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Abstract

Pre-trained language models are sensitive to adversarial attacks, and recent works have demon-
strated universal adversarial attacks that can apply input-agnostic perturbations to mislead mod-
els. Here, we demonstrate that universal adversarial attacks can also be used to harden NLP
models. Based on NLI task, we propose a simple universal adversarial attack that can mislead
models to produce the same output for all premises by replacing the original hypothesis with an
irrelevant string of words. To defend against this attack, we propose Training with UNiversal
Adversarial Samples (TUNAS), which iteratively generates universal adversarial samples and
utilizes them for fine-tuning. The method is tested on two datasets, i.e., MNLI and SNLI. It is
demonstrated that, TUNAS can reduce the mean success rate of the universal adversarial attack
from above 79% to below 5%, while maintaining similar performance on the original datasets.
Furthermore, TUNAS models are also more robust to the attack targeting at individual samples:
When search for hypotheses that are best entailed by a premise, the hypotheses found by TUNAS
models are more compatible with the premise than those found by baseline models. In sum, we
use universal adversarial attack to yield more robust models.

1 Introduction

Pre-trained models have achieved impressive performance among natural language processing (NLP)
tasks, including natural language inference (NLI) and machine reading comprehension (MRC) (Liu et
al., 2019; He et al., 2020). Nevertheless, these models are vulnerable under adversarial attacks (Behjati
et al., 2019). For most adversarial attack methods, the adversarial samples are input-specific, i.e., the
adversarial perturbation is targeted at a specific input. More recently, however, studies have also shown
the existence of universal adversarial attacks, which are input-agnostic (Wallace et al., 2019; Behjati et
al., 2019). Multiple methods have been proposed to find universal adversarial samples. One method is
to append an input-agnostic string of words to any input to convert the input into an adversarial sample.
For example, Wallace et al. (2019) use gradient-based search to find strings that, when concatenated to
any input, could result in specific model output. For instance, for models trained on SNLI, prepending
“nobody” to the hypothesis could cause >99% of the samples to be judged as being contradictory to the
premise, even when all the tested hypotheses are in fact entailed by the premises. Another method is to
randomly sample a large number of sentences and screen for universal adversarial samples. For example,
Lin et al. (2021) use such a method to find sentences that a model always judges as the correct answer to
multiple-choice MRC questions.

The mainstream method to increase the robustness of models against adversarial attacks is adversarial
training (Madry et al., 2018; Goodfellow et al., 2015; Zhang et al., 2019). In this process, adversarial
samples are generated and injected into the training batch. Adversarial training generally focuses on
input-specific attacks, which involve small perturbations and targeting at individual samples. Therefore,
models fine-tuned with these methods still fail in universal adversarial attacks (Shafahi et al., 2020).
Besides, unlike input-specific attacks, universal attacks use single perturbation to cause the model fail
in lots of samples, making it more effective to generate adversarial samples. Recently, in the domain
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Figure 1: Examples of the NLI task and universal adversarial attack method adopted in this work. The
model originally output the correct answers. Nonetheless, when UBS, i.e., “a exceeds lowly herein1974”,
is presented as the hypothesis, the model is fooled to give out entailment prediction, even though they
are actually irrelevant.

of vision, some studies have also proposed to use universal adversarial samples for adversarial training
(Shafahi et al., 2020; Wong et al., 2020), which is proved to be helpful for improving the robustness
of the models. Nonetheless, in the domain of NLP, efficient training with universal adversarial samples
appears to be more challenging. Generally, universal adversarial attacks for NLP models are achieved by
appending an input-agnostic adversarial sequence to the input. Training with such adversarial samples
can easily lead to a degenerated solution of ignoring the appended adversarial sequence (Jia and Liang,
2017).

To avoid such degenerated solutions, we propose a new universal adversarial attack method, where the
adversarial samples are created by directly replacing specific components of the input with adversarial
sequence. This work is based on NLI, a task requires models to judge whether a premise can entail
a hypothesis. Specifically, instead of appending an adversarial sequence to the hypothesis, we create
adversarial samples by replacing the original hypothesis with a string of words, referred to as the Uni-
versal Biased Strings (UBSs), as shown in Figure 1. Here, UBSs are the strings wrongly judged as being
entailed by a large number of premises by the model. For an effective UBS, the model judges that it
is entailed by any premise. We automatically generate UBSs, and present them as hypothesis sentence
to fool the models. The advantage of using UBSs for attack is that they are guaranteed to be irrelevant
to individual premises, since no string can be entailed by all premises. Notably, although this work is
based on the NLI task, it can be easily adapted to describe, e.g., sentence similarity judgement, question
answering, and other tasks that requires the judgement of the relationship between two sentences.

In the following, we first described the method to search for the UBSs and then introduced Training
with UNiversal Adversarial Samples (TUNAS), a simple but effective training method to augment mod-
els by iteratively finding and correcting universal adversarial samples. It was demonstrated that popular
transformer-based models were vulnerable to universal adversarial attack, and the UBSs achieved a mean
success rate higher than 79%, i.e., the model judged that >79% of the premises in the dataset could entail
the UBSs. When the models were fine-tuned using TUNAS, however, the mean success rate of UBSs
dropped to <5%. Furthermore, when searching for strings that could be best entailed by a particular
premise, the strings found by a model fine-tuned with TUNAS were more reasonable compared with that
found by a baseline model.

2 Method

2.1 Task and Models

Our work was based on two standard NLI datasets, i.e., SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018). In these datasets, each sample contained a pair of sentences, one being the premise and

CC
L 
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 847-861, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

848



Computational Linguistics

Algorithm 1 UBS Generation (Gradient-based search)
Input: input premises, P ; vocabulary, V ; target model, f ; embedding layer, E; loss function, Loss;
Parameter: search times, T ; UBS length, L; iterations, N ; candidates number, K; return UBSs number,
M ;
Output: M UBSs

1: result← ∅
2: for i← 1 to T do . Repeat search procedure for T times
3: result← result+ SearchingBiasedStringsStep(...)
4: end for
5: return result
6: function SEARCHINGBIASEDSTRINGSSTEP

7: UBS ← s0:L, s ∈ hypothesis set . Initialize current UBS
8: memory← ∅
9: for iteration← 1 to N do . Select candidates for each token in UBS

10: Vcand ← top-k
w∈V

(−E(w)ᵀ · ∇UBSLoss(f(P,UBS), entailment),K)

11: for i← 0 to L do . for each token position
12: for t ∈ V

(i)
cand do . for each candidate

13: UBS′ ← UBS0:i ⊕ t⊕ UBSi+1:L . Generate potential UBSs
14: memory[UBS′]← −Loss(f(P,UBS′), entailment) . Evaluate potential UBSs
15: end for
16: UBS ← argmax

s∈memory
memory[s] . Update current UBS

17: end for
18: end for
19: return top-k

s∈memory
(memory[s],M)

20: end function

the other being the hypothesis, and a label indicating the relation between the premise and hypothesis,
i.e., entailment, contradiction, or neutral. We tested three mainstream pre-trained transformer models,
i.e., BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and DeBERTa-v3 (He et al., 2020), and
considered both the base version and large version of the models. The pre-trained models were provided
by Huggingface (Wolf et al., 2020) and were fine-tuned based on SNLI or MNLI, respectively. During
fine-tuning, the inputs were formatted as [CLS, premise, SEP , hypothesis, SEP ]. At the output,
the final embedding of the CLS token, denoted as C, was run through a linear layer to obtain three
logits for each label, i.e., logits= WC + b. The label with the highest logit was selected as the model
prediction. The models were trained based on the cross-entropy loss between the golden label and the
model prediction. The fine-tuning parameters and model performance were shown in Appendix A.

2.2 UBS Generation

We used two methods, i.e., gradient-based search and dataset-based sampling, to search for the UBSs.
Operationally, all strings returned by the search algorithms were referred to as UBSs. The effectiveness
of a UBS was quantified by its success rate A%, i.e., the target model judged that the UBS was entailed
by A% of the premises in a premise set. To balance the process time and the effectiveness, for each
UBS, the success rate was calculated based on 256 premises randomly sampled from the dataset being
analyzed.

Gradient-based Search. The UBSs were generated using a variant of the gradient-based search
method proposed by Wallace et al. (2019). The length of the UBS, i.e., L, was fixed, and an L-word UBS
was initialized by randomly selecting a hypothesis from hypothesis set, which contained all hypotheses
in the dataset being analyzed. The UBS was updated for N iterations to maximize the success rate. The
tokens in the current UBS were iteratively replaced to create potential UBSs with higher success rate
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Algorithm 2 UBS Generation (Dataset-based Sampling)
Input: input premises, P ; target model, f ; loss function, Loss;
Parameter: hypothesis set, H; return UBSs number, M ;
Output: M Magnet UBSs

1: result← ∅
2: for h ∈ H do
3: result[h]← −Loss(f(P, h), entailment) . Evaluate each hypothesis string
4: end for
5: return top-k

s∈result
(result[s],M)

Algorithm 3 TUNAS
Input: input batches, X={{(premise, hypothesis, label), ...}, ...}; total training step, Nstep;
Parameter: added adversarial samples ratio, R; UBSs update times, Nupdate;

1: procedure COLLECT UBSS

2: Using Gradient-based search to collect UBS set UBSs
3: UBSs← FILTER(UBSs), s.t., the success rate of UBSs is above 0.33
4: end procedure
5: stepupdate ← LINSPACE(0, Nstep, Nupdate) . Initialize steps for collecting UBSs
6: stepaugment ← RANDOM CHOICE(range(0, Nstep), R) . Initialize steps for data augment
7: for step← 1 to Nstep do
8: if step in stepupdate then
9: Collect UBSs

10: end if
11: get current training batch {(premise, hypothesis, label), ...} from X
12: TRAIN({(premise, hypothesis, label), ...}) . Train model with the genuine samples
13: if step in stepaugment then . Train model with the adversarial samples
14: if UBSs is not empty then
15: TRAIN({(premise, UBS, neutral), ...}), UBS ∈ UBSs
16: end if
17: end if
18: Update learning rate and other settings
19: end for

(Equation 1), and the top M UBSs with the highest success rate were returned (see Algorithm 1).
In the iteration procedure, we calculated the first-order Taylor approximation of the change in loss to

entailment label caused by replacing each token in the UBS (Ebrahimi et al., 2018; Wallace et al., 2019).
A candidate set Vcand ∈ RL×K was identified (Equation 1), where the top K tokens estimated to cause
the greatest decrease to loss for each position were collected. For each token at the position i (i ∈ [1, L])
of the current UBS, potential UBSs were generated by replacing the token with the candidates (Equation
2). The potential UBS with the highest success rate was retained as the current UBS.

Vcand = top-k
w∈V

(−E(w)ᵀ · ∇UBSLoss(·),K) (1)

potential UBSs = {UBS0:i ⊕ t⊕ UBSi+1:L|t ∈ V
(i)
cand} (2)

Where E (w) was the input embedding of token w. Loss (·) was the cross-entropy loss, and
∇UBSLoss (·) was the average gradient of the loss to entailment label over a batch. ⊕ denoted to-
ken concatenation. The search procedure was repeated T times with different initialization strings to
ensure the diversity of the UBSs. The hyperparameters were set as following: T=10, M=50, N=20,
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Figure 2: Success rate of the top 500 UBSs.

and K=20 (full hyperparameters for UBS attack and TUNAS were listed in Appendix B). Therefore, for
each model, a total of 500 (10 × 50) UBSs were generated.

Dataset-based Sampling. We also utilized the hypotheses extracted from the validation split of each
dataset to find effective UBSs (Lin et al., 2021). Three hundred of hypotheses with the highest success
rate were referred to as the magnet UBSs. Details of the algorithm were shown in Algorithm 2.

2.3 Training with Universal Adversarial Samples
For the baseline fine-tuning procedure, the model was initialized with the pre-trained parameters, and
then fine-tuned based on the downstream NLI task. Here, we proposed an augmented fine-tuning pro-
cedure, i.e., Training with UNiversal Adversarial Samples (TUNAS), to generate models that are more
robust to UBS attack. TUNAS differed from the baseline fine-tuning procedure in the following way
(lines 8-10 and 13-17 in Algorithm 3): On the one hand, we uniformly selected Nupdate steps from the
entire training procedure Nstep steps, and collected the UBSs found in these steps for augmented train-
ing. We utilized the gradient-based search to generate the UBSs that were between 5 and 7 words. On
the other hand, we randomly selected R% of the Nstep steps, where the same amounts of adversarial
samples as the original samples were added to the training batch. The inferential relation between the
UBSs and any premise was labeled as neutral. The hyperparameters were set as following: Nupdate=40,
R%=0.3.

3 Experiments

3.1 UBS Attack on Baseline Models
We tested whether models fine-tuned using the baseline procedure were sensitive to the UBS attack. The
UBSs were generated using gradient-based search and the UBS length was set to 5. Over 75% of the
UBSs achieved a success rate above 70%, and the mean success rate averaged across all the 500 UBSs
returned by the gradient-based search was above 79% for all models (Figure 2). The UBSs were mostly
ungrammatical nonsense word strings. For instance, “a exceeds lowly herein1974” was an UBS that
achieved a success rate of 100% for RoBERTa-large fine-tuned on SNLI. In other words, the models
judged that all premises in the validation split of the dataset entailed this string. More examples were
shown in Appendix C.

Dataset
BERT base BERT large

Baseline TUNAS Baseline TUNAS

SNLI 0.8962 0.8920 0.9186 0.9191

MNLI 0.8404 0.8360 0.8625 0.8661

Table 1: The accuracies for models on the validation split.
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Figure 3: Mean success rate of UBSs with different lengths.

Figure 4: Success rate of the top 300 magnet UBSs.

3.2 UBS Attack on TUNAS Models

Next, we asked whether TUNAS could improve the robustness of models. We fine-tuned BERT-base and
BERT-large using TUNAS. The performance on MNLI/SNLI were comparable for models fine-tuned
using the baseline procedure and TUNAS (Table 1). Nevertheless, for over 80% of the UBSs returned
by the gradient-based search, the success rate was below 10%, and the mean success rate was below 5%
(Figure 2). These results suggested that TUNAS could significantly improve the robustness of models to
UBS attack, while maintaining the same task performance.

3.3 Generalization of Robustness Against UBSs

The current TUNAS procedure only considered 5-word, 6-word, and 7-word UBSs. Here, we further
evaluated whether the model fine-tuned using these UBSs were also robust to UBSs of other lengths.
We varied the length of the UBS from 5 to 23, in steps of 2, and found that models fine-tuned using
TUNAS were more robust to UBSs of all tested lengths (Figure 3). Furthermore, the UBSs generated
by the gradient-based search were generally ungrammatical word strings (Appendix C), it was possible
that TUNAS only instructed the models to output “neutral” for ungrammatical word strings. To rule out
this possibility, we further tested the models on the magnet UBSs, which were grammatical meaningful
sentences. On SNLI, TUNAS decreased the success rate of magnet UBSs by 31% and 21% on average,
for BERT-base and BERT-large (Figure 4). On MNLI, magnet UBSs were only effective at attacking
BERT-large and TUNAS decreased the success rate of magnet UBSs by 27% on average.

4 Biased Strings for Individual Premises

TUNAS could effectively increase the robustness to the UBS attack. The UBS attack, however, were
particularly strong attacks that utilized a single word string to attack all possible premises. Next, we
evaluated whether TUNAS could also increase the robustness to attacks targeting at individual premises.
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Premise: A young man is standing staring at something.

Biased String Likelihood

Baseline TUNAS Baseline TUNAS

(Premise Itself) A young man is standing staring at something. 96.98 98.31

a human person was standing. at
thisceded

A human human is standing staring at
something.

99.51 98.92

(Neutral) A young man is looking intently at a young woman. 0.92 0.47

Humans existuffed or movementifi-
able concerningoir young persons.

Elustient is seen peers at a young
something.

99.27 93.20

(Contradiction) A young man is asleep. 0.01 0.03

near males Humansestive remotely
present

foss staringthating. 99.25 86.12

(Entailment) A young man has his eyes open. 96.61 96.64

sts human individual has bodily eyes
encounteredrricular

an young man has his eyes open. 99.38 97.22

Premise: A black dog and a goose swim in the water.

Biased String Likelihood

Baseline TUNAS Baseline TUNAS

(Premise Itself) A black dog and a goose swim in the water. 96.99 97.14

A human beings and a freshwater-
isted in thebol .

A black animal or a human swim in
the water.

99.35 98.51

(Neutral) The goose has something in its mouth. 63.87 82.43

humansnial possessing something
wet or bodily.

An dog with one of dark color. 99.33 98.19

(Contradiction) The animals are not in the water. 2.95 3.90

Human animals comprisedroats
bodyddling water.

Human animals are together in the
water.

99.37 98.28

(Entailment) There are two animals in the water. 98.57 98.41

There comprises animal objectsluk In
human.

There are animals mammals in the
water.

99.42 98.88

Table 2: Examples for biased strings. The target premises for the biased strings are shown in bold. The
initialization strings are shown in italic, where the relationship between the initialization strings and the
premise is shown in the brackets. The last column in the table lists likelihood to entailment label output
by the models.

Here, the BERT base model fine-tuned on SNLI was used as an example. The other TUNAS models
showed similar results, which were shown in Appendix D.

4.1 Biased Strings Generation

We applied the same gradient-based search to find word strings that were best entailed by single premise.
Specifically, the algorithm was the same as Algorithm 1, except that the input premise set P was replaced
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Figure 5: Histograms of BERTScore Precision and STS-B model score for sentence pairs, where the
hypotheses were generated by the model with or without TUNAS based on the given premise.

Initialization Type Baseline TUNAS

Contradiction 0.16 0.84

Entailment 0.21 0.79

Neutral 0.11 0.89

Premise Itself 0.17 0.83

Table 3: Human evaluation results. The first column gives the initialization type of the biased strings.
The last two columns denote the ratio for a string, generated by the model with or without TUNAS, being
selected as more entailed one by human.

by a particular premise. Here, the strings returned were referred to as biased strings. We randomly
selected 100 premises from the SNLI validation split for this analysis. Since the gradient-based search
was sensitive to the initial condition, we tested 4 initialization strings for each premise: One string was
the premise itself, the other 3 strings were the 3 hypotheses associated with the premise in the dataset,
which were separately labeled as entailment, neutral, and contradiction. For each initialization string, the
search returned 30 biased strings. The search was separately applied to the baseline model and models
fine-tuned using TUNAS.

4.2 Relatedness Between Biased Strings and Premises

Examples of the biased strings were shown in Table 2. In general, the biased strings generated based on
the TUNAS models were more readable and more related to the premise, compared to the biased strings
generated based on the baseline model.

We further quantified the relatedness between the premises and the biased strings based on human
judgement and model-based metrics. For human judgement, we recruited subjects to judge which of
the two biased strings (generated by the baseline model or the TUNAS model) were more related to
the premise. Automatic model-based metrics were also carried out to evaluate the relatedness between
the premise and the biased strings, i.e., BERTScore (Zhang et al., 2020) and STS-B model score (Cer
et al., 2017). BERTScore was a sentence-level metric to compare the semantic similarity between two
sentences, which ranged from 0 to 1. Likewise, STS-B was a regression task of predicting the semantic
similarity score of two sentences, which ranged from 0 to 5. We used the base version of BERT fine-tuned
with STS-B task to score for the sentence pairs.

Human Judgement. Two hundred samples were randomly selected, and each sample contained a
premise and 2 hypotheses that were separately generated by the baseline and TUNAS models using the
same initialization string. For each sample, 10 subjects judged which hypothesis was more related to
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the premise. Subjects could choose that they could not judge which hypothesis was more related. Such
responses (22% of all collected responses) were excluded from final analysis. Results showed that 84%
of the biased strings generated by TUNAS model were judged as being more related to the premise (Table
3).

Model-based Metrics. We reported BERTScore Precision and the STS-B model score (Figure 5).
Results showed that the biased strings generated by models fine-tuned using TUNAS achieved a higher
similarity score on average (PBERT = 0.69 and STS-B model score = 2.72), compared to the baseline
model (PBERT = 0.50 and STS-B model score = 1.11), indicating that the models fine-tuned with TU-
NAS could generate biased strings with more similar semantics to the premises.

5 Related Work and Discussion

Adversarial Attack. Generally, the adversarial attacks are input-specific, which generate specialized
perturbations for each input. Jia and Liang (2017) attack the reading comprehension models by adding
a distractor sentence to the input paragraph. Song et al. (2020) use natural attacks to cause semantic
collisions, i.e., irrelevant sentence pairs are judged to be similar by the NLP models. In these methods,
an extra evaluation should be used to verify the golden labels of the adversarial samples. In this paper, we
avoid human evaluation by generating UBSs, which are inherent to be neutral with most of the premises.

Universal adversarial attacks are input-agnostic. Wallace et al. (2019) and Behjati et al. (2019) oncur-
rently propose to perform gradient-based search strategies to generate input-agnostic sequences, referred
to as triggers, that can cause a model to output a specific prediction when concatenated to any input.
Song et al. (2021) extend it to generate natural triggers. Parekh et al. (2021) propose a data-free attack
method. Most of the previous works construct the attack based on appending strategy, and aim at gen-
erating and analyzing universal adversarial triggers. In this work, we propose to use UBSs directly for
attack, and aim at augmenting the models through universal adversarial samples. Here, we do not use
append strategy to avoid models from learning to ignore attack positions during augmentation.

Adversarial Training. Adversarial training is one of the most successful approaches for defending
against adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018), where adversarial samples are
used for training to improve the robustness of models. Universal adversarial training has proven to be
beneficial in the domain of computer vision (Mummadi et al., 2019; Shafahi et al., 2020), and malware
classification (Castro et al., 2021). Lin et al. (2021) augment the training procedure for multi-choice
models using magnet options: The options irrelevant to the questions are still prone to be selected as the
answer by the models. Our work is more extensive as we utilize a searching method for generating UBSs
automatically, which is more effective in digging out the biases of the models.

In this work, we use ungrammatical UBSs for adversarial training. Although the ungrammatical UBSs
are unlikely to appear in real-world scenarios, they have potential to reveal the biases learned by the
models. Meanwhile, they can serve as a cheap method to augment the models. Results suggest that the
model augmented by ungrammatical UBSs also perform better in defending grammatical UBSs attack.
Moreover, this work is based on NLI task, but the UBSs generation and application can be extended to
many NLP tasks. For example, in multiple-choice task, e.g., RACE (Lai et al., 2017), the model can be
fooled to choose a certain biased option as the answer. In span extraction tasks, e.g., SQuAD (Rajpurkar
et al., 2016), the model can be fooled to always output a certain biased span. In these cases, it is still
feasible to generate universal adversarial examples and use them for adversarial training.

6 Conclusion

Universal adversarial attacks are effective in revealing the shallow heuristics learned by the models (Wal-
lace et al., 2019). Here, we propose TUNAS, which utilizes universal adversarial samples to harden the
models. A simple yet effective universal adversarial attack method is designed by replacing the hypothe-
ses with UBSs, which can achieve above 79% success rate among 2 NLI tasks. The UBSs are generated
automatically by gradient-based method. In TUNAS, the universal adversarial samples are generated
and used to train the models. The models fine-tuned using TUNAS show robustness against UBS attack,
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while maintaining comparable task performance. Moreover, when searching biased strings for individual
premises, models fine-tuned using TUNAS could generate strings better entailed by the premise.
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Fabio Pierazzi, and Lorenzo Cavallaro. 2021. Universal adversarial perturbations for malware. CoRR,
abs/2102.06747.

[Cer et al.2017] Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. 2017.
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Appendix A Hyperparameters for Fine-tuning

MNLI/SNLI BERT RoBERTa DeBERTa

Version base large base large base large

Learning rate 2e-5/3e-5 2e-5/3e-5 2e-5/2e-5 6e-6/6e-6 2e-5/2e-5 6e-6/5e-6

Train epochs 3/2 3/2 3/3 2/2 3/2 2/2

Batch size 32/32 32/32 32/32 64/64 64/64 32/32

Weight decay 0.01/0.1 0.01/0.1 0.1/0.01 0.0/0.0 0.0/0.0 0.0/0.0

Table 4: Hyperparameters for fine-tuning on SNLI and MNLI.

Model / Accuracy

Dataset

SNLI
MNLI

matched mismatched

BERT base 0.8962 0.8404 0.8393

BERT large 0.9186 0.8625 0.8651

RoBERTa base 0.9103 0.8784 0.8762

RoBERTa large 0.9265 0.9034 0.9013

DeBERTa base 0.9330 0.9024 0.9070

DeBERTa large 0.9392 0.912 0.9105

Table 5: The fine-tuned models’ performance on the validation splits.

The parameters we used in the process of fine-tuning the pre-trained models were shown in Table 4
(Liu et al., 2019; Devlin et al., 2019; He et al., 2020). Model performance after fine-tuning was shown
in Table 5.

Appendix B Hyperparameters for UBS Attack and TUNAS

The hyperparameters used for UBS attack and TUNAS were shown in Table 6. The usage for hyperpa-
rameters were described in Algorithm 1 and Algorithm 3. Here, the filter threshold for loss referred to
the filtering condition for UBSs used in TUNAS. The potential UBSs with task loss on entailment label
above the filter threshold would be filtered.

Appendix C Examples for UBSs

We selected several UBSs with high success rate obtained from 256-sample evaluation, and re-evaluated
them on the full validation splits. The UBSs as well as their success rate were reported in Table 7. The
UBSs were all meaningless token sequences.

Appendix D Model-based Metrics on Biased Strings

Here was the result for other TUNAS models equal to the test in section 4 on model-based metrics, as
shown in Figure 6. The results were similar to BERT base model on SNLI. The biased strings generated
by models fine-tuned using TUNAS achieved a higher similarity scores in both of the metrics.
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Figure 6: Histograms of semantic similarity evaluated by BERTScore or STS-B model score. Biased
strings were generated based on baseline models or models fine-tuned with TUNAS.
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Hyperparameters
TUNAS

UBS attack Single Test
SNLI MNLI

UBS length, L 5-7 / 5 5 / 5 5-23(step=2)
Initialization
string length

Split for evalua-
tion

test test matched dev Single premise

hypothesis set

Randomly se-
lected hypothesis
and magnet hy-
potheses

Randomly se-
lected hypothesis

Randomly se-
lected hypotheses

none

Iterations, N 20 20 20 40
Candidates num-
ber, K

20 20 20 30

Return UBSs
number, M

50 50 50 30

Batch size 256 256 256 1
Search times, T 10 10 10 1
Added adversarial
samples ratio, R

0.3 0.3 – –

UBSs update
times, Nupdate

40 40 – –

Filter threshold for
loss

1 1 – –

Table 6: Hyperparameters for UBS attack and TUNAS.CC
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Model SNLI MNLI
UBS Success rate UBS Success rate

Baseline

BERT base
individuals physically
something geographical-
lymered

1.0000
Across Miraentry
crosses aspect

0.9937 /
0.9865

BERT large of lungs Ad bearing a 1.0000
bakeryple encounters
words referring

0.9937 /
0.9898

RoBERTa base
sufficientAbility
humanoid circum-
stanceUSE

1.0000
votationInsert word
something

0.9975 /
0.9971

RoBERTa large a exceeds lowly
herein1974

1.0000
Supportedpired uphold-
ing utilizingSupported

0.9960 /
0.9957

DeBERTa base
footed humans mo-
bilised locomotionAth-
letic

1.0000
representative Os-
tensiblysomething
instantiated a

0.9687 /
0.9699

DeBERTa large corporeal individuals
Emotionally humPub

0.9987
antly viewer usage Audi-
ence utilization

0.9922 /
0.9939

TUNAS

BERT base human person played
outside.

0.3236 We can cross concerns.
0.2808 /
0.3343

BERT large The man ps up. 0.2717
Something receives rec-
ognizable involvement.

0.2729 /
0.3862

Table 7: Success rate of the UBSs on models that are fine-tuned with or without TUNAS. For each model,
the UBSs with the highest success rate are selected, and are evaluated on the test splits. The fine-tuning
dataset used for the model are shown in the brackets. For MNLI, success rate show on both matched and
mismatched sets, in the format of “matched set result / mismatched set result”.
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