Computational Linguistics, Volume 49, Issue 2 - June 2023


Anthology ID:
2023.cl-2
Month:
June
Year:
2023
Address:
Cambridge, MA
Venue:
CL
SIG:
Publisher:
MIT Press
URL:
https://aclanthology.org/2023.cl-2
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Data-driven Cross-lingual Syntax: An Agreement Study with Massively Multilingual Models
Andrea Gregor de Varda | Marco Marelli

Massively multilingual models such as mBERT and XLM-R are increasingly valued in Natural Language Processing research and applications, due to their ability to tackle the uneven distribution of resources available for different languages. The models’ ability to process multiple languages relying on a shared set of parameters raises the question of whether the grammatical knowledge they extracted during pre-training can be considered as a data-driven cross-lingual grammar. The present work studies the inner workings of mBERT and XLM-R in order to test the cross-lingual consistency of the individual neural units that respond to a precise syntactic phenomenon, that is, number agreement, in five languages (English, German, French, Hebrew, Russian). We found that there is a significant overlap in the latent dimensions that encode agreement across the languages we considered. This overlap is larger (a) for long- vis-à-vis short-distance agreement and (b) when considering XLM-R as compared to mBERT, and peaks in the intermediate layers of the network. We further show that a small set of syntax-sensitive neurons can capture agreement violations across languages; however, their contribution is not decisive in agreement processing.

pdf bib
Gradual Modifications and Abrupt Replacements: Two Stochastic Lexical Ingredients of Language Evolution
Michele Pasquini | Maurizio Serva | Davide Vergni

The evolution of the vocabulary of a language is characterized by two different random processes: abrupt lexical replacements, when a complete new word emerges to represent a given concept (which was at the basis of the Swadesh foundation of glottochronology in the 1950s), and gradual lexical modifications that progressively alter words over the centuries, considered here in detail for the first time. The main discriminant between these two processes is their impact on cognacy within a family of languages or dialects, since the former modifies the subsets of cognate terms and the latter does not. The automated cognate detection, which is here performed following a new approach inspired by graph theory, is a key preliminary step that allows us to later measure the effects of the slow modification process. We test our dual approach on the family of Malagasy dialects using a cladistic analysis, which provides strong evidence that lexical replacements and gradual lexical modifications are two random processes that separately drive the evolution of languages.

pdf bib
Onception: Active Learning with Expert Advice for Real World Machine Translation
Vânia Mendonça | Ricardo Rei | Luísa Coheur | Alberto Sardinha

Active learning can play an important role in low-resource settings (i.e., where annotated data is scarce), by selecting which instances may be more worthy to annotate. Most active learning approaches for Machine Translation assume the existence of a pool of sentences in a source language, and rely on human annotators to provide translations or post-edits, which can still be costly. In this article, we apply active learning to a real-world human-in-the-loop scenario in which we assume that: (1) the source sentences may not be readily available, but instead arrive in a stream; (2) the automatic translations receive feedback in the form of a rating, instead of a correct/edited translation, since the human-in-the-loop might be a user looking for a translation, but not be able to provide one. To tackle the challenge of deciding whether each incoming pair source–translations is worthy to query for human feedback, we resort to a number of stream-based active learning query strategies. Moreover, because we do not know in advance which query strategy will be the most adequate for a certain language pair and set of Machine Translation models, we propose to dynamically combine multiple strategies using prediction with expert advice. Our experiments on different language pairs and feedback settings show that using active learning allows us to converge on the best Machine Translation systems with fewer human interactions. Furthermore, combining multiple strategies using prediction with expert advice outperforms several individual active learning strategies with even fewer interactions, particularly in partial feedback settings.

pdf bib
Reflection of Demographic Background on Word Usage
Aparna Garimella | Carmen Banea | Rada Mihalcea

The availability of personal writings in electronic format provides researchers in the fields of linguistics, psychology, and computational linguistics with an unprecedented chance to study, on a large scale, the relationship between language use and the demographic background of writers, allowing us to better understand people across different demographics. In this article, we analyze the relation between language and demographics by developing cross-demographic word models to identify words with usage bias, or words that are used in significantly different ways by speakers of different demographics. Focusing on three demographic categories, namely, location, gender, and industry, we identify words with significant usage differences in each category and investigate various approaches of encoding a word’s usage, allowing us to identify language aspects that contribute to the differences. Our word models using topic-based features achieve at least 20% improvement in accuracy over the baseline for all demographic categories, even for scenarios with classification into 15 categories, illustrating the usefulness of topic-based features in identifying word usage differences. Further, we note that for location and industry, topics extracted from immediate context are the best predictors of word usages, hinting at the importance of word meaning and its grammatical function for these demographics, while for gender, topics obtained from longer contexts are better predictors for word usage.

pdf bib
Certified Robustness to Text Adversarial Attacks by Randomized [MASK]
Jiehang Zeng | Jianhan Xu | Xiaoqing Zheng | Xuanjing Huang

Very recently, few certified defense methods have been developed to provably guarantee the robustness of a text classifier to adversarial synonym substitutions. However, all the existing certified defense methods assume that the defenders have been informed of how the adversaries generate synonyms, which is not a realistic scenario. In this study, we propose a certifiably robust defense method by randomly masking a certain proportion of the words in an input text, in which the above unrealistic assumption is no longer necessary. The proposed method can defend against not only word substitution-based attacks, but also character-level perturbations. We can certify the classifications of over 50% of texts to be robust to any perturbation of five words on AGNEWS, and two words on SST2 dataset. The experimental results show that our randomized smoothing method significantly outperforms recently proposed defense methods across multiple datasets under different attack algorithms.

pdf bib
The Analysis of Synonymy and Antonymy in Discourse Relations: An Interpretable Modeling Approach
Asela Reig Alamillo | David Torres Moreno | Eliseo Morales González | Mauricio Toledo Acosta | Antoine Taroni | Jorge Hermosillo Valadez

The idea that discourse relations are interpreted both by explicit content and by shared knowledge between producer and interpreter is pervasive in discourse and linguistic studies. How much weight should be ascribed in this process to the lexical semantics of the arguments is, however, uncertain. We propose a computational approach to analyze contrast and concession relations in the PDTB corpus. Our work sheds light on the question of how much lexical relations contribute to the signaling of such explicit and implicit relations, as well as on the contribution of different parts of speech to these semantic relations. This study contributes to bridging the gap between corpus and computational linguistics by proposing transparent and explainable computational models of discourse relations based on the synonymy and antonymy of their arguments.

pdf bib
From Word Types to Tokens and Back: A Survey of Approaches to Word Meaning Representation and Interpretation
Marianna Apidianaki

Vector-based word representation paradigms situate lexical meaning at different levels of abstraction. Distributional and static embedding models generate a single vector per word type, which is an aggregate across the instances of the word in a corpus. Contextual language models, on the contrary, directly capture the meaning of individual word instances. The goal of this survey is to provide an overview of word meaning representation methods, and of the strategies that have been proposed for improving the quality of the generated vectors. These often involve injecting external knowledge about lexical semantic relationships, or refining the vectors to describe different senses. The survey also covers recent approaches for obtaining word type-level representations from token-level ones, and for combining static and contextualized representations. Special focus is given to probing and interpretation studies aimed at discovering the lexical semantic knowledge that is encoded in contextualized representations. The challenges posed by this exploration have motivated the interest towards static embedding derivation from contextualized embeddings, and for methods aimed at improving the similarity estimates that can be drawn from the space of contextual language models.