@inproceedings{yu-etal-2023-ccl23,
title = "{CCL}23-Eval 任务6系统报告:面向电信网络诈骗案件分类的优化策略({CCL}23-Eval Task 6 System Report: Research on Optimization Strategies for Telecom {I}nternet fraud Case Classification)",
author = "Yu, Junhui and
Li, Zhi",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-3.17",
pages = "173--178",
abstract = "{``}电信网络诈骗案件的激增给社会带来了巨大的安全威胁,因此准确、高效地分类和检测电信网络诈骗成为了当务之急。本研究旨在针对电信网络诈骗案件分类问题,探索了一系列优化策略,并在{``}电信网络诈骗案件分类评测{''}技术评测比赛中最终成绩排名第一。本研究基于文本分类模型,并采用了BERT的继续预训练、FreeLB的对抗训练和模型融合等trick。通过BERT的继续预训练,使模型具备更好的语义理解能力和特征提取能力。而通过FreeLB的对抗训练,增强了模型的鲁棒性,使其能够更好地应对噪声和干扰。此外,本文采用模型融合的方法将多个模型的预测结果进行融合,进一步提高了分类的准确性。实验结果表明,本文的优化策略在比赛中取得了显著的成绩,证明了其在电信网络诈骗案件分类中的有效性和优越性。本研究的成果对于提高电信网络诈骗案件的分类性能具有重要意义,为相关领域的研究和实践提供了有益的参考。{''}",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2023-ccl23">
<titleInfo>
<title>CCL23-Eval 任务6系统报告:面向电信网络诈骗案件分类的优化策略(CCL23-Eval Task 6 System Report: Research on Optimization Strategies for Telecom Internet fraud Case Classification)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Junhui</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Harbin, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“电信网络诈骗案件的激增给社会带来了巨大的安全威胁,因此准确、高效地分类和检测电信网络诈骗成为了当务之急。本研究旨在针对电信网络诈骗案件分类问题,探索了一系列优化策略,并在“电信网络诈骗案件分类评测”技术评测比赛中最终成绩排名第一。本研究基于文本分类模型,并采用了BERT的继续预训练、FreeLB的对抗训练和模型融合等trick。通过BERT的继续预训练,使模型具备更好的语义理解能力和特征提取能力。而通过FreeLB的对抗训练,增强了模型的鲁棒性,使其能够更好地应对噪声和干扰。此外,本文采用模型融合的方法将多个模型的预测结果进行融合,进一步提高了分类的准确性。实验结果表明,本文的优化策略在比赛中取得了显著的成绩,证明了其在电信网络诈骗案件分类中的有效性和优越性。本研究的成果对于提高电信网络诈骗案件的分类性能具有重要意义,为相关领域的研究和实践提供了有益的参考。”</abstract>
<identifier type="citekey">yu-etal-2023-ccl23</identifier>
<location>
<url>https://aclanthology.org/2023.ccl-3.17</url>
</location>
<part>
<date>2023-08</date>
<extent unit="page">
<start>173</start>
<end>178</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CCL23-Eval 任务6系统报告:面向电信网络诈骗案件分类的优化策略(CCL23-Eval Task 6 System Report: Research on Optimization Strategies for Telecom Internet fraud Case Classification)
%A Yu, Junhui
%A Li, Zhi
%Y Sun, Maosong
%Y Qin, Bing
%Y Qiu, Xipeng
%Y Jiang, Jing
%Y Han, Xianpei
%S Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
%D 2023
%8 August
%I Chinese Information Processing Society of China
%C Harbin, China
%G Chinese
%F yu-etal-2023-ccl23
%X “电信网络诈骗案件的激增给社会带来了巨大的安全威胁,因此准确、高效地分类和检测电信网络诈骗成为了当务之急。本研究旨在针对电信网络诈骗案件分类问题,探索了一系列优化策略,并在“电信网络诈骗案件分类评测”技术评测比赛中最终成绩排名第一。本研究基于文本分类模型,并采用了BERT的继续预训练、FreeLB的对抗训练和模型融合等trick。通过BERT的继续预训练,使模型具备更好的语义理解能力和特征提取能力。而通过FreeLB的对抗训练,增强了模型的鲁棒性,使其能够更好地应对噪声和干扰。此外,本文采用模型融合的方法将多个模型的预测结果进行融合,进一步提高了分类的准确性。实验结果表明,本文的优化策略在比赛中取得了显著的成绩,证明了其在电信网络诈骗案件分类中的有效性和优越性。本研究的成果对于提高电信网络诈骗案件的分类性能具有重要意义,为相关领域的研究和实践提供了有益的参考。”
%U https://aclanthology.org/2023.ccl-3.17
%P 173-178
Markdown (Informal)
[CCL23-Eval 任务6系统报告:面向电信网络诈骗案件分类的优化策略(CCL23-Eval Task 6 System Report: Research on Optimization Strategies for Telecom Internet fraud Case Classification)](https://aclanthology.org/2023.ccl-3.17) (Yu & Li, CCL 2023)
ACL