:

{v1, ...vm} = GraphEncoder({v1, ...vm)}. (6)

In this way, the updated entity representation is featured with sentence syntax. Next, we aggregate
them with the original hidden representations Hc = {hc

1, ...,h
c
n}, which are arranged in token level,

such that we can fuse these two types of information together.
We first utilize two individual multi-head self-attentions (MH-SelfAttns) to process both Hc and V,

respectively. Inspired by the Knowledgeable Encoder proposed in prior work (Zhang et al., 2019), where
the language representation is enhanced with knowledge graphs, we align an entity with its corresponding
tokens or characters if it is formed by multiple tokens or characters. As shown in Figure 2, the entity
“创维科技 (Chuangwei Tech)” is aligned with “创”, “维”, “科”, and “技”. Thus there are explicit links
between this entity and the four characters. We define the fusion layer as follows:

zj = σ(U1h
c
j +

∑
vi∈Align(wj)

W1vi + b1) (7)

h̃c
j = σ(U2zj + b21) (8)

ṽc
i = σ(

∑
wj∈Align(vi)

W2zj + b22), (9)

where σ is non-linear activation function GELU (Hendrycks and Gimpel, 2016) and Align indicates the
alignment between tokens and entities. The inputs are hidden representation Hc and entity representation
V. U, W and b with subscripts are parameters to learn. zj indicates fused hidden representation
of j-th token. As a result, H̃c = {h̃c

1, h̃
c
2, ..., h̃

c
n} is the token representation with fusion of syntax

information. It will be leveraged as the input of pointer network in Equation (4) for trigger extraction.
Ṽc = {ṽc

1, ṽ
c
2, ..., ṽ

c
m} is the entity representation enriched with subtask dependencies. It will be utilized

in downstream decoding.
When it comes to the argument decoder, Ṽc is used as the input entity representation to be con-

tinuously processed via the graph encoders and eventually fuse with the hidden representation Hct to
generate H̃ct. This will be fed into pointer network in Equation (5) for argument extraction. Compared
with the original aggregator, besides capturing dependency information, our syntax-enhanced aggrega-
tors encode syntactic structure and fuse both subtask dependencies and syntactic information to generate
a more expressive representation for decoding.

3.2 Type Discrimination Task

Type discrimination task aims at predicting whether two sentences are syntactically close or not. The
intuition behind is that sentences describing the same event type usually have similar syntactic structure.
To this end, we adopt the idea of contrastive learning and push the syntactic representations of positive
pairs closer than negative pairs. The syntactic representations learned from type discrimination task can
further boost the performance of cascade decoding.

We conduct dependency parsing for all sentences and obtain a collection of syntactic graphs denoting
as U , each G ∈ U deriving from a sentence is labeled with their event type. Then, we train the rep-
resentations of a pair of syntactic graphs that share the same event type to be closer in the space. We
adopt Momentum Contrast (MoCo) (He et al., 2020) for self-supervised representation learning, which
formulates contrastive learning as a dictionary look-up task and is effective in maintaining a large-scale
dynamic dictionary.
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Specifically, given a syntactic graph G as a query, we represent it by the average of all entities encoded
via the graph encoder of Equation (6) and obtain g = 1

m

∑m
i=1 vi to indicate the status of the syntactic

graph. Meanwhile, we sample a set of syntactic graphs from U as keys of a dictionary and encode these
key graphs via another graph encoder to obtain their representations. For clear presentation, we denote
the query graph encoder and key graph encoder as GraphEncoderθq and GraphEncoderθk , respectively.
In the dictionary, the positive key (denoted as k+) is the only graph having the same type as the query.
The others are negative keys {k1,k2, ...,kL}, as depicted in Figure 2. We define the loss function of the
type discrimination task as follows:

LTD = −
∑
G∈U

log
exp(g⊺k+/τ)∑L
i=0 exp(g

⊺ki/τ)
, (10)

where τ is a temperature hyper-parameter. For each query, we construct one positive key and L negative
keys.

Similar as MoCo, during training, the keys in the dictionary are progressively updated. For each
new query graph G, the old key graphs in the dictionary are removed and new key graphs are collected.
Moreover, the parameters of the encoder of keys are driven by momentum update as follows:

GraphEncoderθk ← γGraphEncoderθk+(1− γ)GraphEncoderθq , (11)

where γ is the momentum coefficient. This results in a smooth evolution of GraphEncoderθk as we can
control the evolving progress.

3.3 Training Objective
During our training procedure, event extraction and type discrimination tasks are performed simultane-
ously. For each sampled data, a sentence and its corresponding syntactic graph are both collected for
event extraction training. A dictionary of key graphs for a query graph is also prepared for contrastive
learning.

The overall training objectives of our improved cascade decoding framework is shown as follows:

L = λLEE + (1− λ)LTD, (12)

where LEE is the negative logarithm of the joint likelihood of event extraction task in Equation (1), and
λ is a hyper-parameter. All the parameters except for GraphEncoderθk are updated by back-propagation.

4 Experiments

In this section, we conduct experiments to evaluate the proposed method. We first introduce our ex-
periment settings including datasets and evaluation metrics, comparable methods, and implementation
details in Section 4.1, Section 4.2, and Section 4.3. Next, we discuss our main results in Section 4.4. We
show further analysis in Section 4.5

4.1 Datasets and Evaluation Metrics
We conduct experiments on two commonly used event extraction datasets:

• FewFC (Zhou et al., 2021)1 is a public Chinese dataset for event extraction in the financial domain.
It contains 10 event types and 19 role types. There are 12, 890 sentences in the dataset. Following
previous setting (Sheng et al., 2021), we split the dataset with the ratio 8 : 1 : 1 to form training,
development, and test sets.

• DuEE (Li et al., 2020b)2 is a relatively large Chinese event extraction dataset, which contains
19, 640 sentences in total. The data is collected by crowdsourcing and contains 65 event types
associated with 121 role types in real-world scenarios. We follow its default split setting to construct
the data sets.

1https://github.com/TimeBurningFish/FewFC
2http://ai.baidu.com/broad/download
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Methods TI TC AI AC

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

DMCNN⋆ 82.0 79.4 80.7 69.4 68.2 68.8 70.2 66.3 68.2 66.8 65.7 66.2
GCN-ED⋆ 84.4 83.7 84.0 71.7 68.9 70.3 69.1 69.6 69.4 71.2 65.7 68.3
GatedGCN⋆ 88.9 85.0 86.9 76.2 73.4 74.8 72.3 70.1 71.2 71.4 68.8 70.1
BERT-CRF 88.4 84.1 86.2 74.2 70.5 72.3 69.4 68.1 68.7 70.8 68.2 69.5
MQAEE 88.7 86.2 87.4 77.2 76.4 76.8 72.7 69.7 71.2 70.2 66.5 68.3
CasEE 89.1 87.8 88.4 77.8 78.6 78.2 71.6 73.2 72.4 71.2 72.4 71.8

Ours⋆ 90.1 88.9 89.5 78.1 79.4 78.7 71.9 77.0 74.4 71.5 75.7 73.5

Table 1: Event extraction results on test set of FewFc dataset. P(%), R(%) and F1(%) denote percentages
of precision, recall and F1 score, respectively. The methods annotated with “⋆” are those enriched with
syntactic features.

We utilize the standard evaluation metrics (Chen et al., 2015; Du and Cardie, 2020) to evaluate perfor-
mance of trigger detection and argument detection: (1) Trigger Identification (TI): If a predicted trigger
word matches the gold word, this trigger is identified correctly. (2) Trigger Classification (TC): If a
trigger is correctly identified and assigned to the correct type, it is correctly classified. (3) Argument
Identification (AI): If an event type is correctly recognized and the predicted argument word matches the
gold word, it is correctly identified. (4) Argument Classification (AC): If an argument is correctly iden-
tified and the predicted role matches the gold role type, it is correctly classified. We measure Precision,
Recall and F1 score based on the above four metrics.

4.2 Comparable Methods
We choose a range of advanced approaches for event extraction as our baselines:

• DMCNN (Chen et al., 2015) is a pipeline with dynamic multi-pooling convolutional neural network
and enriched encoded syntactic features. It is the early attempt adopting syntactic information into
event extraction.

• GCN-ED (Nguyen and Grishman, 2018) develops a GCN based on dependency trees to perform
event detection, where each word is treated as a trigger candidate and joint learning is performed to
label words with event types.

• GatedGCN (Lai et al., 2020) is GCN-based model for event detection which uses a gating mecha-
nism to filter noisy information. It also follows a joint learning paradigm.

• BERT+CRF (Du and Cardie, 2020) is a sequence labeling model with advanced pre-trained lan-
guage model BERT for encoding sentences and conditional random field (CRF) for tagging labels.

• MQAEE (Li et al., 2020a) is a pipeline method that formulates the extraction task as a multi-turn
question answering without any syntactic information involved.

• CasEE (Sheng et al., 2021) is the representative cascade decoding approach for event extraction,
which simply treats a sentence as a sequence.

We either utilize official source codes or follow their descriptions to re-implement the baseline meth-
ods.

4.3 Implementation Details
For implementation, we use Chinese BERT Model (Devlin et al., 2018) in Transformers library3 as
our basic textual encoder to convert words into vector representations. For other parameters, we ran-
domly initialize them. To obtain syntactic graphs, we extract the syntactic dependency of sentences via
StanfordNLP parsing tool4 and convert dependency trees into graphs via DGL5 library. In our syntax-

3https://huggingface.co/
4https://nlp.stanford.edu/software/lex-parser.shtml
5https://www.dgl.ai/
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Methods TI TC AI AC

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

DMCNN⋆ 78.4 80.2 79.3 79.4 76.3 77.8 69.2 67.4 68.3 67.2 65.6 66.4
GCN-ED⋆ 82.4 76.2 79.2 81.6 76.2 78.8 71.3 69.5 70.4 70.9 64.5 67.5
GatedGCN⋆ 88.6 83.0 85.7 82.4 80.5 81.4 73.8 71.6 72.7 72.5 68.4 70.4
BERT-CRF 87.2 77.6 82.1 80.4 77.4 78.8 70.6 68.1 69.3 70.5 66.7 68.5
MQAEE 87.9 82.1 84.9 80.9 79.4 80.1 73.2 71.7 72.4 71.0 69.7 70.3
CasEE 85.5 88.2 86.8 83.6 83.9 83.7 70.3 75.4 72.8 68.6 75.7 72.0

Ours⋆ 87.7 89.0 88.3 83.7 86.8 85.2 72.8 76.9 74.8 71.2 77.4 74.2

Table 2: Event extraction results on test set of DuEE dataset. P(%), R(%) and F1(%) denote percentages
of precision, recall and F1 score, respectively. The methods annotated with “⋆” are those enriched with
syntactic features.

enhanced aggregator, we use 8 heads for MH-SelfAttns layers and 2 stacked R-GCN layers to form a
GraphEncoder. For hyper-parameters, we search via grid search through pre-defined spaces and decide
the best configuration based on the best F1 score on the development set. The dimension of hidden rep-
resentations in graph encoders or aggregators are all set to 768. We use an Adam optimizer (Kingma and
Ba, 2015) to train all trainable parameters. The initial learning rate is set to 1e− 5 for BERT parameters
and 1e − 4 for the other parameters. A warmup proportion for learning rate is set to 10%. The training
batch is set to 16 and the maximum training epoch is 30. The size of dictionary L is set to 1000 for
contrastive learning. We set τ = 0.07, λ = 0.5 and γ = 0.8. To avoid overfitting, we apply dropout
layers in syntax-enhanced aggregators with a dropout ratio as 0.3.

4.4 Main Results
The performance of all methods on FewFC and DeEE datasets is displayed in Table 1 and Table 2,
respectively. Based on the two tables, we have the following observations:

(1) For both datasets, our method surpasses all baseline methods with a remarkable margin and obtains
new state-of-the-art results on F1 score of all measurement metrics. This shows that our method incorpo-
rating syntactic information with cascade decoding framework indeed brings the largest benefit for event
extraction task. Compared with CasEE, our method shows gains on TI as well as AI measurement. This
may because that leveraging syntactic relation of sentences captures long-range dependency and enables
the model to retrieve more accurate trigger and arguments. Also, the gains on TC and AC may comes
from contrastive learning, which helps the model label events by discriminating the different syntactic
structure of event types.

(2) In the perspective of framework, compared with the joint learning and pipeline paradigms, cascade
decoding could achieve better performance. CasEE outperforms BERT-CRF as well as MQAEE with
marginal improvement on both datasets. As discussed in Section 1, cascade decoding framework could
avoid label conflicts and error propagation effectively (Sheng et al., 2021), which reveals the necessity
of developing methods based on cascade decoding framework.

(3) For methods featured with syntactic information, different methods show different effects. Specif-
ically, DMCNN and GCN-ED are methods involving syntactic information, their performance on both
datasets are not ideal, this may because that these two methods are developed upon un-contextual word
embeddings thus cannot fully capture the deep semantics of sentences. GatedGCN takes advantage of
BERT encoder and encodes syntactic information via GCN model and it could outperform the BERT-
CRF method. Our method is also built upon BERT encoder and featured with syntax-enhanced aggrega-
tor and type discrimination task, which is effective in solving the label conflict and modeling syntactic
information of sentences.

4.5 Further Analysis
Ablation study. To explore details of our proposed method, we show the result of ablation study in
Table 3. As we can see, both syntax-enhanced aggregators and contrastive learning contribute to the
entire system. After we omit the contrastive learning, the performance decreases. This indicates that
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TI(%) TC(%) AI(%) AC(%)

Our Model 89.5 78.7 74.4 73.5
w/o Contrastive learning 88.7 78.3 73.6 72.4
w/o Fusion Layer 89.0 78.4 73.6 72.8
w/o SA in Trigger Decoder 88.5 78.1 72.4 71.9
w/o SA in Argument Decoder 89.3 78.6 73.0 72.1

Table 3: Results of ablation study on FewFC dataset. We display the percentages of F1 score on all
measurement metrics. SA denotes Syntax-enhanced Aggregator.

Figure 3: (a) shows the performance change of TC and AC on FewFC with increasing L value in con-
trastive learning. (b) shows the t-SNE plots of representations of query graphs of FewFC without and
with contrastive learning.

capturing the syntactic structure of sentences is key for detecting the event types. Similarly, After we omit
the fusion layer in syntax-enhanced aggregator and simply add the hidden representation of syntactic
graph to Hc, the performance drops. This indicates that the way to combine syntactic feature and subtask
dependencies is critical. We remove the syntax-enhanced aggregators in trigger and argument decoders
in turn. The performance decrease indicates that the proposed syntax-enhanced aggregators contribute
to both trigger extraction and argument extraction.
Effect of L. In order to show the effect of L value in contrastive learning, we train our method on
FewFC dataset with varying dictionary sizes and draw curves in Figure 3 (a). The figure shows that with
the increase of L value in contrastive learning, the performance of trigger classification and argument
classification increases. This is because seeing more interactions of different event types could help the
model learn more distinct syntactic features.
Representation visualization. In Figure 3 (b), we display the learned query representations in FewFC
dataset by mapping them into two dimensional space via t-distributed stochastic neighbor embedding (t-
SNE) (Hinton and Roweis, 2002). The data points with different colors indicate query graphs of different
categories of event types. As we can observe, the query representations of different event types without
contrastive learning mix together and exhibit random distribution. In contrast, after including type dis-
crimination task with contrative learning, the same event types clustered. This verifies that contrastive
learning leads to a better syntactic representation for each sentence.
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5 Related Work

5.1 Frameworks of Event Extraction

The frameworks of event extraction can be roughly categorized into three groups. Joint learning frame-
work solves event extraction in a sequence labeling manner (Li et al., 2013; Nguyen et al., 2016; Sha et
al., 2018a; Liu et al., 2018; Nguyen and Nguyen, 2019; Shen et al., 2020; Huang et al., 2020). They treat
each token as the candidate of a trigger or an argument and tag it with types. However, joint learning has
the disadvantage of solving sentences where one token could have more than one event types. Pipeline
framework performs trigger extraction and argument extraction in separate stages (Yang et al., 2019;
Wadden et al., 2019; Li et al., 2020a; Du and Cardie, 2020; Liu et al., 2020; Chen et al., 2020; Ma et al.,
2022; Zhou et al., 2022). This framework could avoid the label conflict issue but it ignores the potential
label dependencies in modeling and suffers from error propagation. The cascade decoding framework
formulates triples to represent event types, triggers and arguments (Xu et al., 2020; Sheng et al., 2021;
Yang et al., 2021). It jointly performs predictions for event triggers as well as arguments based on shared
feature representations and learns the implicit dependencies of the triples. It could avoid label conflict
and error propagation. Empirical results show it is an effective solution for event extraction. The cascade
decoding framework is also effective in jointly extracting relations and entities from text (Zheng et al.,
2017; Wei et al., 2020).

5.2 Syntax Modeling for Event Extraction

There are a number of studies that incorporate the syntactic structure of sentences into event extraction
tasks. The early work (Chen et al., 2015) collected syntactic features from the dependency tree and
fed them into a dynamic multi-pooling convolutional neural network for extracting events. Li et al.(Li
et al., 2018) also utilized dependency-based embeddings to represent words semantically and syntacti-
cally and proposed a PMCNN for biomedical event extraction. Some studies tried to enhance the basic
network with syntactic dependency, Sha et al.(Sha et al., 2018b) proposed a novel dependency bridge
recurrent neural network and Zhang et al. (Zhang et al., 2018) transformed dependency trees into target-
dependent trees. The follow-up studies (Nguyen and Grishman, 2018; Liu et al., 2018; Yan et al., 2019)
employed graph convolutional network to encode the dependency tree and utilized it for predicting event
types. More advanced neural networks are leveraged to model syntax in event extraction tasks. The gate
mechanism and Transformer (Lai et al., 2020; Ahmad et al., 2021; Xie et al., 2021) have shown to be
effective in encoding the graph information of dependency tree. (Li et al., 2021) utilized the relation-
ships of event arguments based on a reinforcement learning and incremental learning. (Lu et al., 2021)
designed a sequence-to-structure framework to uniformly models different subtasks of event extraction.
However, some of them focus on detecting event types with syntax modeling which can be treated as a
joint learning framework of event extraction, the others follow a pipeline framework of event extraction
to enhance syntactic information. To fully make use of the cascade decoding framework, we propose
our method based on the cascade decoding architecture, which captures the subtask dependencies and
syntactic structure simultaneously.

6 Conclusions

In this paper, we improved cascade decoding with syntax-aware aggregator and contrastive learning
for event extraction. We demonstrated the effectiveness of our proposed method on two datasets. The
results showed that our method outperforms all baseline methods based on F1 score. Considering that
many scenes have relatively high requirements for real-time performance, we will explore to optimize
the computational complexity of the model and improving the universality of the model in the future.
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