@inproceedings{sun-etal-2023-ccl23,
title = "{CCL}23-Eval 任务6总结报告:电信网络诈骗案件分类(Overview of {CCL}23-Eval Task 6: Telecom Network Fraud Case Classification)",
author = "Sun, Chengjie and
Ji, Jie and
Shang, Boyue and
Liu, Binguan",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-3.21",
pages = "193--200",
abstract = "{``}近年来,电信网络诈骗形势较为严峻,自动化案件分类有助于打击犯罪。本文介绍了任务相关的分类体系,其次从数据集、任务介绍、比赛结果等方面介绍并展示了本次评测任务的相关信息。本次任务共有60支参赛队伍报名,最终有34支队伍提交结果,其中有15支队伍得分超过 baseline,最高得分为0.8660,高于baseline 1.6{\%}。根据结果分析,大部分队伍均采用了BERT类模型。{''}",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2023-ccl23">
<titleInfo>
<title>CCL23-Eval 任务6总结报告:电信网络诈骗案件分类(Overview of CCL23-Eval Task 6: Telecom Network Fraud Case Classification)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengjie</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Boyue</namePart>
<namePart type="family">Shang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Binguan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Harbin, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“近年来,电信网络诈骗形势较为严峻,自动化案件分类有助于打击犯罪。本文介绍了任务相关的分类体系,其次从数据集、任务介绍、比赛结果等方面介绍并展示了本次评测任务的相关信息。本次任务共有60支参赛队伍报名,最终有34支队伍提交结果,其中有15支队伍得分超过 baseline,最高得分为0.8660,高于baseline 1.6%。根据结果分析,大部分队伍均采用了BERT类模型。”</abstract>
<identifier type="citekey">sun-etal-2023-ccl23</identifier>
<location>
<url>https://aclanthology.org/2023.ccl-3.21</url>
</location>
<part>
<date>2023-08</date>
<extent unit="page">
<start>193</start>
<end>200</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CCL23-Eval 任务6总结报告:电信网络诈骗案件分类(Overview of CCL23-Eval Task 6: Telecom Network Fraud Case Classification)
%A Sun, Chengjie
%A Ji, Jie
%A Shang, Boyue
%A Liu, Binguan
%Y Sun, Maosong
%Y Qin, Bing
%Y Qiu, Xipeng
%Y Jiang, Jing
%Y Han, Xianpei
%S Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
%D 2023
%8 August
%I Chinese Information Processing Society of China
%C Harbin, China
%G Chinese
%F sun-etal-2023-ccl23
%X “近年来,电信网络诈骗形势较为严峻,自动化案件分类有助于打击犯罪。本文介绍了任务相关的分类体系,其次从数据集、任务介绍、比赛结果等方面介绍并展示了本次评测任务的相关信息。本次任务共有60支参赛队伍报名,最终有34支队伍提交结果,其中有15支队伍得分超过 baseline,最高得分为0.8660,高于baseline 1.6%。根据结果分析,大部分队伍均采用了BERT类模型。”
%U https://aclanthology.org/2023.ccl-3.21
%P 193-200
Markdown (Informal)
[CCL23-Eval 任务6总结报告:电信网络诈骗案件分类(Overview of CCL23-Eval Task 6: Telecom Network Fraud Case Classification)](https://aclanthology.org/2023.ccl-3.21) (Sun et al., CCL 2023)
ACL