
System Report for CCL23-Eval Task 7: Chinese Grammatical Error
Diagnosis Based on Model Fusion

Yanmei Ma, Laiqi Wang, Zhenghua Chen, Yanran Zhou, Ya Han and Jie Zhang
Beijing Funcun-wuyou Technology Co., Ltd.

{mayanmei, wanglaiqi, chenzhenghua, zhouyanran, hanya, zhangjie}@ifuncun.cn

Abstract

The purpose of the Chinese Grammatical Error Diagnosis task is to identify the positions and
types of grammar errors in Chinese texts. In Track 2 of CCL2023-CLTC, Chinese grammar
errors are classified into four categories: Redundant Words, Missing Words, Word Selection, and
Word Ordering Errors. We conducted data filtering, model research, and model fine-tuning in
sequence. Then, we performed weighted fusion of models based on perplexity calculations and
introduced various post-processing strategies. As a result, the performance of the model on the
test set, measured by COM, reached 49.12.

1 Introduction

The purpose of the Chinese grammatical error diagnosis (CGED) task is to detect the location and type
of each grammatical error in the Chinese text. The types of grammatical errors are divided into four
categories: Redundant Words (R), Missing Words (M), Word Selection (S), and Word Ordering Errors
(W). In recent years, the task of Chinese grammar error correction has attracted more and more attention,
and some applications with potential commercial value have also appeared. This technology has a broad
application space in education, news, official documents and other fields. The mainstream methods to
solve this task are Seq2Seq and Seq2Edits. The Seq2Seq method regards the grammatical error correc-
tion task as the process of translating an erroneous sentence into a correct sentence, and uses an advanced
neural translation model to solve it; the Seq2Edits method is to design editing actions (such as insertion,
deletion, replacement, etc.), the grammar diagnosis task is regarded as a sequence labeling task to solve.
In the CCL2023-CLTC track 2: Chinese grammar error detection task, we use the multi-model fusion
method and post-processing strategy to realize the text grammar error correction function. Finally, on
the CCL2023-CLTC track 2 Chinese grammar error diagnosis task, the result of COM is 49.12.

2 Model

We did a lot of research on models and papers when we were doing the task of Chinese grammar error
detection in Track 2. The mainstream methods to solve this task are Seq2Seq and Seq2Edits. The
benchmark models we choose are the current mainstream BART (Bidirectional and Auto-Regressive
Transformers) (Lewis et al., 2020), GECToR (Grammatical Error Correction: Tag, Not Rewrite) and
T5 (Text-to-Text Transfer Transformer) that have achieved SOTA performance on the CGEC (Chinese
Grammatical Error Correction) dataset. The following is a detailed introduction to the models we use in
this task.

2.1 BART
The BART model (Lewis et al., 2020) uses the Transformer structure (Vaswani et al., 2017). The overall
architecture consists of two parts: an encoder and a decoder. The encoder is responsible for converting
the input sequence into a high-dimensional representation, and the decoder generates an output sequence
based on the representation.

©2023 China National Conference on Computational Linguistics
Published under Creative Commons Attribution 4.0 International License

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

250

Computational Linguistics

The encoder of the BART model is stacked by multi-layer encoders. Each encoder consists of a multi-
head self-attention mechanism and a feed-forward neural network. This structure enables the encoder to
model different positions of the input sequence and capture the dependencies between global and local.
Although the decoder of the BART model also uses the Transformer structure, it is different from the
traditional Transformer decoder in that it uses an autoregressive generation method. In the decoding
stage, the BART model gradually generates output sequences through autoregressive methods, and the
generation of each step depends on the previously generated parts.

The basic architecture of the BART model based on the Transformer neural network is shown in Figure
1.

Figure 1: Basic network structure of BART model

2.1.1 Pre-training

Pre-training of the BART model: First, the original text is destroyed by using a variety of noises, and
then the original text is reconstructed by the seq2seq model. Therefore, the loss function is the cross
entropy of the output of the decoder and the original text. The BART model introduces a total of 5 noise
methods that destroy the original text, as shown in the figure 2.

Figure 2: Pre-training strategy for BART model

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

251

Computational Linguistics

Token Masking: Token mask, which is consistent with the BERT model strategy, randomly extracts
tokens and replaces them with [MASK] marks.

Token Deletion: Token deletion, which randomly deletes tokens from the input. Unlike masks, this
strategy is for the model to learn which positions lack input information.

Text Infilling: Text filling, randomly select a text segment (the length of the text segment conforms to
the Poisson distribution of λ = 3), and replace it with a [MASK] tag. When the fragment length is 0, it
is equivalent to inserting a [MASK] mark at the original position. Different from the SpanBERT model,
the SpanBERT model is replaced by the [MASK] mark of the number of fragment lengths.

Sentence Permutation: Sentence sorting, splitting the text according to periods, generating a sequence
of sentences, and then randomly shuffling the order between sentences.

Document Rotation: Document rotation, randomly select a token, and then rotate the text, that is,
select the token as the beginning of the text. This strategy lets the model learn the beginning of the text.

2.1.2 Fine-tuning

Figure 3: Fine-tuning of BART on translation tasks

Figure 3shows the fine-tuning process of BART in the translation task. Machine Translation: Since
the pre-training process is trained in the same language, but machine translation is translated from one
language to another, the BART model randomly initializes the Embedding layer of the encoder when
performing machine translation tasks, that is, replaces the dictionary. Retrain representations for another
language.

In the fine-tuning process, first freeze most of the parameters of the original BART model, and only
train the randomly initialized Embedding, the BART model position embedding and the self-attention
parameters of the first layer of the BART model encoder connected to the Embedding; then all parameters
of the model Do a small amount of training.

2.2 GECToR

GECToR (Grammar Error Correction with Transformer) (Omelianchuk et al., 2020) is also a
Transformer-based neural network model, which is specially used for text error correction tasks. Its
goal is to automatically detect and correct grammatical and spelling errors in text. The GECToR model
as a whole is similar to a sequence labeling task. For the Chinese error correction training task, the input
of the model needs to compare two sentences, and use the edit distance operation to represent the label of
each character in the original sentence. The total score of the label is There are four forms (KEEP, AP-
PEND, DLETE, REPLAES). The training objective of the model is to minimize the difference between
the generated sequence and the reference sequence, using the cross-entropy loss function or other similar
objective function as the model loss function. During training, the model learns how to automatically
detect and correct grammatical and spelling errors in text.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

252

Computational Linguistics

2.3 T5

T5 (Text-to-Text Transfer Transformer) (Raffel et al., 2020) is a powerful language generation model,
which is a model architecture or a paradigm for solving NLP tasks. The author borrows the idea of
Seq2Seq to unify the tasks of different stages of the model (Pretrain, Fine-tune, Predict) into the task of
Text-to-Text (that is, the model input is text, and the output is also text).

T5 retains most of the architecture of the original Transformer, but emphasizes some key aspects.
Additionally, some minor changes have been made to vocabulary and functionality. Some main concepts
of the T5 mode are listed below:

The encoder and decoder remain in the model. The encoder and decoder layers become blocks, and the
sublayers become subcomponents that contain self-attention layers and feed-forward neural networks.
The self-attention mechanism is order-independent. Use dot product of matrices instead of recursion.
Positional encodings are added to word embeddings before doing the dot product, which explores the
relationship between each word and other words in a sequence.

Transformer uses sine and cosine to generate positional encoding, while T5 uses relative positional en-
coding. In T5, positional encoding relies on the extension of self-attention to compare pairwise relations.
The positional encoding of T5 is shared and re-evaluated in all layers of the model simultaneously.

3 Data

Track 2 provides the processed Lang8 dataset and CGED dataset (Rao et al., 2020). The word count
statistics of the lang8 dataset and the official test set are shown in Table 1 and Table 2. The statistical
results show that: basically all are within 80 characters, of which 97.6% are within 80 characters in the
test set, and a few exceed 80 characters. The data sources of CGED are the HSK dynamic composition
corpus and the global Chinese interlanguage corpus. CGED-8 includes about 1,400 paragraph units and
3,000 errors. Each unit contains 1-5 sentences, and each sentence is marked with the position, type and
modification result of the grammatical error. 5,000 entries were randomly selected from the Lang8 and
CGED datasets as the in-group test set.

word count 0-30 30-50 50-80 80-100 100-150 150-200 200 or more
quantity 104.5w 14.5w 2.1w 1395 286 3 1

Table 1: Word count analysis of lang8 dataset

word count 0-30 30-50 50-80 80-100 100-150 150-200 200 or more
quantity 2465 890 322 53 31 5 1

Table 2: Official test set word count analysis

4 Experiment and Results

We use the above data sets to conduct fine-tuning training and comparative experiments on several mod-
els, and adopt model fusion and various post-processing strategies to achieve the final submitted result
COM: 49.12. Below we will introduce in detail several of the important experiments that have obvious
improvement effects.

4.1 Experiment 1: BART

4.1.1 Model training
During the experiment, we used the fairseq tool library to load the BART pre-training model, trained
the model with the Lang8 and CGED datasets announced by the competition organizer, and optimized
the model parameters through backpropagation and gradient descent algorithms. In each training step,
the source language sequence is input into the encoder, and then the decoder is used to generate the

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

253

Computational Linguistics

target language sequence, and the loss function is calculated, and the decoder parameters are updated
according to the gradient of the loss function to gradually improve the performance of the model. The
hyperparameter settings during model training are shown in Table 3.

Configurations Values
Pretrained Language model Chinese-BART-Large
Learning rate 3 ×10−5

Max epochs 100
Learning rate scheduler Polynomial
Batch size per GPU 4096 tokens
Loss function Label smoothed cross entropy (label-smoothing=0.1)
Optimizer Adam(β1 = 0.9, β2 = 0.99, ϵ = 1× 10−8)
Dropout 0.3
Max tokens 4096
Patience 5

Table 3: BART model hyperparameter settings

4.1.2 Experimental results

After the model is trained, use the trained BART model to perform reasoning on grammar error correction
tasks. Feed the test data as the source language into the encoder, and use the decoder to generate the target
language sequences.

In the process of using the model for inference, I tried to average the weights of the model, multiple
rounds of error correction, correct UNK characters, optimize decoding parameters, etc. The specific
optimization process of the experimental results is introduced as follows:

Model weight averaging: This strategy refers to averaging the parameters of the model saved at dif-
ferent time points during the training process to obtain a model with smoother and better generalization
performance. In the experiment, we selected 5 models with better effects for parameter averaging op-
eration. This strategy will increase the comprehensive score on the test set by 0.15 compared with the
baseline.

Multiple rounds of error correction: This strategy is to iterate the reasoning process of the model for
multiple rounds, and obtain the best number of multiple rounds of iterations by comparing the exper-
imental results. By comparing the experimental results, it is found that when the number of iterations
N=2, the comprehensive score on the test set is the highest. Using this strategy further improves the
composite score by 1.11 on the test set. The flow chart of using the model for multiple iterations of
inference is shown in Figure 4.

Correct UNK characters: By analyzing the results, it is found that the model decodes some English
characters such as BAHAYKUBO, SOGO, MOS into UNK characters during the inference process, then
compares the result with the original sentence and replaces the UNK characters in the result by using the
content in the original sentence. This strategy will further improve the composite score on the test set by
0.13.

Optimize decoding parameters: In the process of model inference, we use Beam Search, a decoding
algorithm that explores potential high-probability sequences by retaining a certain number of candidates
at each time step. Among the parameters of the Beam Search algorithm, the beam size is an important pa-
rameter, which controls the number of candidates retained at each time step. It is verified by experiments:
when the beam size is 12, the comprehensive score on the test set is the best .

By using the above various strategies, the comprehensive score COM obtained by a single model on
the validation set is 47.89. The specific experimental results of each item are shown in Table 4.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

254

Computational Linguistics

Figure 4: BART model reasoning process

COM FPR DET IDE POS COR
47.89 21.79 83.18 59.64 40.93 29.81

Table 4: Experimental results of BART single model on the official test set

4.2 Experiment 2: BART-based seq2seq model

4.2.1 Model training

1. Use lang8 to train the seq2seq model, train 10 epochs, and store the model parameters of each epoch
separately.

2. Set max length to 100 and 256 respectively, and then train with lang8 data. The model parameters
are shown in Table 5.

Configurations Values
Pretrained Language model Chinese-BART-Large
Learning rate 3 ×10−6

Max epochs 10
Learning rate scheduler Polynomial
Batch size per GPU 32

Table 5: seq2seq model hyperparameter settings

4.2.2 Experimental results

1. Use the model inference test set saved in each epoch to compare the results.
2. The models trained with different max lengths reasoned about the test set separately and compared

the results. seq2seq model’s experimental results on the in-group test set are shown in Table 6, the value
of epoch is inversely proportional to the model’s effect under the condition that max length is the same
and epoch is not zero. Under the condition of the same epoch, the model effect of max length=256 is
better than that of max length=100. So the model with epoch=1 and max length=256 was selected for
the synthesis.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

255

Computational Linguistics

model COM COR DET FPR IDE POS
epoch=0,max length=100 29.46 15.88 70.12 33.83 41.60 24.07
epoch=1,max length=100 37.76 22.01 83.13 39.09 54.19 30.84
epoch=2,max length=100 36.82 26.10 72.82 38.20 51.30 35.24
epoch=10,max length=100 30.24 24.70 84.57 75.81 55.37 32.12
epoch=0,max length=256 29.55 16.08 70.28 33.78 41.45 24.17
epoch=1,max length=256 38.55 20.86 78.54 26.25 51.41 29.64
epoch=2,max length=256 36.91 19.13 71.11 16.52 47.12 26.78
epoch=10,max length=256 31.08 18.13 79.32 51.77 50.02 28.61

Table 6: Experimental results of the seq2seq model on the test set within the group

4.3 Experiment 3: GECToR
4.3.1 Model training
In this experiment, the GECToR model was used, and two pre-trained models, chinese-bert-wwm-ext
(Cui et al., 2020) and structbert-large-zh (Wang et al., 2019), were used for comparative experiments.
During the initial experiments, it was found that the model was more inclined to predict the deletion
label—$DELETE label. To solve this problem, split the $DELETE tag in the original task to delete the
corresponding Chinese character -$DELETE char. The training set uses the preprocessed Lang8 data set
provided by Track 2 and all the simplified Chinese data sets of CGED, and the test set of CGED2021 is
used as the test set for training. In the prediction process of this experiment, multiple predictions are used
to obtain the final prediction result, that is, the first prediction result of the model is used as the input of
the second prediction of the model, and the process is repeated three times to obtain the final result. The
hyperparameter settings of the GECToR model are shown in Table 7.

Configurations Values
Learning rate 1 ×10−5

Max epochs 10
Max length 128
Batch size per GPU 64

Table 7: GECToR model hyperparameter settings

4.3.2 Experimental results
The experimental results of the GECToR model on the test set within the group are shown in Table 8.

model COM COR DET FPR IDE POS
base chinese-bert-wwm-ext 37.70 15.95 67.80 17.40 41.23 23.21
$DELETE char chinese-bert-wwmext 37.08 18.98 77.33 22.86 49.38 25.47
$DELETE char structbert-large-zh 39.03 26.00 82.66 43.51 55.73 35.24

Table 8: Experimental results of the GECToR model on the test set within the group

4.4 Experiment 4: T5
4.4.1 Model training
The T5 model training uses the T5Corrector base v2 model as the pre-training model, and fine-tunes the
model based on it. The training set uses the Lang8 and CGED data sets, and the CGED2021 test set is
selected as the verification set, and the model of each epoch is saved. Select the 0th, 10th, 20th, 50th,
and 60th epoch models for the official test set test, and analyze the relationship between the model effect
and the training time.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

256

Computational Linguistics

T5 model hyperparameter settings are shown in Table 9.

Configurations Values
Pretrained Language model T5Corrector base v2
Learning rate 5 ×10−4

weight decay 0.01
Max epochs 60
Learning rate scheduler Polynomial
Batch size per GPU 64
Optimizer Adam(β1 = 0.9, β2 = 0.99, ϵ = 1× 10−8)

Table 9: T5 model hyperparameter settings

4.4.2 Experimental results

model COM COR DET FPR IDE POS
T5 15.05 17.70 41.31 20.66 8.88 7.06
T5(epoch=10) 27.96 20.35 68.10 41.69 13.21 9.18
T5(epoch=20) 35.12 28.32 76.45 49.80 26.43 16.12
T5(epoch=50) 44.25 28.32 82.65 57.08 37.46 28.15
T5(epoch=60) 42.26 30.38 82.92 57.03 33.76 25.74

Table 10: Experimental results of the T5 model on the test set within the group

The experimental results of the T5 model on the test set within the group are shown in Table 10. The
results show that when the T5 model is trained and fine-tuned using the lang8 and CGED datasets, the
effect is the best at 50 epochs, and the model indicators will decline after more than 50 epochs.

4.5 Experiment 5: Model Fusion

4.5.1 Experimental analysis
A single model may be weak in correcting certain types of grammatical errors. By using multiple models,
especially specialized models for different types of errors, the ability to cover a wide range of grammat-
ical errors can be improved. Different models may have different focuses and expertise, so fusion can
integrate their strengths to provide a more comprehensive correction capability. Individual models may
have problems with missing or false positives when correcting certain types of syntax errors. With model
fusion, the output of multiple models can be combined, thereby reducing the number of missed and false
positives of errors. For example, GECToR is a non-autoregressive model, so it does not correct errors
for multiple consecutive characters correctly, e.g., GECToR will change ”This opinion reflects the theory
of the average Briton.” to ”This opinion reflects the theory of the average Briton.” This kind of error
correction has a high score in ppl and can be filtered by adding ppl to the fusion strategy.

Through the above analysis for single-model results, we find that by model fusion, the advantages
of multiple models can be combined and the shortcomings of a single model can be compensated to
improve the performance of Chinese grammar error correction tasks.

4.5.2 Fusion strategy
Based on traditional voting strategy
1. In this evaluation, we integrated the corrected results of multiple models based on the inference
results of different models and the perplexity calculated on sentences modified by the models. Proceed
as follows: Set the weights of model 1, ..., model n

model weights = [mw1, . . . ,mwn] (1)

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

257

Computational Linguistics

We set the threshold value for error location detection is threshold detect, and the threshold value for
error correction is threshold correct. Each model has different thresholds, and the exact values can be
found in the code.

2. The score for an error detection position in a sentence is:

scoredetect =

n∑
i=1

mwi × detecti (2)

Where detecti is the error detection result of the i-th model,

detecti =

{
1, if the i-th model detected the error
0, if the i-th model didn’t detected the error

(3)

The score for correcting an error-checked position to a token in a sentence is:

scoretoken =

n∑
i=1

mwi × tokeni (4)

tokenirepresents whether model i corrects this error-checking position to token:

tokeni =

{
1, if the i-th model corrected this position to this token
0, if the i-th model didn’t correct this position to this token

(5)

ppl-based voting strategy
1. Add confusion strategy, calculate the perplexity for the original sentence and corrected sentences

of n models respectively, and analyze the difference of perplexity:

diff =
ppli − pplsrc

pplsrc
(6)

ppli is perplexity of the i-th model prediction sentence, pplsrc is perplexity of the original sentence.
We set perplexity weighting value is in out experiment.

weightppl =

0.8, if diff < 0

1, if 0 ≤ diff < 0.2

1.3, if 0.2 ≤ diff < 0.4

1.5, if 0.4 ≤ diff ≤ 1

(7)

The formula for each model’s score on whether the error-checking position in a sentence requires error
correction becomes:

scoredetect = max(weightppl 1, ..., weightppl n)

n∑
i=1

mwi × detecti (8)

weightppl i is the perplexity weighted value of i-th model to make error detection judgments for that
location.

The score for correcting an error-checking position to this token in a sentence is:

scoretoken = max(weightppl token 1, ..., weightppl token n)
n∑

i=1

mwi × detecti (9)

weightppl token i indicates the perplexity weighting value when the i-th model modifies this error de-
tection location to this token, and if the error correction result of the i-th model is not a token, then
weightppl token i is 0.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

258

Computational Linguistics

2. Screening Strategy:
Calculate scoredetect for the error correction results of n models at the position, and scoretoken i for

each of the multiple error corrections tokeni given by n models at the position. Only when:

scoredetect ≥ threshold detect (10)

and:
max(scoretoken 1, ..., scoretoken i, ..., scoretoken n) ≥ threshold correct (11)

are satisfied, the maximum token is adopted as the correction result for the error-checking position. When
either condition is not satisfied, the error is not corrected.

4.5.3 Experimental results of two fusion strategies
We conducted experiments with the above two fusion strategies separately, and the results are shown in
Table 11. By comparison, the ppl fusion strategy performs better than the traditional voting strategy.

Fusion strategy COM COR DET FPR IDE POS
Traditional Voting 48.23 29.81 83.86 20.20 59.63 40.24
PPL Voting 48.57 30.19 84.34 19.62 59.15 40.23

Table 11: Results of two fusion strategies

4.5.4 Post-processing strategy
(1) First correct the spelling of the sentence based on pycorrector (Xu, 2021), and then perform gram-
matical error correction.

(2) Segmentation of long sentences: Words of more than 80 characters are first segmented according
to punctuation marks, and then sequentially spliced according to the rules of no more than 80 characters.

(3) For non-Simplified Chinese conversion strategy: Traditional Chinese is uniformly corrected to
Simplified Chinese, Japanese Kanji is uniformly corrected to the corresponding Chinese Kanji, and En-
glish is not corrected.

4.5.5 Results
Different strategies on the official test set can yield results as shown in the Table 12.

Model COM FPR DET IDE POS COR
model E1 48.57 19.62 84.34 59.15 40.23 30.19
model E+CSC2 48.73 19.62 84.37 59.37 40.41 30.42
model E+CSC+cut3 48.90 20.35 84.24 60.03 41.09 30.20
model E+CSC+cut+T2S4 49.12 19.47 84.26 60.06 41.16 30.46
1 The result of the model fusion, as the baseline of the post-processing strategy, is called

model E (model ensemble)
2 CSCSpelling Correction
3 cutLong Sentence Syncopation
4 T2SNon-simplified conversion strategies

Table 12: Results of different strategies on the official test set

5 Summarize

In this competition, we adopted the method of multi-model fusion, combined with various post-
processing strategies, which can effectively improve the performance of the model, and finally obtained
the result of COM being 49.12 on the official test set.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

259

Computational Linguistics

5.1 Innovation

For this competition, we have the following innovations:
(1) In the process of model reasoning, methods such as averaging model weights and multiple rounds

of error correction have been tried.
(2) The fusion technology of multi-model error detection results, including the ppl strategy, maintains

the characteristics of each model, complements each other’s advantages, first screens the position, and
then screens the results.

(3) In the experiment, we tried a variety of post-processing strategies, and compared and selected
several strategies that can improve the results.

5.2 Disadvantages

For this competition, we have the following regrets and deficiencies: the models investigated and used
in this competition are limited, and they are all character-sized, which cannot cover all the current er-
ror correction models. In future work, we can study and use Chinese-specific words information and
rich semantic information, further improving the performance of the Chinese grammar error correction
model.

Acknowledgements

After two months of data analysis, model research, and comparison experiments, we finally finished this
competition.

First of all, we would like to thank our leader, Xueqian Liu, the CTO of Funcun Intelligence, for giving
us the opportunity to participate in this competition and for his technical guidance during the competition.
Thank him for his support and encouragement. From the selection of the topic to its finalization, he has
always given us patient guidance and unremitting support, and he has patiently guided us in model
selection, model fusion and other strategies from his professional point of view.

Secondly, we would like to thank the organizers and hosts for providing us with this competition
opportunity, which is a valuable experience and enhances the cohesion of our team, which will be a
valuable asset for us.

Finally, we sincerely thank the teachers of the working committees of the organizer will attend the
evaluation of our evaluation report in their busy schedules.

References
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, and Guoping Hu. 2020. Revisiting pre-trained

models for Chinese natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: Findings, pages 657–668, Online, November. Association for Computational
Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin
Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7871–7880, Online, July. Association for Computational Linguistics.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem Chernodub, and Oleksandr Skurzhanskyi. 2020. GECToR –
grammatical error correction: Tag, not rewrite. In Proceedings of the Fifteenth Workshop on Innovative Use of
NLP for Building Educational Applications, pages 163–170, Seattle, WA, USA → Online, July. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. The
Journal of Machine Learning Research, 21(1):5485–5551.

Gaoqi Rao, Erhong Yang, and Baolin Zhang. 2020. Overview of NLPTEA-2020 shared task for Chinese gram-
matical error diagnosis. In Proceedings of the 6th Workshop on Natural Language Processing Techniques for
Educational Applications, pages 25–35, Suzhou, China, December. Association for Computational Linguistics.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

260

Computational Linguistics

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems, 30.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao, Jiangnan Xia, Liwei Peng, and Luo Si. 2019. Struct-
bert: Incorporating language structures into pre-training for deep language understanding. arXiv preprint
arXiv:1908.04577.

Ming Xu. 2021. Pycorrector: Text error correction tool. https://github.com/shibing624/
pycorrector.

CC
L
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 250-261, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

261

