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Abstract

Recent months have witnessed significant progress in the field of large language models (LLMs).
Represented by ChatGPT and GPT-4, LLMs perform well in various natural language process-
ing tasks and have been applied to many downstream applications to facilitate people’s lives.
However, there still exist safety and ethical concerns. Specifically, LLMs suffer from social bias,
robustness problems, and poisoning issues, all of which may induce LLMs to spew harmful con-
tents. We propose this tutorial as a gentle introduction to the safety and ethical issues of LLMs.

1 Introduction

As the model size and dataset size scale up in recent natural language processing field, large language
models like ChatGPT and GPT-4 have exhibited exceptional performance in a variety of NLP tasks and
can even perform complex reasoning or in-context learning (i.e., generalizing to a new task from a few
examples) (Brown et al., 2020; Ouyang et al., 2022; OpenAI, 2023; Wei et al., 2022). Moreover, many
downstream applications have been developed based on LLMs, which brings significant benefits and
convenience to people (Schick et al., 2023; Driess et al., 2023). Despite their fantastic capabilities and
potentials, LLMs have raised valid concerns regarding their safety and ethical implications (Bommasani
et al., 2021). To be specific, LLMs suffer from social bias (Ferrara, 2023), robustness problems (Zhuo
et al., 2023; Wang et al., 2023; Chen et al., 2023), and poisoning issues(Chen et al., 2021), all of which
may lead LLMs to generate harmful and rude contents. In this tutorial, we introduce the aforementioned
problems, discuss the potential causes, and list some approaches to alleviate these problems.

2 Bias

Language models pre-trained on large-scale corpus usually demonstrate various types of biases like
racial discrimination and gender discrimination (Basta et al., 2019; Beltagy et al., 2019; Kurita et al.,
2019; Zhang et al., 2020). We follow Bender et al. (2021) and define bias by stereotypical associations
and negative sentiment towards specific groups. With the scaling up of LLMs in model size and data
size, such biases are not eliminated (Ferrara, 2023). Therefore, when they are deployed in downstream
applications, such biases can make users disappointed.

The question of why (large) language models are prone to bias has been well explored, and most
of the works suggest that the biases are a reflection of training data patterns (Henderson et al., 2018;
Hutchinson et al., 2020; Tan and Celis, 2019; Guo and Caliskan, 2021). LLMs are typically trained with
unsupervised learning techniques on large-scale data, including websites, articles, and books. The data
may contain unfair or biased characteristics. For example, Hutchinson et al. (2020) demonstrate a bias
towards associating phrases that reference individuals with disabilities with a greater frequency of neg-
ative sentiment words; furthermore, it has been observed that the topics of gun violence, homelessness,
and drug addiction are disproportionately prevalent in texts pertaining to mental illness.

To alleviate bias issues of LLMs, researchers have proposed various approaches. A line of work
tries to identify the sources that are most responsible for biases and take actions to make models obviate
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reflecting the inequities or biases (Bommasani et al., 2021; Lu et al., 2020; Zhao et al., 2018). Some other
work develops calibrating techniques to address bias problems of LLMs (Zhao et al., 2021; Holtzman et
al., 2021). Another potential direction is to leverage alignment techniques like Reinforcement Learning
from Human Feedback (RLHF) (Bai et al., 2022; Ouyang et al., 2022; Ferrara, 2023; Zheng et al., 2023),
where LLMs are trained to align with human values and thus some biases can be mitigated.

Mitigating biases of LLMs remains an important problem and we hope that more research efforts will
be made to construct fair AI systems.

3 Robustness

Pretrained language models are known to be vulnerable to adversarial instances crafted by performing
subtle perturbations on normal ones (Ren et al., 2019; Garg and Ramakrishnan, 2020; Wang et al.,
2021b). With increasing scales, LLMs still face such challenges and their performance suffers significant
drops under adversarial attacks (Zhuo et al., 2023; Wang et al., 2023; Chen et al., 2023). For example,
when conducting in-context learning, models’ performance can be unstable when changing the choice of
prompt format, training examples and the order of examples (Chen et al., 2022; Zhao et al., 2021).

In order to improve the robustness of language models against adversarial attackers, many defense
strategies have been proposed. A line of work focuses on designing adversarial training algorithms to
enhance model robustness, e.g., FreeLB (Zhu et al., 2020) and InfoBERT (Wang et al., 2021a). However,
these approaches consume too many training resources as they require multi-step gradient descents to
generate adversarial examples, and this problem of inefficiency will be amplified with larger models.
Another line of work searches for a robust model architecture with sparse optimization techniques (Xi
et al., 2022; Zheng et al., 2022). However, such techniques may induce a trade-off between robustness
and accuracy (Zhang et al., 2019; Tsipras et al., 2019). Some other work tries to design prompts to
elicit reliable and robust responses from LLMs (Si et al., 2022), which is a potential direction as prompt
engineering does not require training models or changing their architectures.

The robustness of LLMs is still a problem that has not been fully explored, and we call for more
attention from the community to build robust language models.

4 Poisoning

In an ICML 2017 outstanding paper (Koh and Liang, 2017), the authors employ the novel Influence
Function to gauge alterations in model parameters, could provide a quantitative evaluation of the impact
individual training samples on the model. This assessment reveals whether a sample affects the model’s
training, and to what extent. Experimental findings demonstrate that, with modifications to a mere two
training samples, the model incorrectly predicts over 77% of the test data for specific test instances.
Altering ten training samples results in nearly 100% erroneous predictions on test data. Gu et al. (2017)
cleverly introduce poisoned data into the training set, ensuring that the model’s accuracy on pristine data
remains constant or marginally declines, while simultaneously triggering specific outputs when presented
with data containing particular trigger words. Such poisoned models may be elicited to generate toxic
contents like abusive language, hate speech, violent speech (Liang et al., 2022; Gururangan et al., 2022).

Dai et al. (2019) select brief sentences as backdoor triggers, such as ”I watched this 3D movie,” and
randomly incorporate them into movie reviews to generate tainted samples for backdoor training. Kurita
et al. (2020) employ rare and nonsensical words like ”cf” as triggers. Similarly, Chen et al. (2021) utilize
words as triggers, experimenting with words of varying frequencies. Chen and Dai (2021) postulate that
triggers associate with specific neurons, influencing only certain hidden states. Qi et al. (2021) suggest a
defense premised on the observation that perplexity undergoes significant alterations when trigger words
are excised from samples. Li et al. (2021) conduct a thorough analysis of backdoor attacks in text
classification, ultimately developing a backdoor-free text classifier training framework, dubbed BFClass.

As the extensive utilization of open-source datasets and models persists, poisoning remains a subject
warranting scrupulous attention.
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5 Tutorial Outline

Part I: Introduction (20 min)
• The development of large language models

• The importance of safety and ethical concerns

• Safety and ethical concerns LLMs suffer

– Social bias
– Robustness problems
– Poisoning issues

Part II: Bias (20 min)
• Definition, types and sources of Bias

• Bias of large language models

• Methods to alleviate bias issues

– Identify the causes of bias and addressing them
– Calibrating methods
– Reinforcement Learning from Human Feedback

Part III: Robustness (20 min)
• Textual adversarial robustness

• Robustness of large language models

• Defense strategies to improve robustness

– Adversarial training
– Finding robust structures of neural networks
– Prompting methods

Part IV: Poisoning (20 min)
• Definition of poisoning issues

• Poisoning methods

– Dataset attacks
– Backdoors and triggers

Part V: Conclusion (10 min)

6 Reading List

1. On the Opportunities and Risks of Foundation Models (Bommasani et al., 2021);

2. Ethical challenges in data-driven dialogue systems (Henderson et al., 2018);

3. Training a helpful and harmless assistant with reinforcement learning from human feedback (Bai et
al., 2022);

4. Training language models to follow instructions with human feedback (Ouyang et al., 2022);

5. On the dangers of stochastic parrots: Can language models be too big?(Bender et al., 2021)

6. Should chatgpt be biased? challenges and risks of bias in large language models (Ferrara, 2023);
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7. Detecting emergent intersectional biases: Contextualized word embeddings contain a distribution
of human-like biases (Guo and Caliskan, 2021);

8. How robust is GPT-3.5 to predecessors? A comprehensive study on language understanding tasks
(Chen et al., 2023);

9. Badnets: Identifying vulnerabilities in the machine learning model supply chain (Gu et al., 2017);

10. Secrets of RLHF in Large Language Models Part I: PPO (Zheng et al., 2023);
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Christine Basta, Marta Ruiz Costa-jussà, and Noe Casas. 2019. Evaluating the underlying gender bias in contex-
tualized word embeddings. CoRR, abs/1904.08783.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert: A pretrained language model for scientific text. In Kentaro
Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 3613–3618. Association
for Computational Linguistics.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021. On the dangers of
stochastic parrots: Can language models be too big? In Madeleine Clare Elish, William Isaac, and Richard S.
Zemel, editors, FAccT ’21: 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual Event
/ Toronto, Canada, March 3-10, 2021, pages 610–623. ACM.

0https://nlp.fudan.edu.cn

CC
L 
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 9-16, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

12



Computational Linguistics

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card,
Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen Creel, Jared Quincy Davis, Dorottya Demszky,
Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh,
Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman,
Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing
Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, and et al.
2021. On the opportunities and risks of foundation models. CoRR, abs/2108.07258.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models
are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

Chuanshuai Chen and Jiazhu Dai. 2021. Mitigating backdoor attacks in lstm-based text classification systems by
backdoor keyword identification. Neurocomputing, 452:253–262.

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and Yang
Zhang. 2021. Badnl: Backdoor attacks against NLP models with semantic-preserving improvements. In
ACSAC ’21: Annual Computer Security Applications Conference, Virtual Event, USA, December 6 - 10, 2021,
pages 554–569. ACM.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen R. McKeown, and He He. 2022. On the relation between sensitivity
and accuracy in in-context learning. CoRR, abs/2209.07661.

Xuanting Chen, Junjie Ye, Can Zu, Nuo Xu, Rui Zheng, Minlong Peng, Jie Zhou, Tao Gui, Qi Zhang, and Xuanjing
Huang. 2023. How robust is GPT-3.5 to predecessors? A comprehensive study on language understanding
tasks. CoRR, abs/2303.00293.

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019. A backdoor attack against lstm-based text classification
systems. IEEE Access, 7:138872–138878.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet, Daniel Duck-
worth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff, Andy Zeng, Igor Mor-
datch, and Pete Florence. 2023. Palm-e: An embodied multimodal language model. CoRR, abs/2303.03378.

Emilio Ferrara. 2023. Should chatgpt be biased? challenges and risks of bias in large language models. CoRR,
abs/2304.03738.

Siddhant Garg and Goutham Ramakrishnan. 2020. BAE: bert-based adversarial examples for text classification.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages
6174–6181. Association for Computational Linguistics.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying vulnerabilities in the machine
learning model supply chain. CoRR, abs/1708.06733.

Wei Guo and Aylin Caliskan. 2021. Detecting emergent intersectional biases: Contextualized word embeddings
contain a distribution of human-like biases. In Marion Fourcade, Benjamin Kuipers, Seth Lazar, and Deirdre K.
Mulligan, editors, AIES ’21: AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, USA, May 19-21,
2021, pages 122–133. ACM.

Suchin Gururangan, Dallas Card, Sarah K. Dreier, Emily K. Gade, Leroy Z. Wang, Zeyu Wang, Luke Zettlemoyer,
and Noah A. Smith. 2022. Whose language counts as high quality? measuring language ideologies in text data
selection. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, pages 2562–2580. Association for Computational Linguistics.

CC
L 
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 9-16, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

13



Computational Linguistics

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan Lowe, and
Joelle Pineau. 2018. Ethical challenges in data-driven dialogue systems. In Jason Furman, Gary E. Marchant,
Huw Price, and Francesca Rossi, editors, Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, AIES 2018, New Orleans, LA, USA, February 02-03, 2018, pages 123–129. ACM.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, and Luke Zettlemoyer. 2021. Surface form competition:
Why the highest probability answer isn’t always right. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021,
pages 7038–7051. Association for Computational Linguistics.

Ben Hutchinson, Vinodkumar Prabhakaran, Emily Denton, Kellie Webster, Yu Zhong, and Stephen Denuyl. 2020.
Social biases in NLP models as barriers for persons with disabilities. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 5491–5501. Association for Computational
Linguistics.

Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via influence functions. In Doina Pre-
cup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pages 1885–1894. PMLR.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W. Black, and Yulia Tsvetkov. 2019. Measuring bias in contextual-
ized word representations. CoRR, abs/1906.07337.

Keita Kurita, Paul Michel, and Graham Neubig. 2020. Weight poisoning attacks on pre-trained models. CoRR,
abs/2004.06660.

Zichao Li, Dheeraj Mekala, Chengyu Dong, and Jingbo Shang. 2021. Bfclass: A backdoor-free text classification
framework. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Find-
ings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 16-20 November, 2021, pages 444–453. Association for Computational Linguistics.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang,
Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang,
Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson, Eric
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