@inproceedings{xing-etal-2023-mian,
title = "面向机器翻译的汉英小句复合体转换生成能力调查(Investigation of the Clause Complexes Transfer and Generation Capability from {C}hinese to {E}nglish for Machine Translation)",
author = "Xing, Fukun and
Xu, Jianing",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-1.9",
pages = "102--112",
abstract = "{``}小句复合体由小句组合而成,不同语言在小句的组合模式上存在差异,该差异对机器翻译有何影响尚不清楚。本文以汉英机器翻译为例,选取多语体的汉语小句复合体及专家译文,从话头共享关系和共享类型两方面对主流机器翻译系统以及ChatGPT开展调查。结果显示,与专家译文相比,机器翻译的小句复合体转换生成能力存在较大不足,表现为机器翻译在话头补足、转换、提炼等方面的能力较弱,小句组合模式单一且带有明显的汉语原文痕迹,译文的地道性受到较大影响。{''}",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xing-etal-2023-mian">
<titleInfo>
<title>面向机器翻译的汉英小句复合体转换生成能力调查(Investigation of the Clause Complexes Transfer and Generation Capability from Chinese to English for Machine Translation)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fukun</namePart>
<namePart type="family">Xing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianing</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Harbin, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“小句复合体由小句组合而成,不同语言在小句的组合模式上存在差异,该差异对机器翻译有何影响尚不清楚。本文以汉英机器翻译为例,选取多语体的汉语小句复合体及专家译文,从话头共享关系和共享类型两方面对主流机器翻译系统以及ChatGPT开展调查。结果显示,与专家译文相比,机器翻译的小句复合体转换生成能力存在较大不足,表现为机器翻译在话头补足、转换、提炼等方面的能力较弱,小句组合模式单一且带有明显的汉语原文痕迹,译文的地道性受到较大影响。”</abstract>
<identifier type="citekey">xing-etal-2023-mian</identifier>
<location>
<url>https://aclanthology.org/2023.ccl-1.9</url>
</location>
<part>
<date>2023-08</date>
<extent unit="page">
<start>102</start>
<end>112</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 面向机器翻译的汉英小句复合体转换生成能力调查(Investigation of the Clause Complexes Transfer and Generation Capability from Chinese to English for Machine Translation)
%A Xing, Fukun
%A Xu, Jianing
%Y Sun, Maosong
%Y Qin, Bing
%Y Qiu, Xipeng
%Y Jiang, Jing
%Y Han, Xianpei
%S Proceedings of the 22nd Chinese National Conference on Computational Linguistics
%D 2023
%8 August
%I Chinese Information Processing Society of China
%C Harbin, China
%G Chinese
%F xing-etal-2023-mian
%X “小句复合体由小句组合而成,不同语言在小句的组合模式上存在差异,该差异对机器翻译有何影响尚不清楚。本文以汉英机器翻译为例,选取多语体的汉语小句复合体及专家译文,从话头共享关系和共享类型两方面对主流机器翻译系统以及ChatGPT开展调查。结果显示,与专家译文相比,机器翻译的小句复合体转换生成能力存在较大不足,表现为机器翻译在话头补足、转换、提炼等方面的能力较弱,小句组合模式单一且带有明显的汉语原文痕迹,译文的地道性受到较大影响。”
%U https://aclanthology.org/2023.ccl-1.9
%P 102-112
Markdown (Informal)
[面向机器翻译的汉英小句复合体转换生成能力调查(Investigation of the Clause Complexes Transfer and Generation Capability from Chinese to English for Machine Translation)](https://aclanthology.org/2023.ccl-1.9) (Xing & Xu, CCL 2023)
ACL