@inproceedings{hongyuan-etal-2023-finbart,
title = "{F}in{BART}: A Pre-trained Seq2seq Language Model for {C}hinese Financial Tasks",
author = "Hongyuan, Dong and
Wanxiang, Che and
Xiaoyu, He and
Guidong, Zheng and
Junjie, Wen",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-1.77/",
pages = "906--917",
language = "eng",
abstract = "{\textquotedblleft}Pretrained language models are making a more profound impact on our lives than ever before. They exhibit promising performance on a variety of general domain Natural Language Process-ing (NLP) tasks. However, few work focuses on Chinese financial NLP tasks, which comprisea significant portion of social communication. To this end, we propose FinBART, a pretrainedseq2seq language model for Chinese financial communication tasks. Experiments show thatFinBART outperforms baseline models on a series of downstream tasks including text classifica-tion, sequence labeling and text generation. We further pretrain the model on customer servicecorpora, and results show that our model outperforms baseline models and achieves promisingperformance on various real world customer service text mining tasks.{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hongyuan-etal-2023-finbart">
<titleInfo>
<title>FinBART: A Pre-trained Seq2seq Language Model for Chinese Financial Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dong</namePart>
<namePart type="family">Hongyuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Che</namePart>
<namePart type="family">Wanxiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">Xiaoyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Guidong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen</namePart>
<namePart type="family">Junjie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Harbin, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“Pretrained language models are making a more profound impact on our lives than ever before. They exhibit promising performance on a variety of general domain Natural Language Process-ing (NLP) tasks. However, few work focuses on Chinese financial NLP tasks, which comprisea significant portion of social communication. To this end, we propose FinBART, a pretrainedseq2seq language model for Chinese financial communication tasks. Experiments show thatFinBART outperforms baseline models on a series of downstream tasks including text classifica-tion, sequence labeling and text generation. We further pretrain the model on customer servicecorpora, and results show that our model outperforms baseline models and achieves promisingperformance on various real world customer service text mining tasks.”</abstract>
<identifier type="citekey">hongyuan-etal-2023-finbart</identifier>
<location>
<url>https://aclanthology.org/2023.ccl-1.77/</url>
</location>
<part>
<date>2023-08</date>
<extent unit="page">
<start>906</start>
<end>917</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FinBART: A Pre-trained Seq2seq Language Model for Chinese Financial Tasks
%A Hongyuan, Dong
%A Wanxiang, Che
%A Xiaoyu, He
%A Guidong, Zheng
%A Junjie, Wen
%Y Sun, Maosong
%Y Qin, Bing
%Y Qiu, Xipeng
%Y Jiang, Jing
%Y Han, Xianpei
%S Proceedings of the 22nd Chinese National Conference on Computational Linguistics
%D 2023
%8 August
%I Chinese Information Processing Society of China
%C Harbin, China
%G eng
%F hongyuan-etal-2023-finbart
%X “Pretrained language models are making a more profound impact on our lives than ever before. They exhibit promising performance on a variety of general domain Natural Language Process-ing (NLP) tasks. However, few work focuses on Chinese financial NLP tasks, which comprisea significant portion of social communication. To this end, we propose FinBART, a pretrainedseq2seq language model for Chinese financial communication tasks. Experiments show thatFinBART outperforms baseline models on a series of downstream tasks including text classifica-tion, sequence labeling and text generation. We further pretrain the model on customer servicecorpora, and results show that our model outperforms baseline models and achieves promisingperformance on various real world customer service text mining tasks.”
%U https://aclanthology.org/2023.ccl-1.77/
%P 906-917
Markdown (Informal)
[FinBART: A Pre-trained Seq2seq Language Model for Chinese Financial Tasks](https://aclanthology.org/2023.ccl-1.77/) (Hongyuan et al., CCL 2023)
ACL