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Abstract

Recent efforts have evaluated large language models (LLMs) in areas such as com-
monsense reasoning, mathematical reasoning, and code generation. However, to the
best of our knowledge, no work has specifically investigated the performance of LLMs
in natural language generation (NLG) tasks, a pivotal criterion for determining model
excellence. Thus, this paper conducts a comprehensive evaluation of well-known and
high-performing LLMs, namely ChatGPT, ChatGLM, T5-based models, LLaMA-based
models, and Pythia-based models, in the context of NLG tasks. We select English and
Chinese datasets encompassing Dialogue Generation and Text Summarization. More-
over, we propose a common evaluation setting that incorporates input templates and
post-processing strategies. Our study reports both automatic results, accompanied by a
detailed analysis.

1 Introduction

Recent studies have emphasized the importance of scaling large language models (LLMs),
referring to both the dimensions of the model size themselves and the amount of data used,
resulting in enhanced capability of the models for tasks downstream (Chung et al., 2022).
Numerous investigations have been conducted to explore the limits of performance by training
increasingly larger pre-trained language models, such as GPT-3 175B (Brown et al., 2020) and
PaLM 540B (Chowdhery et al., 2022). Although scaling primarily involves increasing the model
size while maintaining similar architectures and pre-training tasks, these large-sized PLMs exhibit
distinct behaviors from their smaller counterparts and demonstrate surprising emergent abilities
in solving complex tasks (Zhang et al., 2017; Frankle and Carbin, 2019; Zhang et al., 2021). An
example of this is the contrasting performance of GPT-3 and GPT-2 when it comes to solving
few-shot tasks. GPT-3 demonstrates effective problem-solving abilities by utilizing in-context
learning, whereas GPT-2 faces difficulties in this aspect. As a result, these large-scale language
models (LLMs) has become a huge research topic in current NLP area. In existing literature,
remarkable LLMs such as ChatGPT0, ChatGLM1, have been widely adopted as powerful AI
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assistants, benefiting from their exceptional generation capabilities.

We hypothesis that a language model’s performance in executing natural language generation
(NLG) tasks is a crucial factor in determining its excellence (Dong et al., 2023). NLG tasks
involve LLMs that are capable of accepting diverse types of input, such as texts and tables, and
generating coherent and appropriate output text. We intuitively think that generate fluent, coherent,
and consistent texts is the foundation of a language model, so as to large language models (Raffel
et al., 2020). When some research institutions release their large language models, they tend
to evaluate these models first. Community workers are also interested in testing well-known
large language models. However, most of these evaluations focus on checking LLMs’ ability of
commonsense reasoning (Davis and Marcus, 2015; Wei et al., 2022), mathematical reasoning
(Saxton et al., 2019; Wei et al., 2022), code completion (Allamanis et al., 2018), etc., but ignore
the basic NLG tasks, such as dialogue generation (Chen et al., 2017), text summarization (Dong et
al., 2023), and story generation (Al-Hussain and Azmi, 2022). Besides, Some researchers pointed
out that the performance of a large model is determined not only by its size and architecture, but
more by the quality and quantity of training data. Based on this point of view, researchers open
source and propose that some smaller-scale models trained on more and higher-quality data sets
can achieve the same performance as models with more parameters than them. For example,
LLaMA-13B (Touvron et al., 2023) outperforms GPT-3 on most benchmarks, despite being 10
times smaller. This notable discovery makes us curious about the performance of models with
different architecture, data size, and mode size, trying to figure out which factor is more important.
Therefore, we aim to address this gap by conducting a comparative analysis of LLM performance
on NLG tasks, considering different architectures and scales throughout the evaluation process.

In this paper, we present a systematic evaluation of existing LLMs for NLG tasks. The main
objective is to enhance our understanding of instruction and prompt design by conducting a
comparative analysis of these models. Initially, we provide an overview of classic NLG tasks,
including their definitions and associated English and Chinese datasets. Subsequently, we devise
a model input template that includes instructions for each dataset. Following that, we introduce
various LLMs, considering factors such as model size and architecture. Finally, we present the
results of both automatic and manual evaluation of LLMs on NLG datasets, and discuss the
strengths and weaknesses of their performance across different models.

2 Natural Language Generation

In this section, we will introduce the definition of NLG, and its sub-tasks with some corresponding
datasets that we will use to evaluate LLMs.

2.1 Definition

Natural Language Generation is the process of producing a natural language text in order to meet
specified communicative goals. The texts that are generated may range from a single phrase
given in answer to a question, through multi-sentence remarks and questions within a dialog, to
full-page explanations. In our evaluation, we mainly focus on text-to-text styles. In general, the
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task of NLG targets at finding an optimal sequence y<T+1 = (y1, y2, . . . , yT ) that satisfies:

y<T+1 = argmax
y<T+1∈Y

logPθ (y<T+1 | x) = argmax
y<T+1∈Y

T∑
t=1

logPθ (yt | y<t, x) (1)

where T represents the number of tokens of the generated sequence, Y represents a set containing
all possible sequences, and Pθ (yt | y<t, x) is the conditional probability of the next token yt
based on its previous tokens y<t = (y1, y2, . . . , yt−1) and the source sequence x with model
parameters θ.

Next, we will introduce some classic and widely-researched sub-tasks of NLG, with several
corresponding datasets.

2.2 Dialogue Generation
Dialogue generation refers to the process of automatically generating coherent and contextually
appropriate responses in a conversational setting (Chen et al., 2017; Ma et al., 2020; Dong et
al., 2023). The ultimate goal of dialogue generation task is to create responses that are relevant,
informative, and engaging to the user.We utilize two English dialogue datasets characterized
by clear emotional flow and topic constraints, as well as one English dataset that incorporates
speakers’ personalities. Furthermore, we employ a Chinese open-domain dialogue dataset for
evaluation purposes.

• DailyDialog (Li et al., 2017) is a comprehensive, human-authored, and relatively noise-free
English dataset that captures everyday communication styles and encompasses various topics
related to our daily lives.

• PersonaChat (Zhang et al., 2018) is a persona-grounded dialogue dataset which contains
10k English multi-turn dialogues conditioned on personas, and each persona is described
with at least 5 profile sentences.

• EmpatheticDialogue (Rashkin et al., 2019) is a large-scale multi-turn dialogue English
dataset that contains 25k empathetic conversations between a speaker and a listener.

• LCCC (Wang et al., 2020) is a large-scale cleaned Chinese conversation dataset.

2.3 Text Summarization
Text summarization is the process of condensing a piece of text, such as an article, document,
or news story, into a shorter version while preserving its key information and main ideas (El-
Kassas et al., 2021; Dong et al., 2023). Text summarization can be performed through two main
approaches: Extractive Summarization and Abstractive Summarization. In our evaluation, we
utilize multiple abstractive summarization datasets, specifically choosing two renowned datasets
for the English and Chinese languages.

• CNN/DailyMail (Nallapati et al., 2016) is a large scale English summarization dataset
which contains 93k and 220k articles collected from the CNN and Daily Mail websites,
respectively, where each article has its matching abstractive summary.

• XSum (Narayan et al., 2018) is an extreme English summarization dataset containing BBC
articles and corresponding single sentence summaries. In this dataset, 226,711 Wayback
archived BBC articles are collected, which range from 2010 to 2017 and cover a wide variety
of domains.
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• THUCNews (Li and Sun, 2007) is a Chinese summarization dataset, which comes from
filtering the historical data of the Sina News RSS subscription channel from 2005 to 2011,
including 740,000 news documents.

• LCSTS (Liu, 2020) is a large corpus of Chinese short text summarization dataset constructed
from the Chinese micro-blogging website Sina Weibo. This corpus consists of over 2 million
real Chinese short texts with short summaries given by the author of each text.

2.4 Overview for LLMs

Typically, large language models (LLMs) refer to Transformer-based models containing tens or
hundreds of billions of parameters and trained on extensive corpora of texts (Zhao et al., 2023).
These LLMs demonstrate significant capabilities in understanding natural language and solving
complex tasks. Furthermore, they have showcased their ability to perform new tasks based on
textual instructions or with just a few examples (Chung et al., 2022). The emergence of these
few-shot properties is a result of scaling models to a sufficient size, leading to a line of research
that focuses on further scaling these models (Rae et al., 2021).

Previous LLMs, such as T5 (Raffel et al., 2020), GPT-3 (Brown et al., 2020), OPT (Zhang et
al., 2022), and PaLM (Chowdhery et al., 2022), primarily emphasized scaling model size rather
than considering the quality and quantity of data. However, recent studies have demonstrated
that, given a fixed compute budget, the best performance is achieved by smaller models trained
on larger datasets (Hoffmann et al., 2022). Additionally, most of these models are not open-
source and can only be accessed through APIs for inference, which poses inconveniences for
model evaluation and usage. In order to address this issue, numerous researchers have proposed
excellent open-source architectures and trained models, including GLM-130B (Zeng et al., 2022),
ChatGLM (Du et al., 2022), LLaMA (Touvron et al., 2023), and Pythia (Biderman et al., 2023).
Furthermore, advancements in fine-tuning techniques have contributed to the success of deploying
these models with limited resources, such as Lora (Hu et al., 2022) and P-Tuning (Li and Liang,
2021). Therefore, this paper aims to conduct systematic evaluations of these models and their
fine-tuned versions, categorized into four groups: ChatGPT, ChatGLM, T5-based models,
LLaMA-based models, and Pythia-based models.

2.5 ChatGPT

ChatGPT2 is a large language model based on OpenAI’s GPT-3.5 architecture (Brown et al.,
2020). It is designed specifically for generating conversations and answering user queries.
ChatGPT employs large-scale pretraining and fine-tuning methodologies, utilizing vast amounts
of textual data to learn statistical patterns and semantic knowledge of language, and perform well
in zero-shot and few-shot settings, and can understand the input instructions.

2.6 ChatGLM

ChatGLM3 is a freely available dialogue language model that operates in both Chinese and
English languages. It follows the GLM architecture and boasts an impressive parameter count
of 6.2 billion. ChatGLM-6B incorporates similar technology as ChatGPT, with a specific focus

2https://chat.openai.com/
3https://chatglm.cn/
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on Chinese question answering and dialogue. The model undergoes extensive training on a
dataset containing approximately 1 trillion tokens in Chinese and English. The training process
includes supervised fine-tuning, feedback bootstrap, and reinforcement learning with human
feedback. Despite having only 6.2 billion parameters, the model demonstrates the ability to
generate responses that align with human preferences.

2.7 T5-Based models

T5 (Raffel et al., 2020), which stands for Text-To-Text Transfer Transformer, is a transformer-
based language model developed by Google Research. Instead of training separate models for
different tasks, T5 is trained in a text-to-text pattern. This means that it is trained to perform a
wide range of NLP tasks by transforming the input text into a standardized format that specifies
the task to be performed. In our evaluation, we select two new fine-tuned versions of T5, namely:
Flan-T5-XXL4 and FastChat-T55.

Flan-T5-XXL Flan-T5 (Chung et al., 2022) is a fine-tuned version model class of T5 that has
been trained on a variety of datasets phrased as instructions. It has shown impressive performance
on several benchmarks, demonstrating strong zero-shot, few-shot, and Chain-of-Thought (CoT)
(Wei et al., 2022) abilities. Flan-T5-XXL is the largest released checkpoint of this model, boasting
a parameter volume of 13B. It inherits the extensive knowledge base of T5 while also being
capable of understanding natural language instructions and performing the corresponding tasks.

FastChat-T5 FastChat (Zheng et al., 2023a) is an open platform for training, serving, and
evaluating large language model based chatbots. And FastChat-T5 is an open-source chatbot
trained on this platform by fine-tuning Flan-T5-XL (3B parameters) on user-shared conversations
collected from ShareGPT.

2.8 LLaMA-Based Models

LLaMA (Touvron et al., 2023) is a collection of foundation language models ranging from 7B
to 65B parameters proposed by Meta AI. Unlike other famous LLMs, LLaMA is only trained
on publicly avaiable data, making it compatible with open-sourcing. Numerous remarkable and
impressive models have emerged as a result, built upon the LLaMA framework and trained using
diverse datasets. Among these models, we have chosen a few prominent ones for evaluation:
Open-LLaMA, Vicuna, Alpaca, and GPT4ALL.

Open-LLaMA Open-LLaMA (Geng and Liu, 2023) is an open reproduction of LLaMA trained
on the RedPajama dataset (Computer, 2023). We leverage the 7B version6 of this model for
evaluation.

Alpaca (Taori et al., 2023) is fine-tuned based on a 7B LLaMA model using a dataset con-
sisting of 52,000 instances of instruction-following data. This dataset is generated using the
techniques outlined in the Self-Instruct paper (Wang et al., 2022), which aims to address the
limited instruction-following capabilities of LLaMA models. To create the training data, the

4https://huggingface.co/google/flan-t5-xxl
5https://huggingface.co/lmsys/fastchat-t5-3b-v1.0
6https://github.com/openlm-research/open llama
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authors initially generate the data using OpenAI’s GPT-3 and subsequently convert it into 52,000
instances of instruction-following conversational data using the Self-Instruct pipeline. This
dataset is referred to as the Alpaca dataset. The Alpaca model is then fine-tuned to generate
responses in conversations similar to ChatGPT.

In our evaluation, we utilize Alpaca-Lora-7B7, a low-rank adapter for LLaMA-7b fit on the
Stanford Alpaca dataset, and Chinese-Alpaca-13b8, a Chinese model version of Alpaca.

Vicuna (Zheng et al., 2023b) is fine-tuned based on LLaMA models using user-shared conversa-
tions collected from ShareGPT. It is an auto-regressive language model, based on the transformer
architecture. So it is basically fine-tuned with ChatGPT conversations. We utilize the 13B version
of Vicuna, which is Vicuna-13B9.

GPT4ALL (Anand et al., 2023) is a fine-tuned LLaMA 13B model and the GPT4All commu-
nity10 has built the GPT4All Open Source datalake as a staging ground for contributing instruction
and assistant tuning data for future GPT4All model trains.

2.9 Pythia-Based Models
Pythia (Biderman et al., 2023) is a project by EleutherAI11 that combines interpret-ability
analysis and scaling laws to understand how knowledge develops and evolves during training in
autoregressive Transformers. We utilize two versions of Pythia which are Oasst-Pythia and Dolly.

Oasst-Pythia12 is an open assistant model developed by the Open-Assistant project. It is based
on a Pythia 12B model that was fine-tuned on human demonstrations of assistant conversations
collected through the Open-Assistant human feedback web app.

Dolly13 is a Language Model (LLM) with 12B parameters, designed to follow instructions
accurately. It has been trained on approximately 15,000 instruction/response fine-tuning records
known as databricks-dolly-15k. These records were created by Databricks employees and cover
various capability domains sourced from InstructGPT (Ouyang et al., 2022). These domains
include brainstorming, classification, closed QA, generation, information extraction, open QA,
and summarization.

3 Experimental Settings

3.1 Dataset
In our evaluation, we aim to showcase the generation capabilities of LLMs in zero-shot scenarios.
Therefore, we refrain from providing any additional information to the model for each of the
aforementioned datasets. Specifically:

• For datasets of Text Summarization task, we input the text, document, or article to allow the
model to extract key information and generate concise summaries.

7https://huggingface.co/chainyo/alpaca-lora-7b
8https://huggingface.co/shibing624/chinese-alpaca-plus-13b-hf
9https://huggingface.co/eachadea/vicuna-13b-1.1

10https://home.nomic.ai/
11https://github.com/EleutherAI/pythia
12https://huggingface.co/OpenAssistant/pythia-12b-sft-v8-7k-steps
13https://huggingface.co/databricks/dolly-v2-12b
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Below is an instruction that describes
a task. Write a response that appropr-
iately completes the request.
### Instruction: {instruction}
### Input: {text}
### Response:

以下是描述任务的说明。 编写准确的回复来
完成这个任务。

### 说明：{instruction}
### 输入：{text}
### 回复：

Figure 1: Input templates for English (left) and Chinese (right) datasets. instruction and text
will be replaced with content corresponding different datasets.

Dataset Instruction Text

Empathetic
Dialogues

This is an open-domain empathetic dialogue completion task.The
input is the Dialogue. You act as System in the dialogue. You need to
fully understand the situation and combine the speaker’s emotion to
complete the dialogue with natural content and a way closer to human
speech. There is no need for any additional notes or clarifications,
you just give the response in English.

Dialogue Context

DailyDialog

This is an open-domain topic-aware dialogue completion task. The
input is the Dialogue. You act as System in the dialogue. You need
to fully understand the topic and complete the dialogue with natural
content and a way closer to human speech. There is no need for any
additional notes or clarifications, you just give the response in English

Dialogue Context

PersonaChat

This is an open-domain personality-aware dialogue completion task.
The input is the Dialogue. You act as System in the dialogue. You
need to fully understand the personality and complete the dialogue
with natural content and a way closer to human speech. There is
no need for any additional notes or clarifications, you just give the
response in English.

Dialogue Context

LCCC

这是一个开放域的中文对话补全任务。输入是待完成的对话内
容。你在对话中扮演系统。你需要完全理解说话者的话语，并
用自然的内容和更接近于人类说话的方式完成对话，而不是用
语言模型或者AI的身份。不需要任何额外的注释或者说明，你
只需用中文给出回复。

Dialogue Context

Table 1: Instruction and Text for each dataset.

• For datasets of Dialogue Generation task, we input the dialogue history, enabling the model
to generate appropriate responses for the final round of the conversation.

We defer the evaluation of LLMs on Chinese datasets and other NLG tasks such as story
generation, along with results of manual and GPT-4 rating, to future research endeavors.

3.2 Input Template

Because LLMs that we evaluate possess the ability to comprehend instructions and perform
corresponding tasks, so in order to ensure fairness, we develop an input template that is applied
to every dataset for each task, serving as the input for every large language model. This template
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consists of two components: the instruction and the input. Figure 1 illustrates the templates
designed for both the Chinese and English datasets, and Table 1 shows the content of instruction
and text for each dataset.

3.3 Hyperparameters
Although each LLM may have its own optimal decoding strategy, for the sake of fairness, we
have standardized these hyperparameters across all LLMs. We employ the Top-k and Top-p
sampling, with k = 40 and p = 0.75. Additionally, a temperature value of 0.2 and a repetition
penalty factor of 1.15 are imposed. Furthermore, we specify a maximum token length of 512 and
a minimum token length of 10 for the generated content.

3.4 Post-Processing Strategy
Through case study, we observe that despite emphasizing the exclusion of any additional output in
the input, regrettably, most LLMs still generate redundant information in their output. Therefore,
we find it necessary to apply post-processing to the outputs of these models. To ensure fairness,
we adopt the same post-processing strategy for all LLMs. Specifically, we utilize the keywords
“### response:” or “###回复：” for segmentation. If the segmented content consists of a
single line, we consider it as the final result. If the segmented content spans multiple lines, we
use “\n” as segmentation keywords and select the first sentence with a length not less than 16 as
the final result.

3.5 Baselines
There have been numerous previous works on datasets we used, and these works have achieved
good results. Therefore, despite the fact that most of these works have proposed models much
smaller than LLMs and have predominantly utilized supervised fine-tuning methods, we still
compare them with LLMs to highlight some characteristics of LLMs. For each dataset, we select
several recent works with better performance and report their results.

• For EmpatheticDialogues, we utilize EP-PG (Li et al., 2022) that first generates event
transition plans and then obtains the final response, and MoEL (Lin et al., 2019) that are
consist of one emotion tracker and n emotion listeners.

• For DailyDialog, we utilize PLATO (Bao et al., 2020), a pre-trained dialogue generation
model, and DialogWAE (Gu et al., 2019), a conditional wasserstein autoencoder (WAE)
specially designed for dialogue modeling.

• For PersonaChat, we utilize PLATO as mentioned above, and CTRLStruct (Yin et al.,
2023) for dialogue structure learning to effectively explore topic-level dialogue clusters.

3.6 Evaluation Metrics
Automatic Metrics We utilize several common automatic metrics for NLG tasks. PPL is used
to assess the difficulty or confusion of a language model in predicting a sequence of words. BLEU
(B-1, B-2, B-3, B-4) (Papineni et al., 2002) is used to assess the quality of machine-generated
translations by comparing them to human reference translations. Meteor (MT) (Banerjee and
Lavie, 2005) considers the accuracy and recall based on the entire corpus, and get the final
measure. Rouge-L (R-L) (Lin, 2004) calculates the overlap between the generated output and
the reference summaries or translations using various techniques such as N-gram matching.
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Model Scale Arch PPL↓ B-1 B-2 B-4 MT R-L D-1 D-2 PPR↓

EP-PG – – – 16.74 6.94 2.39 – – 2.19 8.25 –
MoEL 23.1M DO 33.58 – – 2.90 – – 1.06 4.29 –

ChatGPT 175B DO 10.52 7.35 2.40 0.52 9.26 8.75 4.71 27.75 0.00%

ChatGLM 6B DO 11.73 6.05 1.82 0.27 8.58 7.71 3.57 22.82 12.61%

Flan-T5-XXL 13B ED 19.97 5.62 2.40 0.61 5.38 7.41 5.66 24.97 0.00%
FastChat-T5 3B ED 9.25 7.33 2.35 0.45 8.50 8.62 3.55 20.81 0.12%

Open-LLaMA 7B DO 15.90 8.50 2.97 0.63 6.43 8.74 3.93 17.91 40.05%
Vicuna 13B DO 14.31 6.18 1.93 0.35 8.91 7.81 4.09 25.84 38.86%
Alpaca-Lora 7B DO 16.10 7.95 2.52 0.40 7.34 6.69 7.59 39.58 0.24%
Chinese-Alpaca 13B DO 12.05 6.51 1.86 0.35 7.53 6.64 5.32 29.14 0.20%
GPT4ALL 13B DO 11.14 5.20 1.47 0.24 8.75 6.78 3.94 25.60 1.81%

Dolly 12B DO 131.75 8.29 2.64 0.46 6.91 7.96 7.46 42.69 58.61%
Oasst-Pythia 12B DO 8.71 5.48 1.53 0.26 8.79 6.92 3.38 21.18 0.04%

Table 2: Automatic evaluation results of LLMs on EmpatheticDialogues. Scale stands for the
model size.ED and DO respectively stand for encoder-decoder and decoder-only. Arch is an
abbreviation for Architecture. The bold numbers in the results represent the best scores, whereas
the underlined numbers indicate the second-best scores.

DISTINCT (D-1, D-2) (Li et al., 2016) quantifies how many distinct or different N-grams are
present in the generated text, providing an indication of the model’s ability to produce varied and
non-repetitive output.

Besides these widely-used metrics, we also develop a new metric called PostProcess Rate
(PPR), which means the proportion of samples that need to be post-processed to the total number
of samples.

4 Results and Analysis

4.1 Dialogue Generation

The automatic metrics results of LLMs on the three datasets are shown in Tables 2, 3, and 4.
Although automatic metrics cannot fully reflect the performance of the models, we can still draw
the following conclusions from them.

First, apart from ChatGPT that has the largest scale of 175B, the two T5-based models
consistently outperform others in terms of the PPR metric. This indicates that the generated
content of Flan-T5-XXL and FastChat-T5 largely aligns with the instruction requirements stated
in the input template: ”without any additional output.” Interestingly, both of these models follow
an encoder-decoder architecture, while all other models follow a decoder-only architecture. This
suggests that encoder-decoder models demonstrate superior understanding of input instructions
under the same model scale. We speculate that having an encoder allows the model to comprehend
the input content effectively, thereby executing the corresponding task more successfully.

Second, Alpaca-Lora consistently ranks either first or second in the richness of output content.
Moreover, the models using the same architecture as Alpaca-Lora also achieve higher scores in
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Model Scale Arch PPL↓ B-1 B-2 B-4 MT R-L D-1 D-2 PPR↓

PLATO – DO – 39.70 31.10 – – – 5.30 29.10 –
DialogWAE – ED – 32.30 – – – – 31.30 59.70 –

ChatGPT 175B DO 11.41 7.58 2.71 0.56 10.13 8.17 10.98 47.20 0.00%

ChatGLM 6B DO 17.52 10.54 3.86 0.93 9.14 11.91 9.60 42.69 12.05%

Flan-T5-XXL 13B ED 16.31 3.85 1.61 0.42 6.64 5.52 14.54 47.59 0.00%
FastChat-T5 3B ED 10.27 7.45 2.59 0.50 9.15 7.86 9.58 41.16 0.50%

Open-LLaMA 7B DO 21.23 6.72 2.31 0.46 5.94 5.59 11.65 38.72 64.36%
Vicuna 13B DO 78.66 6.13 2.11 0.42 8.89 6.96 10.15 45.18 38.55%
Alpaca-Lora 7B DO 28.63 6.40 2.16 0.00 6.04 5.02 17.49 61.66 3.41%
Chinese-Alpaca 13B DO 22.23 6.52 2.18 0.38 7.49 5.93 13.06 51.02 2.01%
GPT4ALL 13B DO 14.72 4.84 1.24 0.13 7.72 5.77 10.24 43.53 25.50%

Dolly 12B DO 58.29 6.09 2.01 0.40 5.70 4.25 14.14 52.33 74.80%
Oasst-Pythia 12B DO 10.68 5.40 1.45 0.19 7.62 6.09 9.23 38.91 16.47%

Table 3: Automatic evaluation results of LLMs on DailyDialog.

Model Scale Arch PPL↓ B-1 B-2 B-4 MT R-L D-1 D-2 PPR↓

PLATO – DO – 40.60 31.50 – – – 2.10 12.10 –
CTRLStruct – ED – 31.60 11.90 – – 16.10 3.20 11.40 –

ChatGPT 175B DO 10.97 6.36 2.37 0.52 9.78 8.42 9.10 40.65 0.00%

ChatGLM 6B DO 13.89 5.98 2.07 0.40 8.85 8.67 6.85 34.86 12.05%

Flan-T5-XXL 13B ED 51.50 6.51 2.53 0.43 6.15 7.46 12.23 39.82 0.00%
FastChat-T5 3B ED 10.61 5.53 2.00 0.43 8.98 7.94 7.30 33.66 0.50%

Open-LLaMA 7B DO 15.69 4.43 1.16 0.00 5.86 5.43 7.83 28.90 64.36%
Vicuna 13B DO 12.53 3.20 1.01 0.14 7.30 4.82 5.88 30.12 38.55%
Alpaca-Lora 7B DO 17.20 4.19 1.21 0.24 6.29 4.40 12.28 50.33 3.41%
Chinese-Alpaca 13B DO 14.95 4.93 1.66 0.29 7.70 6.21 10.18 44.62 2.01%
GPT4ALL 13B DO 11.68 2.74 0.55 0.07 6.52 4.39 7.56 35.23 25.50%

Dolly 12B DO 29.76 4.51 1.39 0.24 5.02 4.59 10.55 41.62 74.80%
Oasst-Pythia 12B DO 9.57 3.34 0.69 0.07 6.58 4.66 6.48 28.56 16.47%

Table 4: Automatic evaluation results of LLMs on PersonaChat.

terms of D-1 and D-2. This indicates that LLAMA-based models are capable of producing more
diverse and less repetitive content.

Last, ChatGPT, the model with the largest parameter scale, performs the best overall on all
four datasets, securing the first or second position most frequently. This suggests that increasing
the parameter size and training data volume of LLMs is consistently one of the most important
methods for improving model performance.

4.2 Text Summarization
The automatic metrics results of LLMs on the three datasets are shown in Tables 5 and 6. In
addition to the widely used Rouge-L in text summarization tasks, we have incorporated several
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Model Scale Arch PPL↓ B-1 B-2 B-3 B-4 MT R-L PPR↓

ChatGPT 175B DO 10.86 2.99 0.58 0.00 0.00 4.89 5.02 0.00%
ChatGLM 6B DO 18.56 2.80 0.87 0.25 0.00 4.80 4.91 10.78%

Flan-T5-XXL 13B ED 15.96 5.49 1.21 0.00 0.00 3.69 5.16 0.00%
FastChat-T5 3B ED 10.26 2.62 0.89 0.46 0.29 4.80 4.58 0.03%

Open-LLaMA 7B DO 45.72 0.02 0.01 0.00 0.00 0.35 0.18 73.67%
Vicuna 13B DO 10.94 2.45 0.81 0.41 0.23 4.75 4.40 31.29%
Alpaca-lora 7B DO 19.22 3.41 0.56 0.00 0.00 4.19 4.23 0.13%
Chinese-Alpaca 13B DO 14.30 4.40 1.88 1.13 0.74 3.55 10.27 0.15%
GPT4ALL 13B DO 23.28 3.03 0.85 0.49 0.35 5.14 5.06 3.37%

Dolly 12B DO 15.01 3.35 1.12 0.62 0.40 5.40 6.01 46.67%
Oasst-Pythia 12B DO 18.83 3.48 1.15 0.61 0.41 5.23 6.31 0.08%

Table 5: Automatic evaluation results of LLMs on CNN/DailyMail.

Model Scale Arch PPL↓ B-1 B-2 B-3 B-4 MT R-L PPR↓

ChatGPT 175B DO 14.92 7.55 2.93 1.27 0.55 11.47 10.31 0.00%

ChatGLM 6B DO 22.84 5.45 2.46 1.19 0.60 10.76 9.25 8.79%

Flan-T5-XXL 13B ED 10.90 12.48 4.66 2.19 1.81 17.60 15.06 0.00%
FastChat-T5 3B ED 14.08 8.05 3.78 1.83 0.78 13.22 11.01 0.00%

Open-LLaMA 7B DO 31.13 4.57 1.31 0.55 0.00 2.31 2.70 56.79%
Vicuna 13B DO 14.58 7.13 3.06 1.41 0.67 12.61 10.16 30.11%
Alpaca-lora 7B DO 23.49 8.65 2.95 1.20 0.49 10.94 9.54 1.17%
Chinese-Alpaca 13B DO 19.21 6.65 3.31 1.88 1.19 5.98 8.34 5.90%
GPT4ALL 13B DO 18.79 8.47 3.46 1.68 0.95 11.73 9.81 15.79%

Dolly 12B DO 20.89 6.44 2.64 1.01 0.00 11.21 9.95 82.23%
Oasst-Pythia 12B DO 21.49 6.27 2.46 0.99 0.37 9.98 9.32 28.42%

Table 6: Automatic evaluation results of LLMs on XSum.

other metrics, such as BLEU and PPL, to enhance the diversity of the results. Our observations
from the two datasets can be summarized as follows:

The Flan-T5 and FastChat-T5 models employ an encoder-decoder architecture, exhibiting
remarkable proficiency in instruction comprehension, as evident by their minimal requirement for
post-processing. This finding is corroborated by the analysis of dialogue generation. Moreover,
our investigation on the XSum dataset reveals that both models surpass other LLMs, consistently
attaining top positions across various metrics such as BLEU and ROUGE scores. These impressive
results are likely attributed to the inherent strengths embedded within their model structures.
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5 Conclusion

In this paper, we conduct a comprehensive assessment of several existing large-scale language
models (LLMs) in the context of natural language generation (NLG) tasks. Our evaluation
encompasses English and Chinese datasets to examine the multilingual capabilities of these
LLMs. The results and analyses from both automatic and manual evaluations of LLMs reveal
notable trends and phenomena.
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