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Abstract

BERT, a pre-trained language model entirely based on attention, has proven to be highly per-
formant for many natural language understanding tasks. However, pre-trained language mod-
els (PLMs) are often computationally expensive and can hardly be implemented with limited
resources. To reduce energy burden, we introduce adder operations into the Transformer en-
coder and propose a novel AdderBERT with powerful representation capability. Moreover, we
adopt mapping-based distillation to further improve its energy efficiency with an assured perfor-
mance. Empirical results demonstrate that AddderBERT6 achieves highly competitive perfor-
mance against that of its teacher BERTBASE on the GLUE benchmark while obtaining a 4.9x
reduction in energy consumption.

1 Introduction

The last five years have seen great success achieved by large-scale pre-trained language models, such as
BERT (Devlin et al., 2019), ELECTRA (Clark et al., 2020), and GPT3 (Brown et al., 2020). By modeling
long-distance dependencies based on self-attention, they can learn powerful language representations
from the unlabeled corpus.

While these models lead to significant improvement on many downstream tasks (eg., the GLUE bench-
mark (Wang et al., 2019)), the growing computation costs have impaired their deployment, especially on
limited-resource devices such as mobile phones, AR glasses, and smartwatch. Since attending to all
tokens yields a complexity of O(n2) with respect to sequence length, prior works aim to investigate
efficient Transformers with lower complexity. Kitaev et al. (2020) replaces dot-product attention with
one using locality-sensitive hashing. Wang et al. (2020) decomposes the original attention into multiple
smaller ones by linear projections. However, they can only solve the problem partway, for the consump-
tion except self-attention has not been changed in the encoder.

Various attempts also focus on model compression techniques, including quantization (Gong et al.,
2014), weights pruning (Han et al., 2015), and knowledge distillation (KD) (Romero et al., 2015). As
one of the most popular methods, KD aims to transfer knowledge from a large teacher network to a small
student network, employed by DistilBERT (Sanh et al., 2019), BERT-PKD (Sun et al., 2019), TinyBERT
(Jiao et al., 2020), and FastBERT (Liu et al., 2020). Beyond these methods, Chen et al. (2020) proposed
Adder Neural Network (AdderNet), which replaced massive multiplications with cheaper additions to
reduce computation costs, and achieved better performance on the ImageNet dataset compared to CNNs.
Then researchers attempt to build efficient deep-learning models based on AdderNet for computer vision
tasks (Xu et al., 2020; Shu et al., 2021). Inspired by this, it is an interesting idea to investigate the
feasibility of replacing multiplications with additions in pre-trained language models like BERT.

In this paper, we first present AdderBERT, a pre-trained model consisting of several adder encoders,
in which key modules including multi-head attention and feed-forward network are implemented with
cheaper adder operations. As shown in Figure 1, it also has a unique mapping-based distillation that
could make it to be more energy-efficient with an assured performance. Finally, we conduct full experi-
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Figure 1: Depiction of AdderBERT learning. AdderBERT implements the encoder block with cheaper
adder operations, and it has a unique mapping-based distillation. HS and HT are the hidden states of the
student and teacher networks, respectively. M denotes the number of adder encoders.

ments on the GLUE benchmark. Empirical results demonstrate that our method can achieve comparable
performance with the baselines in much lower energy consumption.

The contributions are summarized as follows:

• We propose AdderBERT, which introduces adder operations into the mechanism of self-attention
and feed-forward network.

• We adopt a novel mapping-based distillation to encourage that linguistic knowledge can be ade-
quately transferred from the teacher network to AdderBERT.

• Experimental results show that AddderBERT6 can achieve highly competitive performance against
that of its teacher BERTBASE on the GLUE benchmark while obtaining a 4.9x reduction in energy
consumption.

2 Preliminary

In this section, we revisit the related works including AdderNet and knowledge distillation. We are
motivated by them to design AdderBERT.

2.1 Adder Neural Networks (AdderNet)

Denote the input feature as X ∈ Rh×w×cin , in which h and w are the height and width of the feature
map, respectively. Consider a filter W ∈ Rd×d×cin×cout in an arbitrary layer of AdderNet, where d is the
kernel size, cin and cout are the number of input channels and output channels, respectively. The original
adder operation is defined as:

Y(m,n, v) = −
d∑

i=1

d∑
j=1

cin∑
u=1

|X(m+ i, n+ j, u) −W(i, j, u, v)| , (1)
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where |·| is the absolute value function. m and n are the spatial locations of features. v denotes the
index of output channels. Given that Equation 1 has been proven to be used to replace the traditional
convolution operation, it is an interesting idea to transport this success of CNNs to PTMs.

2.2 Knowledge Distillation (KD)

As one of the most popular compression techniques, KD was used to help a small student network S
mimic the behavior of a large teacher network T for better performance. Given fT and fS represent the
mapping functions of teacher and student networks, respectively. The student network can be optimized
with the following objective function:

LKD =
∑
x∈Ω

L(fS(x), fT (x)), (2)

where L(·) is an arbitrary loss function, x is the input sequence and Ω denotes the training dataset,
fS(x) and fT (x) are the outputs of student network and teacher network, respectively. Based on Equa-
tion 2, we adopt a unique kernel-based distillation to encourage that linguistic knowledge can be ade-
quately transferred from the teacher network to the student AdderBERT.

3 Method

This section describes our proposed AdderBERT as well as its training method. Concisely, AdderBERT
implements the encoder block with cheaper adder operations, and it takes advantage of mapping-based
distillation to be better in performance and efficient in energy.

3.1 Adder Encoder

Given that linear transformation is equivalent to 1×1 convolution with fixed input size in mathematical,
in this paper, the adder operation can be redefined as:

Y(l, v) = −
dembd∑
u=1

|X(l, u)−W(u, v)| = X⊕W, (3)

where l is the sequence length, dembd is the dimension of embedding, and ⊕ denotes the adder opera-
tion between matrices.

Following the original Transformer (Vaswani et al., 2017), We first consider creating output queries
Q ∈ Rl×dq , keys K ∈ Rl×dk , and values V ∈ Rl×dv by weight matrices WQ ∈ Rdembd×dq , WK ∈
Rdembd×dk , WV ∈ Rdembd×dv in the projection layer of a single-head self-attention. dq, dk, dv is the
dimension of queries, keys, and values, respectively. We employ Equation 3 to measure the ℓ1-distance
between embedding and the weight matrices as:

Q = LN (X⊕WQ), K = LN (X⊕WK), V = LN (X⊕WV ), (4)

where X ∈ Rl×dembd is the input embedding and LN (·) denotes layer normalization (Ba et al., 2016).
Chen et al. (2020) first indicated that the output values of the adder operation should be followed by
batch normalization. We also apply layer normalization to stabilize the hidden state dynamics for better
learning. Similarly, Equation 3 can be easily modified for a batch matrix-matrix product to realize self-
attention:

Attention(Q,K,V) = softmax(
Q⊕KT

√
dk

)⊕V, (5)

where softmax(·) is the normalized exponential function and dk is used for scaling. The attention
matrix is calculated from the similarity of Q and K by adder operation and acts as the weighted sum
factor to V to get the final output. Multi-head self-attention concatenated different heads from different
representing subspaces as follows:
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MHA(Q,K,V) = LN (Concat(head1, ..., headn)⊕WO), (6)

where headi is the i-th attention head obtained by Equation 5 and n is the number of heads. Then we
use WO to realize an adder projection for dimensional transformation followed by layer normalization.
Finally, the feed-forward network can also be reformulated as:

FFN(X) = LN (ReLU(X⊕W1)⊕W2). (7)

The new FFN consists of two adder linear transformations, one ReLU activation, and one layer nor-
malization.

3.2 Mapping-based Distillation

Since the basic calculation paradigm of AdderBERT is completely different from that of the original
BERT, we adopt a novel mapping-based distillation to adequately transport linguistic knowledge from
Teacher BERT to student AdderBERT.

Specifically, we distill the output of each encoder block, and the objective function is as follows:

Lmap = MSE(HS ,HT ), (8)

where HS and HT are the hidden states of the student and teacher networks, respectively. MSE(·)
denotes the mean square error loss function. As discussed in AdderNet (Chen et al., 2020), the weight
distribution in a well-trained ANN is Laplacian distribution rather than Gaussian distribution. Thus we
attempt to map the inputs and weights to a higher dimensional space to minimize the distribution gap
between HS and HT .

Given {XS ,WS
1 ,W

S
2 }, {XT ,WT

1 ,W
T
2 } are the inputs and weights of the FFN of the student and

teacher network, respectively. During the distillation process, we transform the hidden states by feature
mapping as follows:

HS = k1 < XS ,WS
1 ,W

S
2 >= e−

XS⊕WS
1 ⊕WS

2
σs ,

HT = k2 < XT ,WT
1 ,W

T
2 >= e

−XTWT
1 WT

2
2σ2

t ,

(9)

where σs and σt are two learnable smoothing factors. k1 < · > is a designed Laplacian-alike kernel
that takes the adder operation of two matrices, while k2 < · > is a Gaussian-alike kernel. After applying
Equation 9, the inputs and weights are mapped into a higher dimensional space, thus we can calculate
the hidden states by the new smoothing representation.

We also use the cross-entropy loss for classifier distillation Lclf as in previous work (Hinton et al.,
2015). Then the final loss function is defined as:

Lmodel = αLmap + Lclf =
∑
x∈Ω

(
M∑

m=1

αLm
map(x) + Lclf (x)), (10)

where M is the number of encoder blocks of AdderBERT, and m denotes the m-th block. α is the
hyper-parameter for seeking the balance between Lmap and Lclf .

4 Experiment

In this section, we verify the effectiveness of AdderBERT on three tasks with different model settings.
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4.1 Datasets
We evaluate our method on the General Language Understanding Evaluation (GLUE) benchmark (Wang
et al., 2019). For Sentiment classification, we test on CoLA (Warstadt et al., 2019), SST-2 (Socher et al.,
2013). For similarity matching, we conduct on QQP 1, MRPC (Dolan and Brockett, 2005), and STS-B
(Cer et al., 2017). For language inference, we use MNLI (Williams et al., 2018), QNLI (Rajpurkar et al.,
2016), WNLI (Levesque et al., 2012) and RTE (Bentivogli et al., 2009).

4.2 AdderBERT Settings
For a fair comparison, We build AdderBERT12 with the same configuration as the original BERTBASE

(the number of layers is 12, the hidden size is 768, the feed-forward size is 3072, the number of heads
is 12). BERTBASE uses pre-trained parameters released by Google, and we train AdderBERT12 from
scratch with the same pre-training settings. We fine-tune them both using the AdaMod (Ding et al.,
2019) optimizer for better performance, the learning rate is set to 2e-5, and the batch size is set to 32.
We then select the model with the best accuracy in 3 epochs.

We also use the fine-tuned BERTBASE as the teacher model and use 6 and 3 layers of AdderBERT as
the student models (i.e. AdderBERT6 and AdderBERT3). The student models learn from every 2 and
4 layers of the teacher model, respectively. We increase the learning rate to 5e-5 and distill them for 5
epochs. All the experiments are conducted on NVIDIA Tesla-V100 GPUs.

Given that hyperparameters can exert a great impact on the ultimate result, we report the full details
about them. We follow the grid search method until the best-performing parameters are at one of the
middle points in the grid. For fine-tuning, we tune over hyperparameters to work well across all tasks
about batch size: {8, 16, 32, 64}, the initial learning rate of AdaMod:{2e-5, 3e-5, 5e-5, e-4}, and the
number of epochs:{2, 3, 4, 5}.

4.3 Baselines
We compare AdderBERT against two strong baselines as follows:

• BERT The 12-layer BERTBASE model, which was pre-trained on Wiki corpus and released by
Google (Devlin et al., 2019).

• DistilBERT The most famous distillation version of BERT with 6 layers, which was released by
Huggingface (Sanh et al., 2019). In addition, we use the same method to distill the DistilBERT with
3 layers.

4.4 Experiments on GLUE
We submitted our model predictions to the official GLUE evaluation server to get results on the test
data, as reported in Table 1. Note that values in both models are 32-bit floating numbers and the energy
consumptions for a 32-bit multiplication and addition are 3.7pJ and 0.9pJ , respectively (Dally, 2015).
The original BERTBASE achieves a 79.7 score on average with 11.27B multiplications and 11.27B ad-
ditions, and AdderBERT12 achieves a 79.0 score with 0.31B multiplications and 22.23B additions. By
replacing massive multiplications with additions, our proposed model obtains about a 2.5x reduction in
energy consumption from 51.8BpJ to 21.1BpJ at the cost of a little performance loss (0.7 drops rel-
ative to BERTBASE on the average score). This demonstrates that AdderBERT performs a powerful
representation capacity like BERT even with few multiplications.

We then evaluate the distillation versions of our model against the strong KD baselines, respectively.
For 6 layers, DistilBERT6 achieves a 75.8 score on average with 5.64B multiplications and 5.64B addi-
tions while AdderBERT-6 achieves a higher 79.6 score with 0.16B multiplications and 11.12B additions.
With mapping-based distillation, our proposed model AdderBERT-6 significantly outperforms the base-
line DistilBERT6 by a margin of 3.8 on average and obtains a 2.5x reduction in energy consumption as
well. Compared to BERTBASE, AdderBERT6 is in much lower energy consumption (4.9x reduction)
while maintaining competitive performance (79.7 vs 79.6). This indicates that our proposed KD method

1https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Model #Mul. #Add. Energy (pJ) MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg
BERTBASE (T) 11.27B 11.27B 51.8B 83.8/83.1 71.0 90.7 93.9 52.5 85.5 89.1 68.1 79.7
AdderBERT12 0.31B 22.23B 21.1B 84.3/83.4 70.4 90.9 92.5 50.7 83.7 89.0 65.9 79.0

DistilBERT6 5.64B 5.64B 25.9B 82.1/81.3 69.9 88.9 92.4 47.4 76.2 88.1 56.3 75.8
AdderBERT6 0.16B 11.12B 10.6B 84.9/83.1 71.3 91.2 93.8 51.3 83.2 87.9 69.5 79.6

DistilBERT3 2.82B 2.82B 13.0B 73.4/72.9 66.0 81.3 85.6 27.5 75.1 80.2 61.0 69.2
AdderBERT3 0.08B 5.56B 5.3B 80.7/80.9 68.6 88.0 90.7 45.9 79.3 87.2 65.2 76.3

Table 1: Results from the GLUE test server. The best results for each group are in-bold. All models
are learned in a single-task manner. The energy consumption is calculated from the number of multipli-
cations and additions, respectively. Nothing that T denotes the teacher model, and all the 3-layers and
6-layer models are distilled from it while AdderBERT12 is undistilled.

can adequately transport linguistic knowledge from the teacher model to the student model. For 3 layers,
AdderBERT3 is consistently better than DistilBERT3 (a large improvement of 8.1 on average), especially
on the challenging CoLA dataset, and it only consumes less than one-tenth of the energy of the teacher
model. In conclusion, empirical results validate our motivation that AdderBERT combines the advan-
tage of both BERT and AdderNet, that is, it could obtain comparable results with the teacher model but
substantially reduce the energy burden.

4.5 Ablation Study

Model MNLI-m MNLI-mm MRPC CoLA Avg

AdderBERT6 84.3 83.4 89.0 50.7 76.9

w/o map 80.5 77.8 84.3 44.6 71.8
w/o clf 82.0 79.3 88.6 46.9 74.2

Table 2: Ablation studies of different distillation ob-
jectives in the AdderBERT learning. The results are
validated on the dev set.

We further investigate the effectiveness of differ-
ent distillation objectives on AdderBERT learn-
ing. The baselines include without mapping-
based distillation (w/o map) or classification dis-
tillation (w/o clf), respectively. The results are
summarized in Table 2. We can find the perfor-
mance without mapping-based distillation drops
significantly from 76.9 to 71.8, which demon-
strates that our proposed method plays the most
important role of the two objectives. The reason
for the significant drop lies in the distribution gap between HS and HT . Linguistic knowledge is hard to
transport across completely different representations.

5 Conclusion

In this paper, we propose an energy-efficient version of BERT, called AdderBERT. Specifically, Adder-
BERT consists of several adder encoders implemented by cheap addition operations but has a powerful
representation capacity. It adopts a unique mapping-based distillation method to narrow the gap in fea-
ture distribution between the teacher and student model. Empirical results on the GLUE benchmark
demonstrate that our method can achieve highly competitive performance to the teacher BERTBASE

while reducing energy consumption significantly.
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