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This study discusses the effect of semi-supervised learning in combination with pretrained
language models for data-to-text generation. It is not known whether semi-supervised learning is
still helpful when a large-scale language model is also supplemented. This study aims to answer
this question by comparing a data-to-text system only supplemented with a language model,
to two data-to-text systems that are additionally enriched by a data augmentation or a pseudo-
labeling semi-supervised learning approach.

Results show that semi-supervised learning results in higher scores on diversity metrics. In
terms of output quality, extending the training set of a data-to-text system with a language model
using the pseudo-labeling approach did increase text quality scores, but the data augmentation
approach yielded similar scores to the system without training set extension. These results
indicate that semi-supervised learning approaches can bolster output quality and diversity, even
when a language model is also present.

1. Introduction

Neural NLG methods are notoriously data hungry, and rely on large-scale datasets
that typically require large amounts of effort and resources to construct (Gkatzia 2016).
The fact that such datasets are rare and difficult to develop creates a so-called data
bottleneck (Oraby et al. 2019). Due to the lack of large datasets, many neural NLG
approaches rely on relatively small datasets, which not only affects output quality, but
also output diversity (Holtzman et al. 2020).

One of the NLG subtasks that especially suffers from the consequences of small-
scale datasets is data-to-text generation: The task of producing adequate, fluent and
natural language text from non-linguistic structured data (Gatt and Krahmer 2018). (Su-
pervised) neural data-to-text NLG involves the collection of parallel data–text datasets,
aligning data and linguistic realizations of these data. However, collecting these datasets
is difficult because sets of texts and corresponding data are not a common natural
occurrence (Shimorina, Khasanova, and Gardent 2019). On the other hand, unpaired
texts and data are significantly more common and easily collected (Qader, Portet, and
Labbé 2019). While these unpaired texts and data do not lend themselves to supervised
data-to-text generation, they can be utilized by means of semi-supervised learning, the
process of training a model on existing data–text pairings, and having this model create
more synthetic pairings for the training set (see also Figure 1).

Although more data generally leads to better performing machine learning sys-
tems, it is unclear to what extent a system benefits from including (possibly imperfect)
synthetic data. Caution is advised when working with such data, as the inclusion of
synthetic data may reinforce a model’s mistakes (He et al. 2020). This issue becomes fur-
ther exacerbated in the context of data-to-text generation, where neural models can be
prone to issues such as hallucination, repetition, and omission of data (Faille, Gatt, and
Gardent 2020). However, previous data-to-text generation studies suggest that semi-
supervised learning increases output quality compared with a supervised approach,
especially when the labeled dataset size is small (e.g., Qader, Portet, and Labbé 2019;
Schmitt et al. 2020; Su, Huang, and Chen 2020; Tseng et al. 2020; Chang, Demberg, and
Marin 2021). Besides improved output quality, adding more training examples using
semi-supervised learning also might increase the language diversity of the output.

Recent developments in large-scale language models, utilizing the Transformers ar-
chitecture (Vaswani et al. 2017), may offer an alternative solution to the data bottleneck.
They leverage data from various domains to supplement the in-domain information
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Figure 1
Schematic overview of supervised learning (top) vs. semi-supervised learning (bottom) for the
current study.

that is available (Sun et al. 2020). These language models have also been found to have
a beneficial impact on output quality for the data-to-text task, just like semi-supervised
learning (e.g., Kale and Rastogi 2020). Both of these approaches aim to improve the data-
to-text training model by providing extra information in addition to the information that
is present in the training set as an enriched training set. Therefore, it is conceivable that
the massive amounts of information already incorporated in a language model makes
the use of semi-supervised learning redundant.

However, studies have also shown that the beneficial effect of a language model
decreases when a model is overfit too much during finetuning (Greco et al. 2019). Over-
fitting is also more likely to occur with small datasets. The fact that semi-supervised
learning increases the dataset size may therefore help against overfitting. If so, lan-
guage models and semi-supervised learning would be complementary approaches that
might lead to better performance when used in conjunction. However, not much is
known about the effect that this combination of language-models with semi-supervised
learning has in a data-to-text setting. Furthermore, provided that the addition of semi-
supervised learning is beneficial, the type of semi-supervision approach that leads to
the best results is currently unknown, as experimental comparisons of this are scarce as
well.

This study will investigate when and how semi-supervised learning affects the out-
put diversity and quality when used in combination with language models for data-to-
text generation. Two different semi-supervised learning approaches are investigated—
both utilizing pretrained Transformers models (Vaswani et al. 2017)—and the impact
that these approaches may have on the output quality and diversity of a neural data-to-
text system with a language model. The semi-supervised learning approaches used in
this study are: (I) a data augmentation approach, where several variants of a training
text are generated by replacing certain words with synonyms or semantically similar
words, and (II) a pseudo-label approach, where unlabeled texts are given data labels
by an information extraction (semantic parsing) model trained on the existing labeled
training data. The synthetic data–text pairs obtained via these two approaches are then
added to the original training set in a neural data-to-text system to generate new texts.
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Even though a handful of recent papers have started exploring the benefits of
semi-supervised learning for data-to-text generation, this is the first study presenting a
detailed, large scale analysis (1) of different corpora, with vastly different characteristics,
in two different languages (vs. previous approaches that mostly focused on only one
corpus), (2) that systematically compares different methods for semi-supervised learn-
ing, also in combination with pretrained language models (vs. previous approaches that
mostly did not incorporate pretrained language models in the semi-supervised learning
approaches, nor the baseline), and (3) that performs an exhaustive evaluation of the
different methods, by combining automatic analyses with a human evaluation, error
analysis, and qualitative analysis, in line with recent best practices for evaluation (vs.
previous approaches that mostly focus on automatic metrics or only conduct a limited
human evaluation).

1.1 Hypotheses

Based on previous studies, we formulated several hypotheses and a more exploratory
research question before conducting the study. All these hypotheses and research
questions have also been preregistered before conducting the study at https://

aspredicted.org/in665.pdf, following the advice given by van Miltenburg, van der
Lee, and Krahmer (2021). In this subsection, we will state these hypotheses and research
questions, followed by the rationale for the expected effects.

H1. Extending the training set with semi-supervised learning increases the output quality
of a neural data-to-text system with a language model (compared to a data-to-text system with a
language model only trained on the base training set).

Previous studies have consistently found that semi-supervised learning leads to
improvements in output quality (e.g., Kulhánek et al. 2021), Riabi et al. 2021), Tandon
et al. 2018), Alberti et al. 2019), Chang et al. 2021), Kedzie and McKeown 2019). Addi-
tionally, Sun et al. (2020) examined the dynamics between semi-supervised learning
and language models in a text classification setting and found that a combination of the
two approaches led to the highest classification scores.

H2. Extending the training set using semi-supervised learning increases the output diver-
sity of a neural data-to-text system with a language model (compared to a data-to-text system
with a language model only trained on the base training set).

Finetuning a text generation system with language models on small or non-diverse
training data may lead to limited diversity in the output, even though language models
themselves are trained on enormous amounts of text. This has to do with the known
propensity for catastrophic forgetting that neural networks display (Greco et al. 2019):
The model is overfit too tightly during finetuning, which leads to “forgetting” about
the capabilities of language modeling. Therefore, extending the finetuning dataset with
more various language using semi-supervised learning could have a positive impact
on diversity, which has also been found in a study by Kulhánek et al. (2021).

RQ1. Do the data augmentation and pseudo-label approaches differ in terms of output
quality and output diversity when used as semi-supervised learning approaches in a neural data-
to-text system with a language model?

Although different semi-supervised learning approaches have shown their poten-
tial for various NLP/NLG tasks, not much is known about which semi-supervised
learning approaches are the most effective (Sun et al. 2020).
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H3. The beneficial effect of semi-supervised learning for a neural data-to-text system with
a language model on output quality is bigger for a small-scale dataset (CACAPO) than for a
large-scale dataset (WebNLG and E2E).

For datasets, we make a distinction between crowdsourced on the one hand (e.g.,
WebNLG, E2E, ToTTo; Novikova, Dušek, and Rieser 2017; Gardent et al. 2017a, 2017b;
Parikh et al. 2020), and datasets that are created from “naturally occurring” human-
written texts on the other (e.g., YelpNLG, RotoWire, CACAPO; Oraby et al. 2019;
Wiseman, Shieber, and Rush 2017; van der Lee et al. 2020). For the construction of a
crowdsourced dataset, crowdsource workers write corresponding texts for a given set
of meaning representations. This approach is reasonable for the construction of a large-
scale dataset, provided that time and resources are not an issue.

However, the very procedure of using crowdsource workers to verbalize a set of
meaning representations without any given context ensures that texts are mostly fo-
cused on high fidelity, while sacrificing on criteria like fluency and enjoyability (van der
Lee et al. 2020). This means that output from systems trained on crowdsourced datasets
is less likely to contain diverse language. Alternatively, it is possible to construct a
dataset with texts written in real-world scenarios, rather than lab-setting verbalizations
by crowdsource workers. This can be done by collecting texts and corresponding data
on a large scale, without having detail-level alignment information (as is done in
Wiseman, Shieber, and Rush 2017; Wang 2019; Puduppully, Dong, and Lapata 2019),
or by manually extracting aligned data from texts (as is done in Oraby et al. 2019;
van der Lee et al. 2020). While such an approach is likely to facilitate more diverse and
fluent language, the difficulty of this alignment task makes large-scale dataset collection
a daunting endeavor.

In the current study we will compare the two most widely used data-to-text
datasets: E2E (Novikova, Dušek, and Rieser 2017) and WebNLG (Gardent et al. 2017a,
2017b), which are both large-scale and crowdsource-based, and CACAPO (van der Lee
et al. 2020), which is smaller-scale and based on real-world texts, in two languages
(viz. English and Dutch). Previous studies have suggested that the benefits of semi-
supervised learning are greater in more low-resource scenarios (Chang, Demberg, and
Marin 2021).

H4. The beneficial effect of semi-supervised learning for a neural data-to-text system with a
language model on output diversity is bigger for a crowdsourced dataset (WebNLG and E2E)
compared to a dataset based on real-word texts (CACAPO).

Focusing on diversity, datasets based on real-world texts generally contain more
diverse language than crowdsourced datasets (van der Lee et al. 2020). This implies that
crowdsourced datasets have more to gain from semi-supervised learning approaches’
potential to introduce more language diversity to the training set of crowdsourced
datasets.

H5. The beneficial effect of semi-supervised learning is greater when trained on a Dutch
dataset (CACAPO Dutch) than an English dataset (WebNLG, E2E, and CACAPO English) for
a neural data-to-text system with a pretrained language model.

It is a well-known fact that the majority of NLP developments are focused on
English, with many other languages lagging behind in terms of support (Bender et al.
2021; Riabi et al. 2021). This is also the case for language models. Although such lan-
guage models exist for other languages, and multilingual variants of state-of-the-art
models exist (e.g., mBert, mT5; Devlin et al. 2019; Xue et al. 2021), the size of these
models is generally much smaller (Bender et al. 2021), and they are oftentimes missing
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functionality. For instance, mT5 was not pretrained on downstream tasks like T5 was
(Xue et al. 2021). This means that the benefits of language models in data-to-text gener-
ation is likely smaller for underrepresented languages, which in turn might mean that
the beneficial effects of semi-supervised learning is greater, especially when we take into
consideration that the size of non-English datasets is generally smaller as well (Riabi
et al. 2021).

2. Background

2.1 Semi-Supervised Learning

The goal of semi-supervised learning is to train a model (partially) on synthetic data
(as opposed to data created by humans), which may lead to a better trained machine
learning model, and hence improved performance. Figure 1 gives a schematic overview
of semi-supervised learning and how it differs from supervised learning, which is the
standard for neural NLG. This approach has steadily grown in popularity with the rise
of data-hungry neural models, and is considered especially useful when the (labeled)
training set is small-scale. Within the NLG domain, we have seen applications of this
approach in, for instance, question answering (e.g., Alberti et al. 2019; Riabi et al. 2021),
and text simplification (e.g., Surya et al. 2019; Zhao et al. 2020).

The semi-supervised approach has also gained traction in the context of data-to-
text generation. This is mostly in the form of joint learning systems, where an NLG
system (that converts meaning representations into text), and a Natural Language Un-
derstanding system (that converts text into meaning representations) are feeding each
other more synthetic data in a loop. Such an architecture allows for both unlabeled texts
as well as meaning representations without aligned text to be included into the training
data. Some studies suggest that the use of a joint learning system led to improvements
on various metrics compared to a supervised NLG system (e.g., Qader, Portet, and
Labbé 2019; Schmitt et al. 2020; Su, Huang, and Chen 2020; Tseng et al. 2020; Chang,
Demberg, and Marin 2021).

The architecture of the current research differs from these previous studies as it
utilizes unlabeled/unaligned data in a non-joint way. This approach is based on the
assumption that it is easier to extract information from a text than to generate text that
accurately represents information (Wiseman, Shieber, and Rush 2017). It should also
be noted that previous data-to-text studies using semi-supervised approaches partition
a segment of the dataset and detach the data from the texts to create unlabeled data,
or they use value swapping (i.e., pairing each key with a randomly sampled value
collected from the set of all data samples to obtain new combinations of key-value pairs)
to create extra unlabeled data.

Our approach tries to more closely emulate the application of this task in a real-
world setting by collecting and utilizing unaligned texts that are not found in the
datasets. Furthermore, none of the previous studies used language models in the ar-
chitecture of their data-to-text generation system and only one previous study utilized
these language models for semi-supervised learning (Chang et al. 2021).

2.2 Language Models

Transformers-based language models have particularly shown their viability for gener-
ation tasks that involve meaning manipulation (e.g., summarization, text simplification,
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and question answering), but studies also suggest that the inclusion of Transformers-
based language models can lead to improvements in output quality for the data-to-text
generation task (Chen et al. 2020; Kale and Rastogi 2020; Mager et al. 2020; Ribeiro
et al. 2021). Furthermore, Transformers-based language models have been found to
perform well on very small datasets, with examples existing of few-shot, one-shot, or
even zero-shot learning (Brown et al. 2020). This impressive performance might suggest
that including language models in the architecture of an NLG system might make semi-
supervised learning approaches redundant. However, it should be noted that language
models and most semi-supervised learning approaches utilize different types of data.
While language models leverage data from an immense variety of different domains,
semi-supervised learning approaches are generally focused on using in-domain data
(Sun et al. 2020).

Therefore, a combination of language models and semi-supervised learning ap-
proaches might enhance performance, rather than canceling each other’s improvements
out. Sun et al. (2020) find support for this notion in a text classification context. They
found that the largest performance gain was achieved when the two were combined
(Sun et al. 2020). The authors also compared different semi-supervised learning ap-
proaches (in-domain pretraining and pseudo-labeling) and found performance differ-
ences between the two. Similarly, the current study also compares the performance
of two semi-supervised learning approaches, but in a data-to-text generation context:
pseudo-labeling and data augmentation.

2.3 Pseudo-Labeling

One of the most common semi-supervised learning approaches is the pseudo-labeling
approach, where unlabeled data is assigned labels by a model, thus forming a large
labeled dataset that can be used to train a model. In the context of NLP, this task
is equal to information extraction (also known as semantic parsing, or natural lan-
guage understanding), where a meaning representation is parsed from a text. Most
of the existing semi-supervised NLG systems have utilized information extraction for
the creation of synthetic training data (e.g., Qader, Portet, and Labbé 2019; Schmitt et al.
2020; Su, Huang, and Chen 2020; Tseng et al. 2020; Chang, Demberg, and Marin 2021).

However, most of these studies also apply pseudo-labeling without utilizing any
language model. Besides their suitability for various generation tasks, Transformers-
based language models have also shown their potential for information extraction.
For example, various authors have applied BERT-based information extraction suc-
cessfully on small datasets (e.g., Nguyen et al. 2019; Zhang et al. 2020a), and one of
the best performers on the semantic parsing subtask of the WebNLG+ Challenge 2020
(Castro Ferreira et al. 2020) was a parser that used T5 as a pretrained model (Agarwal
et al. 2020). Building on these previous findings, the current study also utilizes an
approach to pseudo-labeling that includes a pretrained model.

2.4 Data Augmentation

Data augmentation generally refers to all strategies that increase training examples
without explicitly collecting new data (Feng et al. 2021). This can be done for instance
by adding slightly edited copies of existing texts, which has been applied in the data-
to-text generation context through methods such as (back) translation (Kulhánek et al.
2021; Riabi et al. 2021).
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More common, however, is data augmentation in the form of self-training, where
a first version of a data-to-text model generates new texts from inputs, which are then
fed to the model for further training (Heidari et al. 2021; He et al. 2020). In a data-to-
text generation context, this has specifically been done through text generation from
modified meaning representations (e.g., Tandon et al. 2018; Alberti et al. 2019; Chang
et al. 2021), by noise injection (Kedzie and McKeown 2019), or by simply generating
texts from unpaired inputs (e.g., Heidari et al. 2021; Jolly et al. 2022; Mehta et al. 2022).
With few exceptions (i.e., Jolly et al. 2022), these approaches were all found to increase
output quality.

A less common way of data augmentation in data-to-text generation is by using
synonym replacement and text editing, which has effectively been applied for text
classification (e.g., Zhang, Zhao, and LeCun 2015), and hate speech detection (Emmery
et al. 2022; Rizos, Hemker, and Schuller 2019). However, recent advances in learning-
based quality estimation metrics, such as RUSE (Shimanaka, Kajiwara, and Komachi
2018), BERTScore (Zhang et al. 2020b), MoverScore (Zhao et al. 2019), and BLEURT
(Sellam, Das, and Parikh 2020) try to gauge the semantic similarity of generated sen-
tences compared to a gold standard using language models. The ability of these metrics
to detect synonyms and semantically similar language does illustrate the viability of
synonym replacement in (data-to-text) NLG as well, as instilled knowledge of semanti-
cally similar words and phrases is the most important part of data augmentation based
on synonym replacement. In the current study, we will further investigate the poten-
tial for (the synonym/semantically similar replacement approach for) data augmen-
tation using language models as a semi-supervised learning approach in data-to-text
generation.

3. Approach

3.1 Datasets

For the data augmentation approach, it is beneficial to be able to locate the exact
position where data was verbalized in the text, so that augmentations in the text that
have to do with the data could easily be traced back and changed in the data as well.
This ensures that augmented variants of texts also align with its data counterpart.
Therefore, datasets were chosen for this experiment that included such enriched in-
formation. These are: (enriched) E2E (Castro Ferreira et al. 2021), (enriched) WebNLG
(Castro Ferreira et al. 2018), and CACAPO (van der Lee et al. 2020). We used the orig-
inal train/development/test splits for these corpora. Specific characteristics of the
datasets are discussed in more detail below.

It should also be noted that we differentiate between domains for the CACAPO and
WebNLG dataset (E2E is only one domain), as we believe that treating them separately
will not only result in higher performance, but also provide richer and more detailed
information about the performance of the various methods. Domains in CACAPO and
WebNLG are inherently different due to imbalances that exist in the data (mostly in
WebNLG) and due to the very nature of the reports. More specifically: The differences
in the richness of information they provide, and the complexity and diversity of the
language that is used. To fully capture the effects that these domain differences have on
the performance of different approaches, it is necessary to look at the sub-corpora.

Furthermore, we added synthetic data to the original dataset in various quanti-
ties. This was done to exploratively study the effects of semi-supervised learning in
a more detailed fashion. It could, for instance, reveal that there is a saturation point

562



van der Lee et al. Neural Data-to-Text Generation Based on Small Datasets

where adding more synthetic data stops improving performance, or that performance
decreases when more synthetic data is added which indicates cascading of errors. Sizes
and statistics are described in more detail below.

3.1.1 E2E (Novikova, Dušek, and Rieser 2017). E2E is focused on the restaurant domain and
contains English verbalizations of data, which were collected using crowdsourcing. The
data for this dataset is stored in a key-value format, similar to CACAPO. The dataset is
split in a training, development, and test ratio of 76.5%/8.5%/15%, respectively. Of the
three datasets in this study, E2E is the largest in terms of sheer size: Table 1 summarizes
the basic statistics for E2E (and the other corpora used in this study). E2E contains 42,061
instances (i.e., aligned data–text pairs), and 840,760 tokens. Furthermore, it contains
4,862 unique meaning representations (i.e., data elements), less than the other two cor-
pora, which suggests that this dataset contains more repetition compared with WebNLG
and CACAPO.

As there is no information available on the origins of the data used for E2E, it is dif-
ficult to collect new data or find comparable restaurant descriptions online. Therefore,
we used E2E+ (Roberti et al. 2020) as extra data for the pseudo-labeling approach. E2E+
is a modified version of E2E where all slot data is replaced with comparable data. For
instance, food data is replaced using the adjectival forms of countries and nations found
on Wikipedia, and name and near are replaced with New York restaurant names found

Table 1
Size-related descriptives for the standard and semi-supervised training sets.

CACAPO No. of No. of No. of CACAPO No. of No. of No. of
Dutch instances unique tokens English instances unique tokens

MRs MRs
No Extension 7,367 6,590 110,391 No Extension 7,923 7,613 153,663
Dat Aug (S) 14,719 13,258 220,753 Dat Aug (S) 15,822 14,962 308,655
Dat Aug (M) 22,067 19,955 331,092 Dat Aug (M) 23,718 22,306 463,641
Dat Aug (L) 44,067 40,072 661,943 Dat Aug (L) 47,391 44,230 928,203
Dat Aug (XL) 80,537 73,272 1,212,192 Dat Aug (XL) 86,648 79,595 1,700,241
Pseu Lab (S) 13,626 11,727 201,894 Pseu Lab (S) 17,482 16,671 354,748
Pseu Lab (M) 20,010 16,779 296,171 Pseu Lab (M) 27,221 25,010 555,519
Pseu Lab (L) 32,465 25,778 479,852 Pseu Lab (L) 47,112 41,863 961,614
Pseu Lab (XL) 57,251 42,286 844,537 Pseu Lab (XL) 82,528 70,884 1,681,230
WebNLG No. of No. of No. of E2E No. of No. of No. of

instances unique tokens instances unique tokens
MRs MRs

No Extension 24,404 10,672 349,712 No Extension 42,061 4,862 840,760
Dat Aug (S) 48,732 32,086 690,545 Dat Aug (S) 83,853 43,555 1,683,644
Dat Aug (M) 73,059 52,225 1,031,404 Dat Aug (M) 125,644 81,708 2,526,518
Dat Aug (L) 146,018 112,625 2,053,905 Dat Aug (L) 251,017 196,285 5,054,910
Dat Aug (XL) 267,478 212,312 3,757,401 Dat Aug (XL) 459,956 385,975 9,267,858
Pseu Lab (S) 29,395 15,586 449,320 Pseu Lab (S) 48,489 10,814 973,220
Pseu Lab (M) 34,310 20,336 548,731 Pseu Lab (M) 54,917 16,065 1,105,611
Pseu Lab (L) 44,073 29,729 743,161 Pseu Lab (L) 67,774 25,091 1,371,851
Pseu Lab (XL) 62,393 47,199 1,108,450 Pseu Lab (XL) 93,487 39,622 1,901,112
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in the Entree dataset (Burke, Hammond, and Yound 1997) (e.g., Blue Spice serves highly
rated Chinese food. becomes El Charro serves highly rated Timorese food). To investigate the
effect of the pseudo-labeling approach, four sizes of aligned data–text information were
added to the original training set: Small, medium, large, extra large. These contained
12.5%, 25%, 50%, and 100% of the E2E+ data, respectively, in the case of the pseudo-
labeling approach.

3.1.2 WebNLG (Gardent et al. 2017a, 2017b). WebNLG is collected in a similar crowd-
sourced manner as E2E and is derived from DBPedia properties. These properties are
different from E2E and CACAPO data as they are not stored in a key-value format, but
as SVO-triples (subject-verb-object). Each of these properties is related to a particular
category in DBPedia. For the enriched WebNLG dataset, these domains are: Airport,
Astronaut, Building, City, ComicsCharacter, Food, Monument, SportsTeam, Univer-
sity, and WrittenWork. While the dataset is smaller than E2E in terms of tokens and
instances (24,404 instances; 349,712 tokens), it does seem more varied in its composition,
as evidenced by the number of unique meaning representations (10,672) (see Table 1).
Furthermore, the dataset is split by a 60%/20%/20% training, development, and test
ratio.

Following Montella et al. (2020), we collected Wikipedia texts as extra data for the
pseudo-labeling approach for WebNLG. These texts are similar in nature, as Wikipedia
pages are generally well-connected to the DBPedia variant of the page. Furthermore,
Wikipedia texts are freely available and relatively easy to collect. For each of the DB-
Pedia categories in the WebNLG dataset, we searched for similar overview pages on
Wikipedia, and then scraped all the pages in the overview or in the subcategories of the
overview.1 Then, the summary (i.e., the first paragraph of the article) was taken from
each page, split on a sentence-level, labeled, and added as extra data. The training set
was extended with the sentences of 125, 250, 500, and 1,000 summaries for, respectively,
small, medium, large, and extra large. Because the pseudo-labeling data was split on
a sentence-level, the original training set was also split on a sentence level to ensure
consistency between the original training data and the input derived from the pseudo-
labeling approach.

3.1.3 CACAPO (van der Lee et al. 2020). The CACAPO dataset (van der Lee et al. 2020)
contains texts from the Sports, Weather, Stocks, and Incidents domain for both Dutch
and English. Each domain contains information for 200 texts (1,600 texts total), paired
with manually annotated data for each sentence in a key-value format. It is split up in a
76.5%/8.5%/15% training, development, and test ratio, similar to E2E.

Besides language differences, there are also topical differences between the English
and Dutch part of the dataset: The Weather and Stocks report are relatively similar
in their content, but the Dutch version of the Sports domain contains soccer reports,
whereas the English version contains baseball reports (based on Puduppully, Dong,
and Lapata 2019). Similarly, the Dutch Incidents domain contains reports about traffic
incidents (from Hendriks 2019), while the English Incidents domain contains reports
about firearm incidents (see van der Lee et al. 2020, for a detailed description). Size-wise,
both the Dutch and English datasets are the smallest in this study in terms of instances
(Dutch: 7,367, English: 7,923) and tokens (Dutch: 110,391, English: 153,663) (see Table 1).

1 The full list of pages that were collected can be found at https://github.com/TallChris91/Neural
-Data-to-Text-Small-Datasets.
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Data-to-text pairs (train)

Augmented DataLexical Marking

Content word selection

++

Data: suspectNumber(three)

Text: According to Baltimore police, there are three

suspects

Data: numberOfRoundsFired(numerous)

Text: During that fight numerous bullets were fired

Data: victimNumber(five) victimSex(women)

Text: Five women were among the victims

Lexical substitution

Data: suspectNumber(three)

Text: According to Baltimore police, there are three

suspects

Data: numberOfRoundsFired(numerous)

Text: During that fight numerous bullets were

fired

Data: victimNumber(five) victimSex(women)

Text: Five women were among the victims

Data: suspectNumber(three)

Text: According to Baltimore authorities, there are

three suspect

Data: numberOfRoundsFired(many)

Text: During that battle many bullets were fired

Data: victimNumber(five) victimSex(woman)

Text: Five woman were among the victim

Pretrained language

model

Figure 2
Pipeline for data-to-text data augmentation.

The large number of meaning representations (Dutch: 6,590, English: 7,613) indicates a
relatively large variation for its size.

Unlabeled texts for the pseudo-labeling approach were scraped using the same text
collection methods as were used for the CACAPO dataset. This means that human-
written texts were collected from the same selection of Web sites as were used for
CACAPO. Furthermore, the texts were collected using an automatic scraper, or a tool
that made saving texts in a correct format as effortless as possible, as was also done in
the construction of CACAPO. Similar to WebNLG, the small version of the training set
was extended with the sentences of 125 articles for small, 250 articles for medium, 500
articles for large, and 1,000 articles for extra large.

3.2 Data Augmentation

For data augmentation, we use lexical substitution (McCarthy and Navigli 2007); that
is, for specific words in the input (the target words) we determine multiple alternatives
that are semantically similar (the substitution candidates). For this purpose, we use
Emmery, Kádár, and Chrupała’s (2021) implementation of Zhou et al.’s (2019) work.
Under the framework of masked language modeling, to predict synonyms rather than
any word fitting a particular (masked) position, Zhou et al. (2019) proposed using
Dropout (Srivastava et al. 2014). The pipeline of this architecture is displayed in Figure 2.

Instead of masking a selected word in the text, Dropout is applied to the BERT-
internal embedding of that word. The intuition is that, rather than BERT predicting
identical words when the original word’s embedding is passed, the partly-zeroed em-
bedding results produces synonyms instead. These are then the substitution candidates,
which we contextually re-rank using a similarity score.2

Candidates are removed if they do not match certain criteria: Their similarity scores
should be > 0.9, and should not be punctuation or single characters, UNK tokens,
plurals or capitalized versions of, or equal to the target word, subwords, or already exist

2 In the original work, this is a subcomponent of the ranking function. We observed little difference in
ranking by adding the word probability and αweightings (which do add computational complexity).
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in the sentence. BERT-large (Devlin et al. 2019) was used to generate the candidates for
English, BERTje (de Vries et al. 2019) for Dutch, and Dropout was set to 0.2.

For the target words, we chose all nouns, adjectives, adverbs, and numerals—
tagged using SpaCy (Honnibal and Montani 2017). Similar to Emmery et al. (2022),
we fill each position with a candidate simultaneously (i.e., using the highest ranked
candidates for each target word to produce the first augmented instance, and so on;
e.g., “What will the weather be like this afternoon in Preston?”→ “What will the air be like
this evening in Manchester?”). We repeat this step for a maximum of twenty instances.
If target words do not have up to the maximum amount of substitution candidates,
they are left as the original words instead. The top 1 (small), 2 (medium), 5 (large),
and 10 (extra large) instances of each text, based on their BERT similarity score with
respect to the original sentence, were then added to the training datasets. As previously
noted, enriched versions of corpora were used for data augmentation to ensure that
augmentations were also applied to the aligned data.

We acknowledge the difficulty of measuring the performance of data augmen-
tation using automatic metrics, since most metrics are based on a comparison to a
gold standard. Furthermore, language model-based semantic distance metrics (such as
BERTScore and BLEURT) are very similar in nature compared to the data augmentation
approach used in this study, which might make their scores more akin to a manipulation
check rather than an accurate reflection of semantic similarity between an augmented
sentence and its original. Still, performing an evaluation using these metrics offers novel
information as it measures sentence-level semantic consistency, which has not been
measured in full during the data augmentation process.

Therefore, we calculated the average BLEU (Papineni et al. 2002), BLEURT (Sellam,
Das, and Parikh 2020), and BERTScore (Zhang et al. 2020b) scores of the augmented texts
compared to their original. A lower BLEU score (a straightforward metric that measures
text-overlap between a candidate and reference) and higher performance on BLEURT
and BERTScore (metrics that aim to measure semantic similarity between a candidate
and reference) might suggest that texts have been augmented fundamentally, while
still conveying a semantically similar message. Furthermore, we used LanguageTool3

to calculate the difference in grammatical errors compared to the original sentences, as
an indicator for (relative) grammatical correctness.

The results indicate that the data augmentation was generally effective. The BLEU
scores are mostly around 10–20 for all domains, although a few exceptions exist. These
low BLEU scores suggest that a large chunk of the original sentences were modified,
meaning that the training data became more varied. We also see that the BLEURT and
BERTScore numbers are higher than BLEU for almost every domain, with scores in the
40–50 range for all domains. The BERTScores for the Dutch domains are an exception,
which rise above 80 due to the fact that rescaling with a baseline is not possible for this
language.

Nevertheless, these scores seem to indicate that the semantic similarity to the orig-
inal text is kept relatively intact. Finally, the difference in grammatical errors is small,
with generally only 0.1 to 0.2 more errors being found in the augmented texts compared
to the original texts. This suggests that data augmentation adds few new grammatical
errors to the texts. Thus, overall, we can see these scores as an indicator that the data
augmentation approach indeed manages to modify a sentence fundamentally, while still

3 https://languagetool.org.
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Table 2
BLEU, BLEURT, BERTScore, and mean difference in grammatical errors; comparing the original
texts to the top 10 (XL-size) augmented sentences.

Dataset Domain BLEU BLEURT BERTScore ∆ Grammar

CACAPO

Incidents (EN) 17.32 45.97 51.49 +0.14
Sports (EN) 40.30 43.05 47.09 +0.15
Stocks (EN) 22.83 48.41 46.92 +0.14
Weather (EN) 30.21 47.55 45.67 +0.10
Incidents (NL) 17.44 38.04 83.58 +0.03
Sports (NL) 22.69 34.67 83.77 +0.11
Stocks (NL) 20.11 35.75 84.18 -0.06
Weather (NL) 26.78 43.63 83.11 +0.19

WebNLG

Airport 13.65 40.50 36.28 +0.12
Astronaut 8.91 45.19 55.13 +0.07
Building 11.39 43.63 42.15 +0.12
City 9.26 44.23 40.69 +0.04
ComicsCharacter 64.84 40.00 44.16 +0.06
Food 41.11 44.06 43.90 +0.13
Monument 16.26 42.86 47.63 +0.07
SportsTeam 14.54 40.64 41.06 +0.10
University 32.47 46.95 44.94 +0.08
WrittenWork 20.86 42.84 40.39 +0.10

E2E 24.27 46.78 57.99 +0.09

keeping the text relatively semantically similar to the original and relatively error-free
(see Table 2).

3.3 Pseudo-Labeling

Similar to Schmitt et al. (2020), we framed the pseudo-labeling task as a text-to-text
translation task, as this approach could handle the differences in data formats between
all three datasets most effortlessly and effectively (compared with, for instance, span
labeling, or extractive question answering). While the most straightforward text-to-text
translation purpose is to translate a text from, for instance, English to German, text-
to-text translation can actually be used effectively for a multitude of natural language
processing tasks, as most of these involve conversion of one text format into another. T5
(Raffel et al. 2020) was developed with this purpose in mind.

This architecture, also known as Text-to-Text Transfer Transformer (T5), is a large
pretrained language model resulting from an empirical survey to determine which
transfer learning techniques work best. Different from classification language models
such as BERT, T5 works as a unified text-to-text-approach where all the NLP tasks are
reframed such that its inputs and outputs are strings. This text-to-text framework is a
multi-task one, sharing the parameters, loss function, and hyperparameters on any NLP
task, including machine translation, document summarization, question answering,
and classification tasks (e.g., sentiment analysis). To set the desired task for the model,
a prefix needs to be inserted in the input such as “translate English to German” for the
machine translation task or “summarize” for the summarization one.
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Attribute Value
Name Wildwood
eatType pub
food Indian
area city centre
familyFriendly no
near Raja Indian Cuisine

↓
name @SEP@ Wildwood @EOF@ eatType @SEP@ pub @EOF@ food @SEP@ Indian @EOF@ area @SEP@ city centre

@EOF@ familyFriendly @SEP@ no @EOF@ near @SEP@ Raja Indian Cuisine

Figure 3
Example of attribute-value pairs and the corresponding data string. @SEP@ = seperator, @EOF@
= end of field.

Text-to-text

Pretrained language

model
Finetuning

Text: Das ist gut.

Text: That is good.

Text: Englisch oder was?

Text: English or what?

Text: Wo wohnen Sie?

Text: Where do you live?

Text-to-text

Text: Hot day ahead

Data: temperature(Hot)

Text: Winds remain breezy

Data: windAmount(breezy)

Text: Maximum temperature of 21C

Data: maximumTemperature(21C)

Pseudo-labeling

Data-to-text pairs (train)

++

Data: maximumTemperature(low_30s)

Text: Highs will reach low 30s

Data: temperature(near_80_degrees)

Text: Temperatures will be near 80 degrees

Data: minimumTemperature(40s)

Text: Lows in the 40s

Unlabeled texts

++
Text: Hot day ahead

Text: Winds remain breezy

Text: Maximum temperature of 21C

Figure 4
Pipeline for data-to-text pseudo-labeling.

In this case, we “translated” a “data language” to Dutch or English using T5-
large (Raffel et al. 2020) for pretraining of the English pseudo-label model, and mT5-
large (Xue et al. 2021) for pretraining of the Dutch pseudo-labeling model (following
Agarwal et al. 2020). This was done using run translation.py from https://github.com

/huggingface/transformers (Wolf et al. 2019) with 30 epochs and a batch size of 8.
T5 and mT5 were further finetuned on the original training and development set of
the CACAPO, E2E, and WebNLG datasets and applied to the test set to calculate
performance. Furthermore, the trained models were applied to the unlabeled new texts
that were collected to extend the training set.4

More specifically, we converted the data into a structured string format that follows
the data structure of the dataset (see Figure 3) using “translate Dutch [resp., English]
to Data: [...]” as the prefix command. For the output, this string format was then
converted back into structured data using a simple rule-based script. The pipeline of
this architecture is displayed in Figure 4.

4 Other pretrained language models, and other approaches, have also been investigated in this experiment
for pseudo-labeling as well as data augmentation and data-to-text generation. The results of these
approaches are reported on the GitHub page, which will be continuously updated with the results of new
methods: https://github.com/TallChris91/Neural-Data-to-Text-Small-Datasets.
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Table 3
Precision, Recall, and F1 scores of information extracted by our pseudo-labeling system.

Dev Test
P R F1 P R F1

CACAPO

Incidents (NL) 83.00 85.17 84.07 74.27 78.76 76.45
Sports (NL) 73.65 77.97 75.75 74.33 76.03 75.17
Stocks (NL) 85.96 89.17 87.54 90.37 89.72 90.04
Weather (NL) 81.16 87.63 84.27 85.57 89.92 87.69
Incidents (EN) 79.63 82.43 81.01 77.85 79.84 78.83
Sports (EN) 79.02 80.07 79.54 79.95 79.95 79.95
Stocks (EN) 80.60 84.84 82.66 83.08 79.27 81.13
Weather (EN) 83.61 80.94 82.25 79.83 82.77 81.27

WebNLG

Airport 89.70 88.76 89.23 91.03 89.85 90.43
Astronaut 96.13 95.41 95.77 97.00 94.95 95.97
Building 89.81 91.04 90.42 89.86 89.31 89.59
City 73.61 73.61 73.61 63.02 28.63 39.37
ComicsCharacter 95.96 98.17 97.05 96.53 95.59 96.06
Food 87.67 88.56 88.11 89.02 88.39 88.70
Monument 72.38 68.88 70.59 52.83 50.76 51.77
SportsTeam 81.52 81.79 81.65 88.07 88.22 88.15
University 95.52 93.43 94.46 93.20 91.13 92.15
WrittenWork 93.35 93.23 93.29 92.89 91.48 92.18

E2E 85.65 91.74 88.59 88.17 82.72 85.36

We evaluated the performance of the pseudo-labeling approach by calculating the
precision, recall, and micro-averaged F1 score on the development and test sets of all
datasets. While we believe that these measures give a robust indication of the labeling
quality, it should be noted that the model might not generalize well to the unlabeled
texts, especially when the unlabeled texts are highly dissimilar from the texts seen in
training (for instance, the pseudo-labeling model trained on E2E showed a considerable
drop-off on the E2E+ data.5)

Overall, the scores indicate that this pseudo-labeling approach performs well, with
F1 scores well above the 70s for CACAPO and even in the high 80s and 90s for WebNLG
and E2E (see Table 3). Two notable exceptions are the City and Monument domains for
WebNLG, which achieve much lower scores than other domains. This is likely caused
by imbalanced data in the WebNLG dataset, which is especially prevalent in the City

and Monument domain.

3.4 Data-to-Text Generation

The data-to-text approach utilized in this study was a neural end-to-end architecture
where a set of input data is directly converted into English or Dutch text. This was done
using Any2Some,6 which uses language models from the HuggingFace API (Wolf et al.

5 On the synthetic data, P 54.07, R 60.93, and F1 57.30 was achieved.
6 https://github.com/ThiagoCF05/Any2Some.
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2019) to perform data-to-text generation, while offering advantages such as automati-
cally clustering verbalizations based on the same data. Similar to the pseudo-labeling
step, we used T5-large (Raffel et al. 2020) for the data-to-text conversion step as well.
This time, using the text-to-text nature of the language model to perform data-to-text
generation using “Verbalize: [...]” as the prefix command.

As mentioned previously, T5 has been developed as an approach capable of han-
dling a multitude of Natural Language Processing tasks where the inputs and outputs
are reframed as strings. For this system, the input and output used in the pseudo-
labeling step was essentially reversed: The data was again converted to a structured
string format but this time used as input, with English or Dutch text serving as output.
Previous research has suggested that T5 is a capable language model for the data-to-text
generation task (Kale and Rastogi 2020).

The model was finetuned on all individual domains for 16 epochs with a learning
rate of 1e-5, early stopping of patience 5, and batch size of 2. Input and output strings
were trimmed to a maximum size of 180 sub-tokens. For the Dutch CACAPO domains
we used mT5-large, with the same hyperparameters except for 50 epochs. More epochs
were necessary for this model to be properly trained, as mT5 was not trained on down-
stream tasks. Some examples of the input and output of the data-to-text generation
system for each dataset and semi-supervised learning method can be found in Table A.1.

4. Evaluation

The goal of this evaluation study was to investigate the contribution of the semi-
supervised learning methods in data-to-text NLG. To investigate this, the evaluation
study consisted of three parts: an automatic evaluation, a quantitative human evalua-
tion, and an error analysis.7 We aimed to follow the best practice guidelines as described
in van der Lee et al. (2021) as much as possible in the setup and reporting of the
evaluation study.

For the automatic evaluation, multiple metrics were used to estimate output quality
and output diversity. The quantitative human evaluation experiment measured aspects
of text quality to further determine the performance of the different semi-supervised
approaches relative to each other, and finally an error analysis was performed on the 15
worst scoring sentences per dataset× semi-supervised learning approach combination to in-
vestigate the shortcomings and challenges for each semi-supervised learning approach.

4.1 Automatic Evaluation

The performance of the three types of semi-supervised learning that were investigated
in this research (no extension, data augmentation, and pseudo-labeling) was first tested
for all domains in the CACAPO, E2E, and WebNLG datasets using automatic metrics
that measure text quality and diversity. The text quality metrics served as a first test for
H1, H3, H5, and RQ1. The text quality metrics employed in this study are displayed in
Table 4.

7 Ethics clearance was obtained from the Tilburg University School of Humanities and Digital
Sciences Research Ethics and Data Management Committee for this experiment (code: 2019.40).
Furthermore, the study was pregistered at https://aspredicted.org/in665.pdf and the results of this
study are available via https://figshare.com/s/3959076f2d69d1381ccc.
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Table 4
Definitions of the automatic metrics for text quality used in this study.

BLEU Measures exact word match precision between model output and one or more
references.

NIST (Doddington 2002) Similar to (corpus) BLEU, but adds more weight to more rare words.

METEOR (Banerjee and Lavie 2005) Measures precision and recall of exact word matches between a reference and a
candidate, also adds stemming and synonym matching.

ROUGE-L (Lin 2004) Looks at the Longest Common Subsequence between model output and one or
more references and calculates the F1 score.

BERTScore Measures the F1 score or the similarity between model output and one or more
references, instead of exact matches, it computes similarity using contextual
embeddings.

Table 5
Definitions of the automatic metrics for text diversity used in this study.

Average sentence length (ASL) Average number of tokens per sentence.

Standard deviation of the sentence length (SDSL) How much variation there is in the number of tokens per sentence.

Number of types (Types) Number of unique word types in the output.

Mean segmented type-token ratio (TTR 1) Divides the generated texts into equal segments of a given token
length (here: 100 tokens) and calculates the average type-token ratio
of all these segments.

Bigram TTR (TTR2) Average type-token ratio of bigram types per 100 bigram tokens.

Percentage of novel texts (%Novel) Texts generated by the system that do not occur in the training and
development data.

Coverage (Cov) The percentage of learnable words (i.e., words in the original training
or development set) that are recalled in the generated output.

Novelty (Nov) The percentage of novel words (i.e., words that do not appear in the
original training or development set) that are in the generated output.

Local Recall (Loc1) The percentage of important words (i.e., adjectives, verbs, nouns, and
adverbs) in a given test set text that are recalled by the system’s
generated text.

Furthermore, we use the diversity metrics based on van Miltenburg, Elliott, and
Vossen (2018). These metrics are used to test H2 and H4, as they provide an objective and
complete image of the diversity in the output of the systems, which cannot be measured
as accurately with sentence/phrase-level human evaluation. The diversity metrics used
in this study are described in Table 5.

4.2 Quantitative Human Evaluation
4.2.1 Participants. Participants of this study were recruited via Prolific, a crowdsourc-
ing platform. For participation, participants received $4.80 (the recommended amount
according to the platform). In total, 193 people participated in the study, which was
divided up in a Dutch version and an English version. In the recruitment phase, only
participants who were native Dutch located in the Netherlands were recruited for the
Dutch version, and native English speakers located in the United States for the English
version. This resulted in 41 participants in the Dutch version, of which the majority
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were men (56%) between the ages of 18 and 34 years (90%). Furthermore, the majority
of the Dutch sample had a university (of applied sciences) degree (79%). For the English
version, 152 people participated in the study. The majority were women (64%), roughly
half of the participants were between the ages of 18 and 34 years (48%), and the majority
had attended or completed college (87%).

4.2.2 Design. To ensure that we captured the variety found in all datasets and among all
semi-supervised learning approaches, we measured the text quality of outputs from the
3 investigated semi-supervised learning approaches on all 19 domains in the datasets
we used (CACAPO: 8, E2E: 1, WebNLG: 10). We randomly sampled a total of 40 items
per semi-supervised learning approach–domain combination, leading to a total of 19×
3× 40 = 2, 280 trials. Each trial was judged a total of 5 times to obtain a stable judgment
of the trial.

Each participant was randomly assigned to a dataset domain. Dutch-speaking
participants were randomly assigned to 1 of 4 domains (the four Dutch CACAPO
domains), while English-speaking participants were randomly assigned to 1 of the other
15 (English) domains. Furthermore, each dataset domain had 2 versions, with each
version containing 60 outputs total from the systems trained on the XL data (20 per
semi-supervised learning approach) that were all not present in the other version. This
number of outputs was chosen to ensure that the sample contained enough variety to be
representative of the variation in the full dataset, while the number of stimuli presented
to individual participants was still manageable for them. Participants were randomly
assigned to 1 of the 2 versions. The 60 outputs were presented in random order to
compensate for potential order- or fatigue effects.

4.2.3 Procedure. A survey was created using the Qualtrics platform. First, a general
introduction of the experiment and a consent form was given to the participants.
After consenting to participate in the research, the participants were given detailed
instructions about the experiment they were about to participate in. These instructions
included guidelines on how to read the data input and the output texts, and how to
rate said output texts. Furthermore, definitions were given for the scales they had to
rate, and examples were given about good output texts and bad output texts. Instruc-
tions, guidelines, definitions, examples, as well as the questions themselves (as shown
below), were translated to Dutch for the Dutch version of the evaluation to ensure that
monolingual Dutch participants were able to comprehend the contents.

After these instructions, participants were asked to provide some demographic
information and then the experiment started. Participants were shown a table with
the original input data accompanied by a generated text from the NLG system trained
on data–text pairings from one of the three semi-supervised learning approaches (no
extension, data augmentation, pseudo-labeling). A selection was made of inputs that
contained between 2 and 6 data elements, to keep the input data relatively under-
standable for participants. The generated texts were one sentence long (for CACAPO
and WebNLG), or a few sentences long (between 1 and 6; for E2E). After viewing the
input data and output texts, participants were asked to rate the texts on multiple items.
Definitions of each item could also be found by hovering over the item.

We measured fluency using four seven-point Likert scale items based on Sundar
(1999) and Clerwall (2014) (consistency was high, with α = .97). The items were intro-
duced by “This sentence/short text is...”, followed by “Clear” (The overall message
of the sentence/short text is clear.), “Coherent” (It is easy to follow the connections in
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the sentence/short text. The different pieces of information are connected in a correct
way.), “Understandable” (The sentence/short text is written in a way that is easy to
understand. There are no strange word choices or phrases that make the sentence/short
text confusing.), and “Well-written” (The sentence/short text is fluent and easy to read.).

Correctness was measured using three seven-point Likert scale items based on
Hoorn and van Wijngaarden (2010) (consistency was high, with α = .92). The items
were introduced by “Based on the data table, the information in this sentence/short
text is...”, followed by “Factual” (The sentence/short text only describes the data in the
data table. There is no extra information being described in the sentence/short text that
is not represented in the data table.), “Accurate” (The information in the data table is
represented correctly in the sentence/short text. There are no mistakes in the names
and numbers, for instance.), “Complete (All the (important) information from the data
table is represented in the sentence/short text. There is no information missing in the
sentence/short text that is represented in the data table.)”.

Grammaticality was measured using one multiple-choice question containing 4 op-
tions, based on Ross (1979). The question was introduced by: “How grammatically
correct is this sentence/short text?” followed by (1) “The sentence/short text sounds
perfect. I would use it without hesitation.”, (2) “The sentence/short text is less than
perfect – something in it just doesn’t feel comfortable. Maybe lots of people could say
it, but I never feel quite comfortable with it.”, (3) “Worse than 2, but not completely
impossible. Maybe somebody might use the sentence/short text, but certainly not
me. The sentence/short text is almost beyond hope.”, (4) “The sentence/short text is
absolutely out. Impossible to understand, nobody would say it. Un-English.” For the
results section, this domain was reverse-coded to make the scores better interpretable.

Finally, after rating all sentences/short texts, participants were fully briefed on the
goal of the study, reminded of the contact addresses if they had more questions about
the research, and thanked again for participation.

4.3 Error Analysis

An error analysis was performed to get a better understanding of the exact errors that
can be found in the NLG output, which in turn may help to improve the various
systems. The 15 worst-scoring texts (on the average of all three measured constructs)
in the quantitative human evaluation experiment for each system-dataset combination
(a total of 180 texts) were analyzed by 7 human annotators, all experts in language and
communication and proficient in both Dutch and English; none having previously seen
the output of the various systems.

All annotators coded 19 sentences jointly and 23 sentences individually. Cohen’s
Kappa for multiple raters (Davies and Fleiss 1982) was calculated for the jointly an-
notated part,8 resulting in κ = .45. This indicates moderate agreement (Landis and
Koch 1977). Eleven error categories for these 180 texts were developed based on Castro
Ferreira et al. (2019), and less straightforward error categories were accompanied by a
short description with examples. See Table 6 for an overview of the items. If annotators
selected “Other”, they were able to input text to describe the error category they felt
they encountered.

8 Using NLTK’s multi kappa function.
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Table 6
Questions asked in the error analysis study.
• Does the text contain information that is not reported in the data table?
• Is the text missing information that is in the data table?
• Did you find any mistake involving the references? (e.g., “Indian cuisine” in the data table becomes “German cuisine” in
the text, or the reference is not explicitly mentioned: “He is the leader of the country.” instead of “Joe Biden is the leader of
the United States of America.”)
• Did you find any mistake involving the verb form? (e.g., The boy “play” soccer instead of “plays”, or plainly missing a
verb: “The boy soccer”)
• Did you find any mistake involving the determiners? (e.g., “An” boy.)
• Did you find any mistake involving the punctuation or capitalization in the sentence? (e.g., “The,boy is here;” or “the Boy
Is here”)
• Did you find any mistake involving strange lexical choices? (e.g., The player “shot” the goal.)
• Did you find any mistake involving illogical/unnecessary repetition of words or phrases? (e.g., “The the the” boy)
• Did you find any mistake involving connections between data points? (e.g., “The leader of the cheeseburger is Barack
Obama.”)
• Is the sentence (or: one of the sentences) missing important parts to make it a full sentence? (e.g., “The maximum
temperature is.” instead of “The maximum temperature is 12 degrees Celsius.”)
• Other (specify below)

5. Results

5.1 Automatic Evaluation
5.1.1 Automated Metrics for Text Quality. The automatic analysis results are summarized
in Table 7 for the overall datasets, and presented per domain in Table B.1. Additionally,
Figure 5 shows the effects of increasing the synthetic data from the semi-supervised
learning methods on BLEU scores. Inspection of Table 7 reveals a clear pattern: For CA-
CAPO the pseudo-labeling approach consistently leads to the highest automatic metric
scores, while for E2E and WebNLG data extension does not lead to better automatic
scores overall. This pattern is consistent among all metrics, but we will zoom in on the
BLEU differences in this section.

Dataset Differences. The results of the automatic metrics suggest that clear differences
between datasets exist in the output quality achieved with the different semi-supervised
learning approaches. For the English CACAPO dataset, BLEU scores, for instance,
improved by 5.71 on average with the pseudo-labeling approach (30.50 to 36.21), but the
data augmentation approach led to an average BLEU decrease of 6.13 compared with
no extension (30.50 to 24.37). The positive effect on automatic metric scores was more
noticeable for the Dutch part of the CACAPO dataset, where BLEU scores increased
by 20.31 on average for the pseudo-labeling approach (33.94 to 54.25) and a 4.36 BLEU
improvement for the data augmentation approach compared with the no extension
approach (33.94 to 38.30).

The pseudo-labeling approach for WebNLG generally led to a decrease in automatic
metric scores (compared with no extension) albeit relatively small, with an average
BLEU decrease of 3.36. However, the BLEU decrease for the data augmentation ap-
proach (compared with no extension) was more noticeable, with a 20.20 BLEU decrease.
Decreases in automatic metric scores for the semi-supervised learning approaches com-
pared with no extension were also observed for E2E: A 15.54 BLEU score difference for
pseudo-labeling and a 37.64 decrease for data augmentation (see Table 7).
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Table 7
Automatic metric results of the different (XL-format) semi-supervised learning approaches
(No Wei = no model weights used, No Ext = no training set extension, Dat Aug = data
augmentation, Pseu Lab = pseudo-labeling, Dat + Pseu = combination of data augmentation
and pseudo-labeling) for each dataset (bold = highest).

Dataset Train type BLEU NIST BERTScore METEOR ROUGE-L

CACAPO (en)
No Wei 3.89 1.63 13.54 20.55 18.57
No Ext 30.50 6.77 59.51 56.05 51.34
Dat Aug 24.37 6.30 52.15 48.80 45.89
Pseu Lab 36.21 7.55 63.83 59.93 56.55
Dat + Pseu 36.18 7.63 63.97 60.12 56.41

CACAPO (nl)
No Wei 23.21 4.59 79.93 40.57 39.48
No Ext 33.94 6.77 84.60 52.91 51.97
Dat Aug 38.30 7.56 86.86 59.01 58.31
Pseu Lab 54.25 9.30 89.84 68.74 68.05
Dat + Pseu 50.84 8.91 89.35 66.66 66.24

E2E
No Wei 35.12 4.39 55.83 61.30 34.58
No Ext 66.05 7.08 79.40 80.21 44.97
Dat Aug 28.41 4.15 56.41 62.49 33.40
Pseu Lab 50.51 4.65 63.12 60.39 38.48
Dat + Pseu 51.49 5.06 66.79 64.25 38.92

WebNLG
No Wei 27.69 5.70 46.28 50.79 40.52
No Ext 47.91 8.74 71.3 71.57 59.88
Dat Aug 27.71 5.95 52.75 53.23 45.33
Pseu Lab 44.55 8.32 67.82 68.74 56.82
Dat + Pseu 39.70 7.63 63.35 64.00 52.74

Moreover, Figure 5 shows that an increase in synthetic training data leads to a
decrease in BLEU scores for both E2E and WebNLG. This decrease could suggest a
cascading of errors where issues in the synthetic data negatively impact the quality of
the generated output. Alternatively, it could be that the texts in E2E and most WebNLG
domains are relatively homogeneous. Introducing more deviations from these texts
increases the diversity of the output, which results in lower scores on automatic metrics
that use a golden standard. This could also explain the relatively low scores of the data
augmentation approach, where the quantity of the deviations may have the biggest
impact on the heterogeneity of the output. This possibility is further examined with
the diversity metric scores, the quantitative and qualitative human evaluation, and the
error analysis.

Dataset Domain Differences. For Dutch CACAPO, the most extreme improvement was
reached for the Weather dataset (a 52.38 improvement for pseudo-labeling compared to
no extension; see Table B.1). It is possible that the small size and limited vocabulary of
the original Weather training set was insufficient for a neural NLG system to be properly
trained on, whereas it was when the extended training set from the semi-supervised
learning approaches were applied. Figure 5 also shows that increasing the amount of
data leads to higher BLEU scores for both Dutch and English CACAPO—that is, for the
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Figure 5
BLEU scores of the datasets per dataset extension. Round markers = pseudo-labeling; triangle
markers = data augmentation.

pseudo-labeling method. This provides further support for the notion that extending
the training set has a positive impact on output quality.

Interestingly, for WebNLG, the pseudo-labeling approach performed well for the
City and Monument domains where F1 scores in the pseudo-labeling step were notice-
ably worse (see Table B.1). This supports the notion that semi-supervised learning is
mostly effective in situations where the original training set is small (as stated in H3),
filling in the training data deficit by providing more examples.

Ablation Study. An extension to the original study’s design was implemented where
the configuration of T5 was initialized without the weights associated with the model
for the training phase. The inclusion of this model provides a better overview of the
baseline’s strength (i.e., the no extension model). Furthermore, a model was trained that
leveraged training data enriched by both the pseudo-labeling as well as the data aug-
mentation approach, to investigate whether a combination of the two impacts output
quality.

Table 7 shows that for all datasets, a model initialized without weights performs
markedly worse on all metrics compared with the models that do include the pretrained
model weights. This is especially noticable for the English CACAPO dataset, where the
model without weights clearly struggles. This corroborates findings by van der Lee et al.
(2020), who also found that a deep learning model without pretrained data struggled
with the CACAPO dataset. The characteristics of this dataset with its lack of repetition
and variability make it difficult for such approaches to succeed.

Figure E.1 and Table 7 illustrate the effects of combining both data augmenta-
tion and pseudo-labeling. Generally, it performs similar to the best-performing semi-
supervised learning approach, albeit a bit worse. Only for the English CACAPO dataset
does the combination of the two approaches achieve higher scores, although the scores
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are almost similar to those achieved with the pseudo-labeling method. Combining the
two approaches therefore does not seem to benefit output quality.

Summary. In any case, while these automatic metrics do not provide all-around sup-
port for the notion that semi-supervised learning combined with a language model
increases output quality compared to an NLG system with a language model that is
only finetuned on the original dataset (H1), the results are in line with H3: The beneficial
effect of semi-supervised learning in the text quality metrics is only noticeable for the
dataset (categories) that are small-scale or unbalanced. They are also in line with H5: The
highest increase of the semi-supervised learning methods was observed for the Dutch
CACAPO dataset.

5.1.2 Automated Metrics for Text Diversity. A summary of the diversity metrics can be
found in Table 8 on a dataset level, and on domain level in Table B.2. Furthermore,
Figure 6 shows the impact of an increase in the synthetic data from the semi-supervised
learning methods on coverage scores. Overall, data extensions generally lead to higher
diversity scores. The semi-supervised learning approaches seem to generate more di-
verse output compared with no training set extension, but the semi-supervised learning
approach that gives the most diverse output seems to differ per dataset (domain) and
per diversity metric. Therefore, we will discuss the outcomes grouped by different
diversity metrics.

Table 8
Average sentence length, standard deviation of sentence length, mean-segmented type-token
ratio (TTR), bigram TTR, percentage novel descriptions, coverage, novelty and local recall with
importance class 1 (bold = highest) per dataset and (XL-format) semi-supervised learning
approach.

Dataset Train type ASL SDSL Types TTR1 TTR2 %Novel Cov Nov Loc1

CACAPO (en)
No Wei 24.51 25.43 838 0.38 0.57 92.04 0.15 0.03 0.14
No Ext 17.26 8.29 3,502 0.66 0.93 98.24 0.58 0.20 0.53
Dat Aug 17.39 8.54 3,797 0.68 0.95 99.80 0.61 0.24 0.51
Pseu Lab 17.56 9.21 3,709 0.67 0.93 98.50 0.60 0.22 0.57
Dat + Pseu 17.81 9.53 3,770 0.67 0.93 98.37 0.62 0.22 0.57

CACAPO (nl)
No Wei 16.38 10.41 1,720 0.54 0.81 83.88 0.37 0.10 0.42
No Ext 14.65 7.70 2,748 0.58 0.85 98.86 0.56 0.20 0.52
Dat Aug 14.31 6.09 2,828 0.63 0.91 98.93 0.56 0.22 0.57
Pseu Lab 14.99 6.30 3,176 0.65 0.91 93.54 0.64 0.24 0.66
Dat + Pseu 14.59 6.10 2,953 0.64 0.91 94.60 0.61 0.20 0.64

E2E
No Wei 33.81 30.54 176 0.32 0.48 99.84 0.15 0.01 0.10
No Ext 28.58 7.66 120 0.34 0.50 100 0.11 0.00 0.11
Dat Aug 34.42 7.73 223 0.38 0.55 100 0.16 0.03 0.10
Pseu Lab 23.22 5.26 115 0.26 0.38 100 0.07 0.03 0.08
Dat + Pseu 23.83 5.58 226 0.32 0.49 100 0.14 0.06 0.08

WebNLG
No Wei 15.91 8.51 1,748 0.40 0.61 72.47 0.55 0.04 0.48
No Ext 16.01 6.71 2,136 0.43 0.68 79.78 0.69 0.02 0.69
Dat Aug 15.87 6.91 2,311 0.43 0.71 97.71 0.62 0.15 0.49
Pseu Lab 16.42 6.70 2,404 0.45 0.72 81.13 0.73 0.08 0.66
Dat + Pseu 16.22 6.80 2,527 0.46 0.74 80.10 0.73 0.12 0.62
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Figure 6
Coverage scores of the datasets per dataset extension. Round markers = pseudo-labeling;
triangle markers = data augmentation.

Average Sentence Length, Standard Deviation of the Sentence. Average sentence length
and standard deviation of the sentence can be an indicator of perceived diversity in
a text: Longer sentences tend to contain more variation, and bigger differences between
sentence length make the output more heterogeneous. It could be expected that the
pseudo-labeling approach in particular affects sentence length standard deviation if
the sentences that this approach introduces are also of a varied sentence length, while
the average sentence length should not change too much for CACAPO and E2E, as the
newly introduced sentences come from similar sources as the sentences in the original
training set. For WebNLG, changes in average sentence length can be expected for the
pseudo-labeling approach as the sentences are from a different source (Wikipedia vs.
Crowdsourced). The data augmentation approach is expected to keep the standard
deviation of sentence length, and average sentence length similar, as this approach
perturbs words but generally keeps sentence structure and length the same.

The effect of pseudo-labeling, however, is only partially according to expectations;
pseudo-labeling obtained the highest standard deviation score for 9 of the 19 domains,
but only for 1 dataset overall (see Table 8; Table B.2). In terms of sentence length, it
only shows a clear difference (decrease) compared with the no extension approach for
E2E, and only marginal differences for the other datasets and dataset domains. Data
augmentation indeed shows similar scores for average sentence length and standard
deviation of sentence length consistently among datasets and dataset domains.

Number of Types, Type–Token Ratios, Percentage of Novel Texts, Novelty Score. The number
of types, type-token ratios, percentage of novel texts, and the novelty score are all
direct indicators of lexical diversity. For these metrics, the improvements of the semi-
supervised learning approaches are also the most pronounced. The data augmentation
and pseudo-labeling approach each seemed to perform best in terms of increasing
lexical diversity on roughly half of the datasets and dataset domains.
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For the English CACAPO, and E2E, data augmentation seemed to result in the
highest lexical diversity scores, while these scores were highest for the pseudo-labeling
approach in the case of Dutch CACAPO and WebNLG. For the Dutch CACAPO dataset,
this may have to do with the nature of the language model used for data augmentation:
BERT-large for English (Devlin et al. 2019) is likely better able to inject diverse pertur-
bations compared with BERTje (de Vries et al. 2019), which is a Dutch translation of
BERT-base.

For WebNLG it might have to do with the nature of the texts that were used for
pseudo-labeling: The Wikipedia texts are probably more dissimilar (thus injecting more
diversity) to the texts in the training set, compared with the pseudo-labeled texts used
for the other datasets. It is worth noting that the novelty scores of the no extension
approach for the WebNLG and E2E datasets are consistently close to 0, meaning that
(almost) no new words have been introduced for these datasets that were not found
in the training or development data. This absence of new words possibly showcases
catastrophic forgetting (Greco et al. 2019) (which may occur when a training set is
decently sized for finetuning), which leads to a neural NLG system forgetting about
the language model’s capabilities.

Also worth noting is that the percentage of novel texts shows that (almost) all
generated texts in CACAPO and E2E are different from the texts in the training data,
thus creating a ceiling effect for these datasets. This has to do with the setup of the test
set, where input data rarely, if ever, overlaps with the input data in the training and
development sets. This metric is more interesting for WebNLG, where we see that non-
novel sentences are only rarely generated with the data augmentation approach, while
this does occur more frequently with the pseudo-labeling approach and no extension
approach.

Coverage, Local Recall. Coverage and local recall measure text retention in the output
compared to the training set. Coverage is a global recall metric, measuring how many
of the word types from the training and development sets were retained in the output.
A higher coverage score suggests that more of the naturally occurring variation in the
training and development set is retained in the test set. Local recall compares the content
words in the generated output to those in the reference in the test set. A higher score on
lexical variation metrics, paired with a high score on local recall, indicates that higher
diversity was not obtained at the cost of meaningful content words.

Regarding coverage, we again see that the semi-supervised learning approaches
consistently outperform the system that only used the standard training set. The highest
coverage scores for WebNLG and Dutch CACAPO were achieved with pseudo-labeling,
while data augmentation achieved the highest coverage score for English CACAPO and
for E2E. Furthermore, Figure 6 shows that coverage scores are generally increased when
the training set size is increased with synthetic data. This effect is most pronounced for
pseudo-labeling, whereas an increase in training set size does not necessarily lead to
higher coverage scores with data augmentation; while training size increases with data
augmentation do seem to have a positive effect on coverage for CACAPO, they seem to
decrease coverage scores for WebNLG and E2E.

For local recall, we see that the pseudo-labeling approach achieved the highest
scores for Dutch and English CACAPO. The small-scale nature of these domains might
stand to benefit more from the extra training data that the pseudo-labeling approach
offers to retain commonly occurring content words. For WebNLG and E2E we see that
the system trained on the original dataset retains the most content words, while the
pseudo-labeling approach generally stays relatively close in terms of local recall scores.
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The data augmentation approach shows a more sizable drop-off, which makes sense as
the content words were augmented for this semi-supervised learning approach.

Ablation Study. Diversity metrics were also applied to the extension to the original
study’s design where a T5 model’s configuration was initialized without the weights
associated with the model and the T5 model that was enriched with both data aug-
mentation as well as pseudo-labeling. These extensions assess the strength of the no
extension baseline model, and whether combining the two semi-supervised learning
approaches helps to fortify their individual strengths with regard to output quality and
diversity.

Table 8 indicates that for all datasets, a model initialized without weights performs
worse on most diversity metrics compared with the models that include the pretrained
model weights. The model does achieve generally higher scores on average sentence
length (for the CACAPO datasets) and standard deviation of sentence length (for all
corpora), but paired with the lower number of types, coverage, novelty, and local recall
scores, this seems to be an indicator of natural language degeneration (Holtzman et al.
2020). However, for the E2E dataset, this dropoff compared to the other models does
not seem as sizeable compared with the other datasets. A reason for this may be that
the lack of variety and repetition in this dataset, together with its size, allows for ample
opportunity for the model to learn the appropriate model weights.

The effects of joint data augmentation and pseudo-labeling can be found in Fig-
ure E.2 and Table 8. Similar to the results of the automated metrics, it seems that
this combination performs similar to the best-performing semi-supervised learning
approach, albeit a bit worse. For the E2E and WebNLG dataset, this approach does
seem to output more types, albeit only a small amount more. For other metrics, the
combination of the two approaches achieves higher scores, although the scores are
almost similar to those achieved with the pseudo-labeling method. Combining the two
approaches therefore does not seem to have a marked impact on output diversity.

Summary. In support of H2, we find that semi-supervised learning increases the output
diversity. Data augmentation seems to be the best method to achieve this for English
CACAPO and E2E, whereas the pseudo-labeling approach achieves better diversity
scores for Dutch CACAPO and WebNLG. The results also indicate that the neural
NLG system without an semi-supervised learning approach suffers from catastrophic
forgetting: Overfitting on the training set too tightly—which means a relative lack of
output diversity as a result. We do not find a marked difference between datasets in
terms of the effects of semi-supervised learning in general on output diversity. All
datasets seem to benefit relatively equally from semi-supervised learning. Therefore, no
clear effect of dataset type (crowdsourcing based vs. naturally occurring) and language
(Dutch vs. English) was detected, which is contrary to H4 and H5, respectively.

5.2 Quantitative Human Evaluation

In addition to the automatic evaluations, we also conducted a human evaluation to
investigate perceived quality, by measuring fluency, correctness, and grammaticality.
The overall scores are summarized in Table 9, and reported per sub-corpus in Table B.3.
Inspection of Table 9 reveals a clear pattern: In almost all cases the highest scores are
obtained with the pseudo-labeling approach.

This was further examined by conducting a series of linear mixed models, with
semi-supervised methods and the datasets/dataset domains as independent variables
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Table 9
Mean fluency, correctness, and grammaticality per semi-supervised learning type for each
dataset (SDs in parentheses). Different superscripts indicate significant differences between
semi-supervised learning approaches. Higher scores mean more positively perceived output.

Dataset Train Type N Fluency Correctness Grammaticality

CACAPO (en)
No Ext

43
4.83 (2.05)a 4.93 (1.86)a 2.90 (0.98)a

Dat Aug 4.82 (2.05)a 4.92 (1.89)a 2.93 (0.98)a

Pseu Lab 5.67 (1.70)b 5.57 (1.70)b 3.29 (0.86)b

CACAPO (nl)
No Ext

41
4.75 (2.03)a 5.15 (1.90)a 2.83 (1.09)a

Dat Aug 4.73 (2.09)a 5.15 (1.88)a 2.79 (1.12)a

Pseu Lab 5.94 (1.52)b 5.75 (1.58)b 3.49 (0.78)b

WebNLG
No Ext

99
4.64 (2.08)a 3.99 (2.21)a 2.92 (1.02)a

Dat Aug 4.67 (2.08)a 4.01 (2.22)a 2.91 (1.02)a

Pseu Lab 5.74 (1.66)b 5.63 (1.82)b 3.43 (0.79)b

E2E
No Ext

9
5.08 (1.73)a 4.25 (1.86)a 3.06 (0.88)a

Dat Aug 5.06 (1.70)a 4.20 (1.83)a 2.98 (0.91)a

Pseu Lab 6.26 (1.02)b 3.86 (1.71)a 3.61 (0.65)b

and fluency, correctness, and grammaticality as the dependent variables. Linear mixed
models enable us to control for the systematic variation due to the nested/clustered
structure of the data caused by participants having rated multiple texts. Furthermore,
linear mixed models are able to deal appropriately with unequal sample sizes (i.e.,
language and dataset in this experiment). To do so, we added dataset, domain, and
participant as a nested random factor in the models.

Following van Miltenburg et al. (2019), we used the lme4 (Bates et al. 2015) package
in R to build our linear mixed models using the lmer function and estimate p-values
for the models, respectively. Datasets and dataset domains were investigated using
separate models, and a separate model for each dependent variable was also necessary,
meaning that a total of 6 models were created. Furthermore, “no extension” served
as the reference level intercept for semi-supervised learning approach, and “E2E” as
the reference level intercept for dataset and dataset domain. The emmeans package
was used for pairwise comparisons when analyzing the differences between semi-
supervised learning approaches, datasets, dataset domains, and interaction effects if
the linear mixed model showed significant main effects or interaction effects. All models
converged and the visual check of model assumptions using the residual plots indicated
no signs of violations.

Fluency. The model for fluency was significant (conditional R2 = 0.23, marginal R2 =
0.07, p < .001). The model showed a main effect of training type, but not of dataset,
and also did not suggest any interaction effects. Table 9 represents the mean scores and
training type differences, while the mixed model results are summarized in Table C.1.

Significant effects were further investigated using estimated marginal means with
Bonferroni correction, which corroborated these findings. Only the pairwise compar-
isons for semi-supervised learning approaches showed significance: There was no sig-
nificant difference in fluency between no extension (M = 4.73, SD = 2.05) and data
augmentation (M = 4.74, SD = 2.06), but the fluency scores for the pseudo-labeling ap-
proach (M = 5.79, SD = 1.62) were significantly higher than both the data augmentation
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Figure 7
Mean fluency per dataset and learning type.

Figure 8
Mean correctness per dataset and learning type.

approach and no extension. This effect was robust across all dataset domains as well,
with all but 4 domains showing the same pattern between semi-supervised learning
approaches (see Table B.3).

Semi-supervised Learning Type Differences. Figure 7 illustrates these results: All datasets
show a similar pattern, where the fluency scores between no extension and data aug-
mentation are virtually similar, and the perceived fluency increases for pseudo-labeling.
Sentences were thus perceived as more fluent when a training set was enriched with
data created via the pseudo-labeling approach. Furthermore, perceived fluency scores
were relatively similar for all the investigated datasets, and the fluency differences
between the semi-supervised learning approaches were similar across all datasets.

Summary. Partly in support of H1, semi-supervised learning seems to increase the
output quality compared with a language model only trained on the base training
set. However, this is only the case for the pseudo-labeling approach and not for the
data augmentation approach (RQ1). Furthermore, these fluency results do not support
H3, nor H5: The beneficial effect of semi-supervised learning is consistent regardless of
whether the original dataset is small-scale or large-scale (H3), Dutch or English (H5).

Correctness. For correctness, the model was significant as well (conditional R2 = 0.29,
marginal R2 = 0.11, p < .001). The model showed a main effect of semi-supervised
learning approach, dataset, and an interaction between the two. Table 9 shows the mean
scores and semi-supervised learning approach differences, and Table C.1 a summary of
the mixed models for correctness.

The significant effects were further explored using estimated marginal means with
Bonferroni correction. For semi-supervised learning type, there was no significant dif-
ference between no extension (M = 4.46, SD = 2.12) and the data augmentation approach
(M = 4.47, SD = 2.12), but there were significantly higher correctness scores for the
pseudo-labeling approach (M = 5.56, SD = 1.78) compared with both other approaches.

For dataset, there was no significant difference between E2E (M = 4.10, SD = 1.80)
and WebNLG (M = 4.54, SD = 2.23), and no difference between English CACAPO
(M = 5.14, SD = 1.84) and Dutch CACAPO (M = 5.35, SD = 1.81). However, both CA-
CAPO datasets scored significantly higher on perceived correctness than both WebNLG
and E2E. The main effects and interaction effect can be explained in more detail using
Figure 8.
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Dataset × Semi-supervised Learning Type Differences. Regarding differences between
datasets, differentiated per semi-supervised learning approach, we see that for no ex-
tension, WebNLG (M = 3.99, SD = 2.21) obtained significantly worse correctness scores
compared with both Dutch CACAPO (M = 5.15, SD = 1.90) and English CACAPO (M =
4.93, SD = 1.86).

This pattern is similar when comparing the datasets enriched with data augmen-
tation: WebNLG (M = 4.01, SD = 2.22) performed significantly worse in terms of
correctness compared with both Dutch CACAPO (M = 5.15, SD = 1.88) and English
CACAPO (M = 4.92, SD = 1.89). This consistency also makes sense when comparing the
datasets’ scores on no extension to data augmentation: None of the datasets’ scores on
data augmentation differ significantly from the scores they obtained on no extension.

The pattern is different for pseudo-labeling: The correctness scores for English
CACAPO (M = 5.57, SD = 1.70), Dutch CACAPO (M = 5.75, SD = 1.58), and WebNLG
(M = 5.63, SD = 1.82) are significantly higher for pseudo-labeling than they are for
both no extension and data augmentation, resulting in no significant differences in
correctness scores between the three datasets for pseudo-labeling.

However, the correctness score for E2E on pseudo-labeling (M = 3.86, SD = 1.71)
is not significantly different compared to the correctness score E2E obtained on no
extension and data augmentation. This results in E2E performing significantly worse
on pseudo-labeling compared to English CACAPO, Dutch CACAPO, and WebNLG.

Dataset Domain Differences. On a dataset domain level, the Astronaut, Food, and Monu-

ment domains of WebNLG in particular performed worse for WebNLG when the base
training set or data augmentation was used. Furthermore, we see that the differences
between semi-supervised learning approaches are most pronounced for the WebNLG
domains, while the differences are not as clear for the English CACAPO and Dutch
CACAPO domains (see Table B.3).

Summary. The data shows that overall, no extension and data augmentation performed
similarly on perceived correctness across all datasets, and that pseudo-labeling also
leads to the highest correctness scores as it does for fluency scores. However, this effect
is moderated by the dataset. E2E did not achieve higher correctness scores with the
pseudo-labeling approach compared to the other approaches, while the other datasets
did.

Similar to the fluency results, the correctness scores are partially in support of H1,
showing that the semi-supervised learning shows higher correctness scores compared
with a language model only trained on the base training set, but only in the case
of the pseudo-labeling approach and not for the data augmentation approach (RQ1).
The correctness scores are partially in support of H3, as the beneficial effect of semi-
supervised learning could not be found for the largest-scale dataset (E2E), but it could
be found for WebNLG. Finally, the correctness scores do not seem to differ per language,
which does not support H5.

Grammaticality. The model for grammaticality was significant (conditional R2 = 0.20,
marginal R2 = 0.07, p < .001). Similar to the fluency model, the grammaticality model
showed a main effect of training type, but not of dataset, and also did not suggest any
interaction effects. Mean scores for grammaticality and differences for training type are
shown in Table 9 and the mixed model results are summarized in Table C.1.
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Figure 9
Mean grammaticality per dataset and learning type.

The estimated marginal means with Bonferroni correction shows that no extension
(M = 2.90, SD = 1.02) was not significantly different compared with data augmentation
(M = 2.89, SD = 1.03) in terms of grammaticality, and that both no extension and
data augmentation obtained significantly worse grammaticality scores compared with
pseudo-labeling (M = 3.42, SD = 0.80).

Semi-supervised Learning Type Differences. Figure 9 shows a similar pattern as was found
for fluency. The pseudo-labeling approach led to higher grammaticality scores than no
extension and data augmentation did. Furthermore, the effects of grammaticality seem
to be consistent among datasets: The datasets did not differ significantly from each other
in terms of the obtained grammaticality scores, and performed similarly with the semi-
supervised learning approaches.

Dataset Domain Differences. The differences between semi-supervised learning ap-
proaches are also fairly stable on a category level, with 14 out of 19 domains having
no significant difference between no extension and data augmentation, and pseudo-
labeling performing significantly better than the other two approaches.

Summary. Similar to fluency, the results for grammaticality are partly in support of H1,
as semi-supervised learning increased grammaticality scores compared to a language
model only trained on the base training set, but only for the the pseudo-labeling ap-
proach (RQ1). The grammaticality results also do not support H3/H5 as dataset size
(H3) and language (H5) did not alter the found effect of semi-supervised learning.

5.3 Error Analysis

The goal of the error analysis was to investigate whether the different systems were
prone to other kinds of errors, which could indicate points of attention for future
work. Hence, a chi-square test was conducted with error type (see Section 4.3), semi-
supervised learning approach (no extension, data augmentation, and pseudo-labeling),
and dataset (Dutch CACAPO, English CACAPO, WebNLG, and E2E) as categorical
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Table 10
Number of errors for each dataset per error category and semi-supervised learning approach.
Different superscripts indicate significant differences between semi-supervised learning
approaches.
CACAPO (NL) NoExt DatAug PseuLab Total
Hallucinations 6a 7a 5a 18
Missing info 4a 3a 3a 10
References 2a 3a 1a 6
Verb form 4a 2a 1a 7
Determiners 2a 1a 0a 3
Punct./capital. 0a 0a 0a 0
Lexical choices 4a 4a 2a 10
Repetition 3a 3a 1a 7
Connections 7a 4a 1a 12
Missing parts 4a 2a 2a 8
Other 2a 3a 2a 7
Total 38a 32a,b 18b 88

CACAPO (EN) NoExt DatAug PseuLab Total
Hallucinations 9a 10a 5a 24
Missing info 2a 0a 0a 2
References 0a 0a 1a 1
Verb form 2a 2a 1a 5
Determiners 0a 1a 0a 1
Punct./capital. 2a 1a 1a 4
Lexical choices 3a 4a 0a 7
Repetition 2a 5a 0a 7
Connections 2a 4a 1a 7
Missing parts 5a 5a 2a 12
Other 3a 5a 5a 13
Total 30a,b 37a 16b 83

WebNLG NoExt DatAug PseuLab Total
Hallucinations 5a 5a 5a 15
Missing info 11a 12a 6a 29
References 3a 7a 4a 14
Verb form 1a 2a 1a 4
Determiners 1a 2a 1a 4
Punct./capital. 1a 0a 0a 1
Lexical choices 2a 1a 0a 3
Repetition 8a 7a 0a 15
Connections 2a 3a 3a 8
Missing parts 6a 9a 2a 17
Other 2a,b 0b 4a 6
Total 42a,b 48a 26b 116

E2E NoExt DatAug PseuLab Total
Hallucinations 9a 10a 13a 32
Missing info 5a,b 3b 10a 18
References 8a 7a 4a 19
Verb form 1a 0a 0a 1
Determiners 2a 1a 0a 3
Punct./capital. 2a 4a 0a 6
Lexical choices 1a 0a 0a 1
Repetition 4a 5a 0a 9
Connections 0a 0a 0a 0
Missing parts 1a 2a 0a 3
Other 2a 5a 0a 7
Total 35a 37a 27a 99

All Datasets NoExt DatAug PseuLab Total
Hallucinations 29a 32a 28a 89
Missing info 22a 18a 19a 59
References 13a 17a 10a 40
Verb form 8a 6a 3a 17
Determiners 5a 5a 1a 11
Punct./capital. 5a 5a 1a 11
Lexical choices 10a 9a 2a 21
Repetition 17a 20a 1b 38
Connections 11a 11a 5a 27
Missing parts 16a 18a 6a 40
Other 9a 13a 11a 33
Total 145a 154a 87b 386

variables. Pairwise comparisons per category between semi-supervised learning types
were made using Bonferroni-adjusted z-tests for column proportions. Pairwise com-
parisons between the total scores per dataset were done using binomial tests with
Bonferroni-adjusted p-values. Results of the comparisons are shown in Table 10.

Dataset Differences. The chi-square test did not show a significant difference in error
proportions between the semi-supervised learning approaches for Dutch CACAPO
(χ2(18) = 6.45, p = .994), English CACAPO (χ2(20) = 17.82, p = .599), WebNLG (χ2(20) =
21.11, p = .391), or E2E (χ2(18) = 28.52, p = .055), as well as all the datasets combined
(χ2(20) = 26.43, p = .152).

However, the binomial tests with Bonferroni-adjusted p-values showed that the
proportion of total errors for the pseudo-labeling approach, across all datasets, was
significantly lower than the expected (33%, p < .001). No difference in proportion of
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errors was found between no extension and data augmentation. The pseudo-labeling
approach yielded only around half of the errors of the other two approaches in total,
and this effect was reasonably consistent for every dataset (see Table 10).

This indicates that differences found in the quantitative human analysis are gener-
ally not the result of distinct categorical error differences, but rather an overall difference
in all errors combined.

Error Category Differences. Despite no overall effect being found, the pairwise com-
parisons do show a few significant differences. For WebNLG, a larger proportion of
Other errors were found for the pseudo-labeling approach (15.4%) compared with the
data augmentation approach (0.0%), but this difference is likely explained by the small
number of error observations for this particular error category and dataset.

More interesting is the difference found for the E2E dataset regarding the number
of missing information errors obtained by the data augmentation approach (8.1%),
compared with the pseudo-labeling approach (37%), which could be the reason why
the correctness score of the pseudo-labeling approach was lower for the E2E dataset
compared with the other datasets in the quantitative human evaluation study.

Furthermore, the errors of all datasets combined showed that the pseudo-labeling
approach had much fewer issues with the repetition of words/phrases (1.1% of errors
for pseudo-labeling, compared with 11.7% and 13.0% for no extension and data aug-
mentation, respectively). These issues are seen in sentences such as “Batchoy is eaten in
the their, a the of the their spoken is is.” and may indicate an issue of underfitting, which is
solvable by extending the training set via the pseudo-labeling approach. These findings
are further elaborated upon with the qualitative evaluation.

5.4 Qualitative Analysis

In addition to the error analysis, the output of the system was further analyzed by
focusing on the 15 lowest and 15 highest rated outputs per dataset × semi-supervised
learning approach according to the human evaluation task. The bottom/top 5 of
these outputs for each dataset × semi-supervised learning approach is displayed in
Appendix D.

Highest Rated Output. When looking at the highest rated texts, all texts obtained
perfect or near-perfect ratings in the human evaluation task. Manual inspection also
confirms that none of these sentences contain any clear errors: The texts are grammatical
and capture the data (almost always) completely and comprehensively. Furthermore,
on a general level it can be observed that the data–text pairs for no extension and data
augmentation partially overlap, which further emphasizes the similar performance of
both models.

Certain trends could also be deduced from these highest rated texts on a closer
inspection. For the Dutch CACAPO dataset, output from the Weather and Accidents

domain accounted for nearly 70% of the highest rated texts. This makes intuitive sense
as texts from these domains in the training set are the most consistent in writing style.
Furthermore, the data representations for these domains seem to be especially capable
of capturing the most important information of the sentence. For instance, the data
representation timePoint="In the evening" weatherChange="gradually" weather-

Type="dry" becomes ”In the evening it gradually becomes dry”, which is quite close to the
data representation.
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This trend of a close link between the underlying data and the text leading to the
highest scores is also visible for the other datasets. For the English CACAPO dataset,
the stocks domain accounted for almost 60% of the highest rated texts. Especially
prevalent is a template that contains the exchangeName, stockChange, stockPoints, and
stockChangePercentage data types (e.g., exchangeName="Dow" stockChange="up"

stockPoints="288.38" stockChangePercentage="1%"→ ”The Dow is up 288.38 points,
or 1%.”). This template is likely to appear frequently in the training set with highly
regular text representations, which in turn made it easier for the models to learn how to
convert this data template into text.

For WebNLG, the models seem to find it easier to convert data representations with
fewer triples into text. For no extension and data augmentation, there are no domains
that clearly dominate the list of highest rated output. However, for pseudo-labeling, the
top 6 are all outputs from the Building domain. WebNLG has data representations that
stay relatively close to the domain’s topic (e.g., for the building domain this would
be triples with predicates such as architect, floorCount, and location), and data
representations that stray further away from the domain’s topic (e.g., for the building
domain this would be triples with predicates such as demonym, or leaderName). The
highest rated texts all seem to be the first type of data representations. This especially
holds true for pseudo-labeling, which makes sense given that the enriched texts will
likely be closer to the domain’s topic.

It is difficult to gauge which conditions make the models more effective at pro-
ducing high quality output for E2E. At least for no extension and data augmenta-
tion, similar data representations can be found for the highest and lowest rated texts.
For pseudo-labeling, most of the highest rated texts have a similar data representa-
tion, with name, eatType, food, area, familyFriendly, and near as the data types
(e.g., name="Giraffe" eatType="restaurant" food="French" area="riverside"

familyFriendly="no" near="Raja Indian Cuisine". This is likely a frequent data
representation template in the training set.

Lowest Rated Output. The lowest rated output in the human evaluation task clearly
shows issues in the output. The most common issues seem to be in the production of
grammatically correct texts, possibly due to underfitting. Hallucination and omission
of data happen somewhat frequently, but making the connections between data points
seems to have been the most difficult for the models. Here, overlap between no exten-
sion and data augmentation can also be found, in line with the similar performance
found between the two systems in the human evaluation.

For the Dutch CACAPO dataset, almost 70% of the lowest rated texts are from
the Weather and Sports domain. For the Weather domain, this has mostly to do with
texts that verbalize wind information (e.g., ”Tonight the wind will become northeasterly in
more and more places.”). For the Sports domain, it seems like the variety and lack of
repetition in the training set has caused issues with producing grammatically correct
texts. For most of these lowest rated texts, the issue is mostly with incorrect use of
words, omission, or repetition of words (e.g., ”The man was tripped by an accident.”,
”The south to southwestern is moderate.”). In other cases, mostly the texts related to wind
direction, the output is not necessarily incorrect, but may be uncommon information for
participants to read.

For the English CACAPO dataset, two thirds of the lowest rated texts are from the
Accidents and Stocks domain. The main issue for this dataset also does not seem
to be hallucination or omission of data, but rather issues with the verbalized texts,
possibly caused by underfitting (e.g., ”CLEVELAND, Ohio – A November 2014 quintuple
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homicide in Cleveland left one dead and four injured injured injured.”). The pseudo labeling
approach suffers less from underfitting, but the worst rated texts may be caused by table
information in the original articles that have been interpreted as text. For instance ”9pm:
-8” is not a full sentence, but would provide enough information in a table.

Almost half of the lowest rated texts in the WebNLG dataset derive from the Food

domain, although it is difficult to say why this domain is the most challenging for the
models. In all cases, it seems that repetition and incorrect word use are the main issue
that cause the low ratings (e.g., ”Amatriciana sauce is a traditional traditional from the
Lazio region.”, ”The league is the Greeks of which the team played in the in.”). For pseudo-
labeling, the previously mentioned distinction between close and further removed data
representations seems to be the source of difficulties. In most cases for pseudo-labeling,
the lowest rated sentences have data representations that are not close to the domain’s
main topic.

For the lowest rated texts in the E2E dataset, it is also difficult to pinpoint the exact
conditions that cause the models to struggle as the data representations seem similar
to those of the highest rated texts. However, for pseudo-labeling, it seems that the high
frequency of data types in the (enriched) dataset that are not frequent in the test set
cause issues. The model hallucinates food types that are not represented in the data (e.g.,
”The Cricketers is a restaurant that serves Samoan food.”). These food types (e.g., Samoan,
Burmese, Saint Helenian) are only found in the enriched data for pseudo-labeling, where
they occur regularly, which explains why only for E2E, pseudo-labeling had no positive
effect on the correctness ratings in the human evaluation study.

6. Discussion and Conclusion

This study investigated the potentially beneficial effect of semi-supervised learning
in combination with a language model. More specifically, it investigated whether
enriching a training set via the data augmentation approach (i.e., generating several
variants of a training text by replacing certain words with synonyms and semantically
similar words) and a pseudo-labeling approach (i.e., labeling unlabeled texts using
an information extraction model trained on the existing labeled training data) could
increase the performance of data-to-text NLG that already utilizes a large-scale language
model (T5-large/mT5-large).

Previous work has found that semi-supervised learning could increase the output
quality of an NLG system (e.g., Qader, Portet, and Labbé 2019; Schmitt et al. 2020; Su,
Huang, and Chen 2020; Tseng et al. 2020; Chang, Demberg, and Marin 2021) and that
utilizing language models for data-to-text NLG could help improve output quality as
well (e.g., Kale and Rastogi 2020). However, not much is known about the combination
of language models and semi-supervised learning in a data-to-text generation setting.

Therefore, it is not known whether semi-supervised approaches are still effective
when language models are also used, and, if they are, under what conditions they are
effective. Besides the type of semi-supervised learning as a condition, this study also
investigated multiple datasets with different characteristics to see whether they affected
the effectiveness of semi-supervised learning in combination with language models.

Output Quality. Partial support was found for the hypothesis that semi-supervised
learning positively affects output quality (H1). When observing the results of the quan-
titative human evaluation, the pseudo-labeling approach consistently obtained higher
scores on correctness, grammaticality, and fluency compared with the data-to-text
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system with a language model that was only trained on the base training set (hereafter:
No extension approach).

This is in line with Sun et al. (2020), who found for a text classification task that a
combination of a language model and pseudo-labeling led to the highest scores. It also
corresponds with previous research that used joint learning systems for data-to-text
generation (e.g., Qader, Portet, and Labbé 2019), Schmitt et al. 2020), Su, Huang, and
Chen 2020), Tseng et al. 2020), Chang, Demberg, and Marin 2021), with the difference
that this research compared it to a system where a language model was finetuned on
the training set, rather than a system that was trained on merely the training set.

However, the data augmentation approach performed equivalently to the no ex-
tension approach in the quantitative human evaluation study and error analysis, and
the output quality scores were generally worse than the quality scores yielded by the
pseudo-labeling approach. These results suggest that the pseudo-labeling approach is a
better semi-supervised learning approach than the data augmentation approach if the
goal is to increase the output quality over a system that is only trained on the base
training set (RQ1).

These results make intuitive sense: The data augmentation approach only makes
subtle changes to the data that is represented in the text, and does not make any
fundamental adjustments to the sentence structure compared with the original text,
thus keeping the output relatively similar to that of the no extension approach. The
pseudo-labeling approach introduces not only new sentence structures to the training
set, but also a large amount of new data types and combinations of data. This increased
variety in training data might lead to better generalizations and better handling of the
diverse situations in the test set, subsequently leading to higher quality output and less
underfitting issues (as was corroborated by the error analysis).

Thus, while previous research with different data augmentation approaches found
data augmentation to increase performance compared with a system that was only
trained on the training set (e.g., Kulhánek et al. 2021; Riabi et al. 2021; Tandon et al.
2018; Alberti et al. 2019; Chang et al. 2021; Kedzie and McKeown 2019), it may not
result in text quality improvements if a language model is also implemented. It is possi-
ble that when the original training set is too small (which is common for NLG datasets),
it may lead to an underfitted system. Underfitting can be reduced by implementing
a language model that is finetuned on the training data, and by extending the training
data with data augmentation. However, this combination of the two might be redundant
for handling the underfitting issue.

The automatic metrics for output quality estimation suggest that the pseudo-
labeling approach is the most effective approach for the CACAPO dataset—especially
the Dutch CACAPO dataset—and that the no extension approach leads to the best
output for E2E, and WebNLG (in concordance with H3 which states that smaller-scale
datasets benefit more from semi-supervised learning, and H5 that states that Dutch
datasets benefit more than English datasets).

However, the results of the quantitative human evaluation shows that the fluency
and grammaticality outcomes are fairly consistent among datasets. The exception being
correctness, where semi-supervised learning did not return higher ratings than the no
extension approach for E2E. It is possible that this has more to do with the nature of
the extensions used with E2E for the pseudo-labeling approach, as there was a clear
correctness increase for the pseudo-labeling approach over the no extension approach
for WebNLG.

The semantic parser that was applied on the extra texts for the pseudo-labeling
approach seemed to be struggling (with F1 scores of only around 57% on the additional
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data), possibly due to overfitting on the original training set. These issues with the labels
then eventually affected the correctness scores of the data-to-text system’s output (an
example of cascading of errors [Castro Ferreira et al. 2019]). In turn, this would lead to
worse connections between the data input and text output, as is also found by the error
analysis.

Therefore, we believe our results are not in line with H3, nor H5 as the Dutch
CACAPO corpus performed similarly to the other corpora, especially the English CA-
CAPO corpus. These results are also not in line with previous research that found semi-
supervised learning to especially bolster the results for small-scale datasets (Chang,
Demberg, and Marin 2021). It might therefore be that the usage of language models
nullifies the differences between datasets and their scale: Previous work has shown that
language models enable few-shot and zero-shot learning (Bender et al. 2021), which
could make the difference between dataset scale less important. The lack of difference
between the Dutch and English datasets furthermore shows that, although the Dutch
representation in mT5 is small (especially compared with the English representation in
T5) it is still enough to overcome issues of underfitting.

Output Diversity. The diversity differences between the various approaches were in-
vestigated using measures derived from van Miltenburg, Elliott, and Vossen (2018). We
found support for H2: Semi-supervised learning generally seemed to increase output di-
versity. For every investigated dataset, one of the semi-supervised learning approaches
scored the highest on almost each of the diversity metrics. This is also in line with previ-
ous findings by Kulhánek et al. (2021). This suggests that semi-supervised learning can
(at least partially) solve the previously highlighted “catastrophic forgetting” problem
(Greco et al. 2019), where a neural model is overfit too tightly during finetuning, which
leads to the model forgetting about the diverse language in the language model.

The increase in diversity is relatively consistent among datasets (which does not
support H4 that states that a larger increase in diversity is expected for crowdsourced
datasets) and dataset language (which does not support H5). However, the semi-
supervised learning approach that leads to the largest diversity increases differs per
dataset. The pseudo-labeling approach is generally the most diversity-bolstering ap-
proach for CACAPO (nl) and WebNLG, whereas the data augmentation approach is the
most effective approach for diversity increases for CACAPO (en) and E2E.

However, it is difficult to pinpoint which characteristics of the datasets lead to these
differences. Diversity differences may be due to the richness in content words in the
original dataset (which leads to more perturbations with the data augmentation ap-
proach), or lack thereof. Alternatively, it can be that the extra texts used for the pseudo-
labeling approach contain more (or less) diverse language for some datasets, leading
to more (or less) diverse verbalizations of the data-to-text output. Future research is
necessary to investigate which characteristics of the dataset—and extra data introduced
by the semi-supervised learning approaches—are most salient when the goal is to
increase text diversity.

6.1 Future Work

The current study found that semi-supervised learning is an effective technique for
data-to-text generation, even when used in conjunction with a language model. The
pseudo-labeling approach can increase both output diversity and quality, whereas the
data augmentation approach is effective at increasing diversity, while keeping the qual-
ity consistent with a model only enriched with a language model.

590



van der Lee et al. Neural Data-to-Text Generation Based on Small Datasets

Furthermore, this result seems to be consistent among datasets. It may be that a
good language model nullifies the differences between the original datasets, meaning
that, for instance, the scale of the dataset does not matter as much. This in turn would
mean that enriching training data with a language model can already be helpful for non-
English NLG tasks, for which it is generally more difficult to find large-scale datasets
(Riabi et al. 2021). This would help to make neural NLG systems available for more
people around the world without having to invest in large-scale datasets.

Two common semi-supervised learning approaches (pseudo-labeling and data aug-
mentation) were explored in the design of the presented data-to-text system. However,
for future research there are also other approaches to explore. For instance, data aug-
mentation can be done in other ways, other than perturbing words with semantically
similar words, as was done in this research, such as data augmentation in the form of
self-training where new texts are generated from unlabeled data. Previous research has
shown that such an approach to data augmentation is promising (e.g., Heidari et al.
2021; Jolly et al. 2022; Mehta et al. 2022).

Also of interest would be entity resolution/text matching (i.e., automatically connect-
ing data with corresponding text), rather than pseudo-labeling (Ahmadi, Sand, and
Papotti 2021). Many real-world companies have large collections of texts and related
data, but are missing an explicit connection between the two (van der Lee et al. 2020).
Such a task could help to produce large quantities of extra data, and may additionally
help to tackle issues with mistakes in the original manual data annotations that could
lead to bad texts.

Especially interesting would be the use of unlabeled texts as an in-domain language
model, rather than the Transformers-based language models such as BERT and T5
that were trained on an immense variety of different domains. Sun et al. (2020) found
that using such an in-domain language model made the use of BERT unnecessary,
and that the combination of in-domain pretraining and pseudo-labeling resulted in
the best model for a text classification task. The impact of training large Transformers
models such as BERT and T5 on CO2 emissions is well documented (Strubell, Ganesh,
and McCallum 2019). If the use of unlabeled texts for (generally smaller-scale) in-
domain pretraining and pseudo-labeling is indeed also effective for NLG, this might
help to focus development on more efficient and eco-friendly development of single-
domain language models, rather than unsustainably striving for larger and larger all-
encompassing Transformers models.

The findings of the current study highlight the feasibility of automatically extending
datasets in a way that neural data-to-text systems benefit from the extension, even if the
original dataset is small in size. This can be beneficial for robot journalism, for instance,
which still mostly relies on rule-based NLG. Newspaper organizations oftentimes have
large archives of texts and data, but aligning the two manually on a scale that permits a
neural model to be trained on it requires an amount of manpower that most newsrooms
do not have available. By creating a small starting point and then using semi-supervised
learning to create the full dataset, would be a less intensive undertaking—thus a smaller
hurdle—for many companies to use neural data-to-text systems.
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Appendix A. Examples of Output

Table A.1
Random examples of output for each of the datasets and semi-supervised learning methods.

Dataset Train type Input data Output text

CACAPO (en) No Ext victimAgeGroup=”adult”

victimSex=”female”

victimStatus=”dead”

Police say an adult female was found dead at
the scene from apparent gunshot wounds.

Dat Aug batterName=”Xavier Nady”

pitchResult=”scored”

teamName=”Cubs”

inningNumber=”sixth”

Xavier Nady scored for the Cubs in the sixth.

Pseu Lab companyName=”Microsoft”

stockChange=”jumped”

stockChangePercentage=”more than 54%”

moneyAmount1=”$138.40”

moneyAmount2=”$90.14”

timePoint=”Jan. 17”

Microsoft shares jumped more than 54 % to
$138.40, from $90.14 on Jan. 17.

CACAPO (nl) No Ext incidentLocation=”A12 richting Arnhem”

dateTime=”dinsdag”

incidentType=”dodelijk ongeluk”

De A12 richting Arnhem is dinsdag door een
dodelijk ongeluk geindigd.
The A12 to Arnhem has ended by a deadly accident on Tuesday.

Dat Aug hasWonTeam=”AZ”

matchDate=”donderdagavond”

finalScore=”1-2”

hasLostTeam=”ADO Den Haag”

AZ heeft donderdagavond met 1-2 gewonnen
van ADO Den Haag.
AZ has won 1-2 against ADO Den Haag on Thursday night.

Pseu Lab weatherType=”regen”

compassDirection=”noordoosten”

De regen trekt verder naar het noordoosten.
The rain will move further to the northeast.

WebNLG No Ext ”Turkey” — capital — ”Ankara”

”Turkey” — leaderName — ”Ahmet Davutolu”

The capital of Turkey is Ankara and the coun-
try’s leader is Ahmet Davutoglu.

Dat Aug ”Tim Brooke-Taylor” — birthPlace — ”Derbyshire”

”Bananaman” — starring — ”Tim Brooke-Taylor”

Derbyshire born Tim Brooke Taylor starred in
The film.

Pseu Lab ”Buzz Aldrin” — occupation — ”Fighter pilot”

”Buzz Aldrin” — was a crew member of —

”Apollo 11”

He was a fighter pilot and a member of the
Apollo 11 crew.

E2E No Ext name=”The Punter”

eatType=”pub”

food=”English”

priceRange=”high”

area=”riverside”

familyFriendly=”no”

near=”Raja Indian Cuisine”

The Punter is a high priced pub near Raja
Indian Cuisine in the riverside area. It is not
children friendly.

Dat Aug name=”Clowns”

eatType=”pub”

customer rating=”3 out of 5”

near=”All Bar One”

Clowns pub is a local - priced, local - rated,
and - friendly - friendly coffee bar located in
the city market, near All Bar One.

Pseu Lab name=”The Cricketers”

eatType=”restaurant”

customer rating=”low”

familyFriendly=”no”

near=”Ranch”

The Cricketers is a restaurant located near
Rancho Mexican Cafe. It is not family-friendly.
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Appendix B. Evaluation Results per Dataset Domain

Table B.1
Automatic metric results of the different (XL-format) semi-supervised learning approaches
(No Ext = no training set extension, Dat Aug = data augmentation, Pseu Lab = pseudo-labeling)
for each dataset domain (bold = highest).
Dataset Domain Train type BLEU NIST BERTScore METEOR ROUGE-L

CACAPO Incidents (en)
No Ext 29.47 5.11 58.55 51.28 47.08
Dat Aug 28.15 4.99 53.71 47.18 42.92
Pseu Lab 34.51 5.52 62.06 54.75 52.07

CACAPO Sports (en)
No Ext 31.77 6.63 61.00 56.43 52.73
Dat Aug 23.30 5.80 52.57 48.76 46.35
Pseu Lab 37.28 7.23 65.55 60.02 57.30

CACAPO Stocks (en)
No Ext 25.95 4.94 50.03 50.98 45.62
Dat Aug 23.02 5.14 44.50 48.23 42.55
Pseu Lab 32.44 6.05 54.24 55.08 50.72

CACAPO Weather (en)
No Ext 33.95 6.24 65.88 62.61 56.36
Dat Aug 25.80 5.29 57.27 50.29 49.71
Pseu Lab 39.59 6.70 70.34 66.99 62.97

CACAPO Incidents (nl)
No Ext 34.22 5.39 85.15 53.38 51.53
Dat Aug 36.71 5.01 87.20 55.50 57.10
Pseu Lab 43.39 6.54 87.65 60.20 60.10

CACAPO Sports (nl)
No Ext 18.05 4.40 81.75 41.35 42.27
Dat Aug 18.45 4.35 81.75 42.13 43.04
Pseu Lab 25.45 5.19 83.42 48.11 48.32

CACAPO Stocks (nl)
No Ext 51.69 7.84 88.51 67.00 64.75
Dat Aug 45.04 7.40 87.63 64.91 62.33
Pseu Lab 63.31 8.98 91.03 74.83 72.75

CACAPO Weather (nl)
No Ext 24.28 4.61 82.50 47.29 46.44
Dat Aug 49.07 7.32 90.42 69.39 67.75
Pseu Lab 76.66 10.07 95.37 84.84 84.36

WebNLG Airport

No Ext 51.54 7.35 74.63 74.80 61.17
Dat Aug 25.94 4.66 48.51 50.72 42.62
Pseu Lab 50.61 7.16 72.29 72.75 60.46

WebNLG Astronaut

No Ext 48.89 6.54 77.98 76.03 65.04
Dat Aug 21.04 3.82 55.69 47.77 43.08
Pseu Lab 45.48 6.27 73.41 72.45 60.98

WebNLG Building

No Ext 53.48 7.84 76.93 78.06 65.97
Dat Aug 34.51 5.77 60.05 62.70 52.65
Pseu Lab 50.46 7.59 73.84 74.87 63.64

WebNLG City

No Ext 29.01 2.50 52.93 53.23 47.14
Dat Aug 21.09 2.42 47.79 47.46 41.03
Pseu Lab 27.83 4.18 52.00 54.64 44.84

WebNLG ComicsCharacter

No Ext 48.95 6.31 72.50 76.11 58.69
Dat Aug 38.06 5.56 61.60 69.43 51.17
Pseu Lab 48.74 6.22 70.92 76.68 62.42

WebNLG Food

No Ext 46.81 7.30 71.35 70.53 56.11
Dat Aug 23.84 4.57 46.37 47.74 40.19
Pseu Lab 38.10 6.28 62.91 61.87 48.89

WebNLG Monument

No Ext 43.97 5.95 69.70 71.89 56.88
Dat Aug 27.88 4.39 53.21 54.12 46.25
Pseu Lab 45.38 6.10 71.26 73.17 58.58

WebNLG SportsTeam

No Ext 46.07 6.89 72.41 72.59 59.58
Dat Aug 25.89 4.79 52.68 52.20 42.65
Pseu Lab 43.88 6.77 69.53 70.94 58.18

WebNLG University

No Ext 60.07 7.34 78.10 78.12 68.93
Dat Aug 29.60 4.59 52.81 53.72 48.12
Pseu Lab 55.34 6.89 74.66 75.65 64.27

WebNLG WrittenWork

No Ext 54.39 7.45 75.86 77.09 65.23
Dat Aug 36.00 5.60 62.28 61.89 53.28
Pseu Lab 52.25 7.16 73.16 74.57 62.48

E2E
No Ext 66.05 7.08 79.40 80.21 44.97
Dat Aug 28.41 4.15 56.41 62.49 33.40
Pseu Lab 50.51 4.65 63.12 60.39 38.48
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Table B.2
Average sentence length, standard deviation of sentence length, mean-segmented type-token
ratio (TTR), bigram TTR, percentage novel descriptions, coverage, novelty, and local recall with
importance class 1 (bold = highest).
Dataset Domain Train type ASL SDSL Types TTR1 TTR2 %Novel Cov Nov Loc1

CACAPO Incidents (en)
No Ext 16.05 6.76 656 0.63 0.90 99.04 0.53 0.19 0.49
Dat Aug 17.83 7.46 844 0.68 0.94 100.00 0.62 0.31 0.47
Pseu Lab 15.86 8.47 696 0.63 0.89 99.04 0.57 0.20 0.52

CACAPO Sports (en)
No Ext 19.32 7.95 1,499 0.69 0.96 99.84 0.58 0.14 0.57
Dat Aug 19.07 8.17 1,574 0.70 0.96 100.00 0.59 0.16 0.54
Pseu Lab 19.40 8.52 1,559 0.70 0.96 100.00 0.61 0.13 0.61

CACAPO Stocks (en)
No Ext 18.15 9.51 1,369 0.65 0.91 99.07 0.49 0.31 0.43
Dat Aug 19.10 9.32 1,581 0.68 0.94 100.00 0.54 0.38 0.45
Pseu Lab 19.76 11.10 1,556 0.65 0.91 99.69 0.53 0.38 0.48

CACAPO Weather (en)
No Ext 13.62 7.05 746 0.62 0.91 94.28 0.57 0.14 0.59
Dat Aug 12.75 7.22 757 0.65 0.92 99.18 0.57 0.16 0.57
Pseu Lab 13.40 7.10 768 0.63 0.91 94.55 0.60 0.14 0.63

CACAPO Incidents (nl)
No Ext 13.84 5.24 539 0.58 0.86 100.00 0.53 0.21 0.52
Dat Aug 12.34 4.94 526 0.58 0.87 100.00 0.51 0.22 0.54
Pseu Lab 14.60 6.51 584 0.59 0.87 99.01 0.58 0.23 0.58

CACAPO Sports (nl)
No Ext 13.78 5.82 920 0.66 0.93 100.00 0.48 0.10 0.42
Dat Aug 13.43 5.50 990 0.67 0.94 100.00 0.49 0.13 0.43
Pseu Lab 13.90 5.69 1,127 0.70 0.96 99.72 0.56 0.14 0.48

CACAPO Stocks (nl)
No Ext 15.35 7.18 1,373 0.65 0.91 97.54 0.58 0.31 0.62
Dat Aug 15.17 7.22 1,325 0.65 0.92 99.11 0.54 0.32 0.60
Pseu Lab 15.78 7.26 1,584 0.67 0.93 96.20 0.65 0.37 0.70

CACAPO Weather (nl)
No Ext 15.07 10.27 289 0.42 0.70 98.75 0.52 0.06 0.51
Dat Aug 15.14 5.35 459 0.59 0.88 97.24 0.76 0.17 0.73
Pseu Lab 15.29 5.31 446 0.60 0.88 82.21 0.84 0.06 0.86

WebNLG Airport

No Ext 16.77 6.21 425 0.43 0.70 78.17 0.65 0.03 0.74
Dat Aug 16.89 8.23 417 0.42 0.70 99.30 0.50 0.17 0.48
Pseu Lab 16.78 6.19 474 0.45 0.71 79.23 0.68 0.08 0.71

WebNLG Astronaut

No Ext 17.56 7.42 208 0.47 0.69 74.68 0.53 0.02 0.71
Dat Aug 16.66 7.26 231 0.45 0.69 98.70 0.40 0.21 0.36
Pseu Lab 17.79 7.65 259 0.51 0.77 76.62 0.57 0.12 0.68

WebNLG Building

No Ext 17.60 6.61 458 0.44 0.70 78.26 0.72 0.02 0.79
Dat Aug 17.72 6.93 456 0.43 0.69 98.81 0.63 0.12 0.60
Pseu Lab 17.29 6.52 473 0.46 0.73 76.68 0.72 0.05 0.76

WebNLG City

No Ext 11.24 2.79 182 0.32 0.52 79.35 0.69 0.11 0.51
Dat Aug 11.69 3.14 208 0.37 0.59 92.90 0.69 0.23 0.47
Pseu Lab 13.79 4.66 270 0.38 0.64 87.10 0.81 0.37 0.55

WebNLG ComicsChar

No Ext 14.97 5.69 174 0.45 0.73 95.16 0.64 0.03 0.70
Dat Aug 14.97 5.02 172 0.45 0.71 100.00 0.60 0.06 0.60
Pseu Lab 15.39 5.50 188 0.49 0.78 95.16 0.66 0.06 0.68

WebNLG Food

No Ext 15.74 7.53 439 0.42 0.71 84.10 0.67 0.01 0.68
Dat Aug 15.91 7.36 585 0.45 0.78 98.97 0.66 0.24 0.41
Pseu Lab 15.61 7.22 517 0.44 0.72 88.97 0.71 0.09 0.59

WebNLG Monument

No Ext 19.05 7.35 145 0.44 0.71 73.86 0.62 0.04 0.74
Dat Aug 18.49 7.74 176 0.44 0.72 98.86 0.55 0.26 0.51
Pseu Lab 19.58 7.59 152 0.42 0.69 72.73 0.65 0.04 0.75

WebNLG SportsTeam

No Ext 15.60 5.46 352 0.47 0.72 88.56 0.64 0.02 0.66
Dat Aug 15.46 5.69 362 0.44 0.71 100.00 0.57 0.11 0.46
Pseu Lab 15.31 5.53 383 0.48 0.75 82.59 0.68 0.04 0.63

WebNLG University

No Ext 16.47 6.78 188 0.43 0.69 67.35 0.60 0.02 0.75
Dat Aug 14.86 6.53 227 0.46 0.76 95.24 0.53 0.22 0.47
Pseu Lab 17.30 7.32 255 0.48 0.77 65.31 0.73 0.12 0.72

WebNLG Writ.Work

No Ext 18.15 6.78 352 0.41 0.65 84.21 0.61 0.01 0.74
Dat Aug 17.74 6.49 397 0.44 0.71 97.98 0.58 0.12 0.59
Pseu Lab 18.32 6.97 400 0.45 0.71 82.59 0.67 0.04 0.71

E2E
No Ext 28.58 7.66 120 0.34 0.50 100.00 0.11 0.00 0.11
Dat Aug 34.42 7.73 223 0.38 0.55 100.00 0.16 0.03 0.10
Pseu Lab 23.22 5.26 115 0.26 0.38 100.00 0.07 0.03 0.08
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Table B.3
Mean fluency, correctness, and grammaticality per semi-supervised learning type for each
domain (SDs in parentheses). Different superscripts indicate significant differences between
semi-supervised learning methods for that domain. Higher scores mean more positively
perceived output.
Dataset Domain Train Type N Fluency Correctness Grammaticality

CACAPO Incidents (en)
No Ext

11
4.90 (2.16)a 4.77 (1.97)a 2.93 (0.95)a

Dat Aug 4.77 (2.18)a 4.77 (2.00)a 2.86 (1.00)a

Pseu Lab 5.99 (1.57)b 5.75 (1.82)b 3.41 (0.77)b

CACAPO Sports (en)
No Ext

12
4.51 (2.03)a 4.56 (1.80)a 2.83 (0.91)a

Dat Aug 4.59 (2.05)a 4.60 (1.92)a,b 2.91 (0.91)a

Pseu Lab 5.42 (1.88)b 5.23 (1.82)b 3.24 (0.84)b

CACAPO Stocks (en)
No Ext

10
4.95 (2.09)a 5.23 (1.79)a 3.06 (1.07)a

Dat Aug 4.80 (2.10)a 5.12 (1.79)a 3.02 (1.02)a

Pseu Lab 5.80 (1.58)b 5.82 (1.46)a 3.42 (0.78)b

CACAPO Weather (en)
No Ext

10
5.02 (1.85)a 5.24 (1.78)a 2.81 (0.99)a

Dat Aug 5.17 (1.81)a 5.29 (1.76)a 2.94 (0.98)a

Pseu Lab 5.48 (1.67)a 5.54 (1.57)a 3.10 (0.99)a

CACAPO Incidents (nl)
No Ext

11
4.87 (2.05)a 5.23 (1.85)a 2.84 (1.10)a

Dat Aug 4.87 (2.14)a 5.25 (1.86)a 2.84 (1.11)a

Pseu Lab 6.29 (1.20)b 5.91 (1.40)a 3.61 (0.66)b

CACAPO Sports (nl)
No Ext

10
4.73 (2.12)a 5.03 (1.98)a 2.90 (1.10)a

Dat Aug 4.75 (2.08)a 4.98 (1.92)a 2.90 (1.10)a

Pseu Lab 5.44 (1.75)a 5.34 (1.77)a 3.22 (0.96)a

CACAPO Stocks (nl)
No Ext

11
5.00 (1.98)a 5.32 (1.77)a 3.08 (0.97)a

Dat Aug 4.95 (2.04)a 5.28 (1.82)a 2.95 (1.08)a

Pseu Lab 5.91 (1.57)b 5.67 (1.64)a 3.59 (0.69)b

CACAPO Weather (nl)
No Ext

9
4.31 (1.90)a 4.97 (2.03)a 2.45 (1.10)a

Dat Aug 4.27 (2.02)a 5.06 (1.92)a 2.38 (1.13)a

Pseu Lab 6.10 (1.41)b 6.12 (1.40)b 3.52 (0.75)b

WebNLG Airport

No Ext
11

4.23 (2.06)a 4.00 (2.12)a 2.85 (1.02)a

Dat Aug 4.23 (2.08)a 3.99 (2.19)a 2.84 (1.00)a

Pseu Lab 5.44 (1.71)b 5.40 (1.82)b 3.39 (0.83)b

WebNLG Astronaut

No Ext
12

4.93 (2.01)a 3.13 (1.86)a 3.06 (0.96)a

Dat Aug 4.89 (1.98)a 3.02 (1.85)a 2.99 (1.00)a

Pseu Lab 6.26 (1.17)b 6.17 (1.37)b 3.70 (0.58)b

WebNLG Building

No Ext
6

5.23 (1.57)a 4.84 (1.72)a 3.07 (0.82)a

Dat Aug 5.26 (1.61)a 4.79 (1.83)a 3.08 (0.76)a

Pseu Lab 6.03 (1.34)a 6.14 (1.33)b 3.52 (0.69)a

WebNLG City

No Ext
9

5.42 (1.88)a 4.81 (2.08)a 3.27 (1.00)a

Dat Aug 5.40 (1.95)a 4.84 (2.02)a 3.27 (0.99)a

Pseu Lab 5.18 (2.07)a 4.44 (2.27)a 3.20 (0.96)a

WebNLG ComicsChar

No Ext
12

5.66 (1.75)a 5.46 (1.78)a 3.37 (0.81)a

Dat Aug 5.73 (1.70)a 5.48 (1.80)a 3.39 (0.83)a

Pseu Lab 5.72 (1.76)a 5.59 (1.84)a 3.38 (0.84)a

WebNLG Food

No Ext
8

3.35 (2.28)a 2.92 (2.18)a 2.15 (1.13)a

Dat Aug 3.35 (2.29)a 2.97 (2.09)a 2.14 (1.14)a

Pseu Lab 5.89 (1.69)b 5.46 (1.96)b 3.41 (0.91)b

WebNLG Monument

No Ext
12

3.99 (2.13)a 2.80 (2.10)a 2.50 (0.97)a

Dat Aug 4.13 (2.17)a 2.99 (2.19)a 2.51 (1.02)a

Pseu Lab 5.92 (1.44)b 5.83 (1.75)b 3.42 (0.72)b

WebNLG SportsTeam

No Ext
11

4.89 (1.89)a 4.64 (2.16)a 3.06 (0.97)a

Dat Aug 4.90 (1.87)a 4.66 (2.16)a 3.04 (0.92)a

Pseu Lab 5.96 (1.38)b 5.94 (1.54)b 3.51 (0.69)b

WebNLG University

No Ext
9

4.60 (1.94)a 3.71 (2.03)a 3.09 (0.85)a

Dat Aug 4.70 (1.82)a 3.60 (2.02)a 3.07 (0.79)a

Pseu Lab 5.70 (1.72)b 5.60 (1.84)b 3.49 (0.73)b

WebNLG Writ.Work

No Ext
9

4.00 (2.05)a 3.82 (2.16)a 2.68 (1.02)a

Dat Aug 4.00 (2.07)a 3.91 (2.22)a 2.71 (1.02)a

Pseu Lab 5.21 (1.92)b 5.66 (1.78)b 3.23 (0.88)b

E2E
No Ext

9
5.08 (1.73)a 4.25 (1.86)a 3.06 (0.88)a

Dat Aug 5.06 (1.70)a 4.20 (1.83)a 2.98 (0.91)a

Pseu Lab 6.26 (1.02)b 3.86 (1.71)a 3.61 (0.65)b
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Appendix C. Multiple Mixed Model Linear Regressions

Table C.1
Multiple mixed model linear regressions of fluency, correctness, and grammaticality,
respectively.

Parameter B SE 95% CI t p
(Intercept) 5.08 0.30 [4.49, 5.66] 16.87 < 0.001
Train Type [Dat Aug] −0.02 0.18 [−0.38, 0.34] −0.11 0.916
Train Type [Pseu Lab] 1.18 0.18 [0.82, 1.54] 6.43 < 0.001
Dataset [CACAPO (en)] −0.25 0.33 [−0.89, 0.40] −0.74 0.458
Dataset [CACAPO (nl)] −0.33 0.33 [−0.98, 0.32] −0.99 0.323
Dataset [WebNLG] −0.43 0.31 [−1.05, 0.18] −1.37 0.170
Train Type [Dat Aug] × Dataset [CACAPO (en)] 0.01 0.20 [−0.39, 0.40] 0.04 0.965
Train Type [Pseu Lab] × Dataset [CACAPO (en)] −0.34 0.20 [−0.74, 0.06] −1.69 0.092
Train Type [Dat Aug] × Dataset [CACAPO (nl)] 0.00 0.20 [−0.39, 0.40] 0.02 0.982
Train Type [Pseu Lab] × Dataset [CACAPO (nl)] 0.01 0.20 [−0.39, 0.41] 0.06 0.953
Train Type [Dat Aug] × Dataset [WebNLG] 0.05 0.19 [−0.33, 0.43] 0.26 0.794
Train Type [Pseu Lab] × Dataset [WebNLG] −0.08 0.19 [−0.46, 0.29] −0.44 0.661

Parameter B SE 95% CI t p
(Intercept) 4.25 0.32 [3.63, 4.87] 13.41 < 0.001
Train Type [Dat Aug] −0.05 0.19 [−0.41, 0.32] −0.26 0.795
Train Type [Pseu Lab] −0.39 0.19 [−0.75, −0.03] −2.11 0.035
Dataset [CACAPO (en)] 0.68 0.35 [0.00, 1.36] 1.95 0.051
Dataset [CACAPO (nl)] 0.90 0.35 [0.21, 1.59] 2.57 0.010
Dataset [WebNLG] −0.26 0.33 [−0.90, 0.39] −0.77 0.440
Train Type [Dat Aug] × Dataset [CACAPO (en)] 0.04 0.20 [−0.36, 0.44] 0.22 0.830
Train Type [Pseu Lab] × Dataset [CACAPO (en)] 1.04 0.20 [0.64, 1.44] 5.08 < 0.001
Train Type [Dat Aug] × Dataset [CACAPO (nl)] 0.05 0.20 [−0.35, 0.45] 0.24 0.806
Train Type [Pseu Lab] × Dataset [CACAPO (nl)] 1.00 0.20 [0.59, 1.40] 4.86 < 0.001
Train Type [Dat Aug] × Dataset [WebNLG] 0.06 0.19 [−0.32, 0.44] 0.32 0.749
Train Type [Pseu Lab] × Dataset [WebNLG] 2.03 0.19 [1.65, 2.41] 10.48 < 0.001

Parameter B SE 95% CI t p
(Intercept) 3.06 0.14 [2.79, 3.32] 22.43 < 0.001
Train Type [Dat Aug] −0.07 0.09 [−0.26, 0.11] −0.77 0.439
Train Type [Pseu Lab] 0.56 0.09 [0.37, 0.74] 5.95 < 0.001
Dataset [CACAPO (en)] −0.15 0.15 [−0.45, 0.14] −1.02 0.306
Dataset [CACAPO (nl)] −0.22 0.15 [−0.52, 0.07] −1.47 0.141
Dataset [WebNLG] −0.14 0.14 [−0.41, 0.14] −0.95 0.340
Train Type [Dat Aug] × Dataset [CACAPO (en)] 0.10 0.10 [−0.10, 0.30] 0.96 0.335
Train Type [Pseu Lab] × Dataset [CACAPO (en)] −0.16 0.10 [−0.37, 0.04] −1.59 0.111
Train Type [Dat Aug] × Dataset [CACAPO (nl)] 0.02 0.10 [−0.18, 0.23] 0.23 0.820
Train Type [Pseu Lab] × Dataset [CACAPO (nl)] 0.10 0.10 [−0.10, 0.30] 0.95 0.342
Train Type [Dat Aug] × Dataset [WebNLG] 0.06 0.10 [−0.13, 0.26] 0.66 0.508
Train Type [Pseu Lab] × Dataset [WebNLG] −0.04 0.10 [−0.23, 0.15] −0.45 0.656
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Appendix D. Qualitative Analysis

CACAPO (NL) – Lowest

Table D.1
Five lowest rated texts per semi-supervised learning type for the Dutch CACAPO dataset, in
ascending order.
Train Type Data Text

No Ext

windDirection=”zuid- tot zuidwestelijke”
windAmount=”matig”

De zuid- tot zuidwestelijke is matig.
The south- to southwestern is moderate.

goalType=”rebound”
numberOfMatchGoals=”beide”

De rebound was een beide keren.
The rebound was a both times.

playerName=”Klaassen”
teamName=”Ajacieden”
stadiumPlayed=”Arnhem”

Klaassen, afgelopen zomer gehuurd van Ajacieden, was
in Arnhem de enige speler die de speler maakte.
Klaassen, loaned from Ajacieden past summer, was the only player in Arnhem that
made the player.

locationArea=”In het noorden”
windDirection=”noordoostelijk”

In het noorden is de lucht noordoostelijk.
In the north, the air is northeastern.

victimGender1=”Hij”
victimGender2=”Hij”
suspectAge=”20-jarige”
suspectVehicle=”automobilist”
suspectAddress=”Deventer”
location=”Ceintuurbaan”

Hij, een 20-jarige automobilist uit Deventer, reed over
de Schinderbaan in een richting van de richting.
He, a 20-year-old car driver from Deventer, drove on the Schinderbaan in the direction
of the direction.

Dat Aug

goalType=”rebound”
numberOfMatchGoals=”beide”

De rebound was een beide keren.
The rebound was a both times.

companyName1=”Ethereum”
companyName2=”XRP”
moneyAmount1=”$23,3B”
moneyAmount2=”$13,5B”
stockChangePercentage1=”8,66%”
stockChangePercentage2=”5,01%”

De markt van Ethereum staat inmiddels op $23,3B
ofwel 8,66% van de marktwaarde van alle meer, terwijl
de allemaal van XRP een volledige van $13,5B bereikte,
ofwel 5,1% van de 50 bereikt van de 25.
Ethereum’s market is now at $23.3B or 8.66% of the market value of all more, while
XRP’s all reached a full of $13.5B, or 5.1% of the 50 reached of the 25.

timePoint=”In de avond”
locationArea=”overal”
windChange=”af”

In de avond neemt de lucht overal af naar breed tot
breed, langs de kust en op het vasteland naar breed tot
breed.
In the evening the sky decreases to broad to broad everywhere, along the coast and on
the mainland to broad to broad.

timePoint=”Vanavond”
windChange1=”af”
windChange2=”west”
locationArea=”boven land”

Vanavond neemt de lucht af en draait boven land naar
west.
Tonight the sky will decrease and turn west over land.

teamName1=”NEC”
teamName2=”Heracles Almelo”
chanceForName=”Navarone Foor”
chanceForType=”hard en hoog overschoot”
assistType=”doorkoppen”
assistName=”Marcel Ritzmaier”

NEC kwam eerst in de problemen, maar Navarone Foor
was hard en hoog overschoot toen hij een doorkoppen
van Marcel Ritzmaier op de lijn belandde.
NEC got into trouble first, but Navarone Foor was hard and high overshooting when
he a pass-on heading from Marcel Ritzmaier landed on the line.

Pseu Lab

chanceForName1=”Schaken”
chanceForName2=”Timothy Derijck”
matchTime=”even later”

Schaken schoot even later net over, terwijl Timothy De-
rijck de bal net naast schoot.
Schaken just shot over some time later, while Timothy Derijck shot the ball just wide.

goalScore=”keerde”
teamName=”FC Twente”
matchTime=”na vijf minuten”
goalName=”Chinedu Ede”

Het keerde FC Twente al na vijf minuten via Chinedu
Ede op het scorebord.
It turned FC Twente after five minutes via Chinedu Ede on the scoreboard.

victimGender=”man”
cause=”gestruikeld”
incidentType=”ongeluk”

Volgens de politie heeft de man gestruikeld en is hij
door het ongeluk van de weg geraakt.
Police say the man has tripped and because of the incident went off the road.

companyName1=”Luchtvaartcombinatie Air France-KLM”
companyName2=”luchtvaartmaatschappij easyJet”
stockChange=”min”
stockChangePercentage=”1,8 procent”

Luchtvaartcombinatie Air France-KLM (min 1,8 pro-
cent) en luchtvaartmaatschappij easyJet
Aviation combination Air France-KLM (minus 1.8 percent) and airline easyJet

locationArea=”overal”
weatherType=”droog”
maximumTemperature=”3◦C”
timePoint=”in de avond”
temperatureCelsius=”onder het vriespunt”

Het blijft overal droog en de maximumtemperatuur
varieert van 3◦C in het noordoosten tot +3◦C in de
avond in het zuiden van het land.
It remains dry everywhere and the maximum temperature varies from 3◦C in the
northeast to +3◦C in the evening in the south of the country.
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CACAPO (NL) – Highest

Table D.2
Five highest rated texts per semi-supervised learning type for the Dutch CACAPO dataset, in
descending order.

Train Type Data Text

No Ext

victimGender=”vrouw”
victimStatus=”met spoed naar het ziekenhuis overgebracht,
maar overleed helaas in het ziekenhuis aan haar

verwondingen”

De vrouw werd met spoed naar het ziekenhuis overge-
bracht, maar overleed helaas in het ziekenhuis aan haar
verwondingen.
The woman was rushed to hospital, but sadly died of her injuries in hospital.

timePoint=”In de avond”
weatherChange=”geleidelijk”
weatherType=”droog”

In de avond wordt het geleidelijk droog.
In the evening it gradually becomes dry.

incidentType=”zware aanrijding”
location=”Weimarstraat”
dateTime=”aan het begin van de avond”
victimAge=”40-jarige”
victimVehicle=”fietser”
victimStatus=”om het leven gekomen”

Bij een zware aanrijding op de Weimarstraat is aan het begin
van de avond een 40-jarige fietser om het leven gekomen.
A 40-year-old cyclist was killed in a serious collision on the Weimarstraat at the beginning
of the evening.

teamName=”Utrecht”
matchTime=”na 32 minuten”
goalScore=”op gelijke hoogte”

Utrecht kwam na 32 minuten op gelijke hoogte.
Utrecht equalized after 32 minutes.

timePoint=”Vannacht”
cloudAmount=”zwaar bewolkt”
locationArea=”langs de westkust”
weatherIntensity=”enkele”
weatherType=”buien”

Vannacht is het zwaar bewolkt met langs de westkust
enkele buien.
Tonight it will be heavily cloudy with a few showers along the west coast.

Dat Aug

timePoint=”In de avond”
weatherChange=”geleidelijk”
weatherType=”droog”

In de avond wordt het geleidelijk droog.
In the evening it gradually becomes dry.

victimGender=”vrouw”
victimStatus=”met spoed naar het ziekenhuis overgebracht,
maar overleed helaas in het ziekenhuis aan haar

verwondingen”

De vrouw werd met spoed naar het ziekenhuis overge-
bracht, maar overleed helaas in het ziekenhuis aan haar
verwondingen.
The woman was rushed to hospital, but sadly died of her injuries in hospital.

incidentType=”zware aanrijding”
location=”Weimarstraat”
dateTime=”aan het begin van de avond”
victimAge=”40-jarige”
victimVehicle=”fietser”
victimStatus=”om het leven gekomen”

Bij een zware aanrijding op de Weimarstraat is aan het begin
van de avond een 40-jarige fietser om het leven gekomen.
A 40-year-old cyclist was killed in a serious collision on the Weimarstraat at the beginning
of the evening.

weatherArea=”plaatselijk”
weatherType=”glad”

Het blijft plaatselijk glad.
It remains slippery in places.

timePoint=”Vannacht”
cloudAmount=”zwaar bewolkt”
locationArea=”langs de westkust”
weatherIntensity=”enkele”
weatherType=”buien”

Vannacht is het zwaar bewolkt met langs de westkust
enkele buien.
Tonight it will be heavily cloudy with a few showers along the west coast.

Pseu Lab

minimumTemperature=”14◦C”)
windAmount=”zwakke tot matige”
windDirection=”zuid tot zuidoost”

De minima liggen rond 14◦C en er staat een zwakke tot
matige wind uit zuid tot zuidoost.
The minima are around 14◦C and there is a weak to moderate wind from south to southeast.

timePoint=”In de nacht naar donderdag”
cloudAmount=”veel bewolking”
weatherFrequency=”af en toe”
weatherIntensity=”lichte”
weatherType=”regen”

In de nacht naar donderdag is er veel bewolking, waaruit af
en toe lichte regen valt.
In the night to Thursday there will be a lot of clouds, from which light rain occasionally falls.

weatherFrequency=”perioden”
weatherType1=”zon”
weatherType2=”droog”
locationArea=”op veel plaatsen”

Er zijn perioden met zon en het blijft op veel plaatsen droog.
There are periods of sun and it remains dry in many places.

weatherType=”droog”
timePoint=”middagtemperatuur”
temperatureCelsius=”4◦C”

Het blijft droog en de middagtemperatuur ligt rond 4◦C.
It remains dry and the afternoon temperature is around 4◦C.

incidentType=”zware aanrijding”
location=”Weimarstraat”
dateTime=”aan het begin van de avond”
victimAge=”40-jarige”
victimVehicle=”fietser”
victimStatus=”om het leven gekomen”

Bij een zware aanrijding op de Weimarstraat is aan het begin
van de avond een 40-jarige fietser om het leven gekomen.
A 40-year-old cyclist was killed in a serious collision on the Weimarstraat at the beginning
of the evening.
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Table D.3
Five lowest rated texts per semi-supervised learning type for the English CACAPO dataset, in
ascending order.

Train Type Data Text

No Ext

companyName1=”KushCo”
companyName2=”CV Sciences”
timePoint1=”September”
timePoint2=”October”

KushCo a the cannabis - based company, went launched
in September following the October of CV Sciences.

victimNumber=”One”
victimGender=”man”
victimStatus=”shot in the arm”

One man was shot in the arm, and that gun is still
lodged in his thigh.

locationName=”BAHRAIN”
stockChange=”was flat”
stockPoints=”1,584”

BAHRAIN – The stock ’s main - largest trading was flat
at 1,584 after the on received a positive report from its
its.

victimGender=”man”
victimStatus=”died”

The Medical Department will determine the cause and
manner of his died.

companyName=”euro”
stockChange=”low”
timePoint=”Tuesday”

The euro hit a low low on Tuesday as investors sought
the simplest gain from the crisis ’s re.

Dat Aug

victimNumber1=”One”
victimNumber2=”as many as four”
victimStatus=”critical condition”

One of the dead is in critical condition, while as many
as four others are in critical condition.

companyName1=”KushCo”
companyName2=”CV Sciences”
timePoint1=”September”
timePoint2=”October”

KushCo a the cannabis - based company, went launched
in September following the October of CV Sciences.

accidentAddress1=”DESOTO COUNTY, MS”
accidentAddress2=”DeSoto County”
victimNumber=”Four”
victimGender=”men”
victimStatus=”shot”

DESOTO COUNTY, MS (Ben and) – Four men were
shot at a house party in DeSoto County on Saturday
Sunday.

locationName=”BAHRAIN”
stockChange=”was flat”
stockPoints=”1,584”

BAHRAIN – The stock ’s main - largest trading was flat
at 1,584 after the on received a positive report from its
its.

takenToHospital=”True”
hospitalName=”Community Regional Medical Center”

The deceased were taken to Community Regional Med-
ical Center with the following injury:

Pseu Lab

victimNumber1=”two”
victimNumber2=”two”

The other two victims are two men and a woman.

timePoint1=”Monday”
timePoint2=”Friday through Sunday”
locationArea=”Eugene” temperatureCelsius=”60 F.”

Monday in Eugene was 60 F. Friday through Sunday.

pitchResult=”homer”
pitcherName=”Glavine”

The homer chased Glavine.

timePoint=”9pm”
temperatureCelsius=”-8”

9pm: −8

companyName=”Cimarex Energy”
stockChangePercentage=”-4.39%”

Cimarex Energy: (-4.39%)
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Table D.4
Five highest rated texts per semi-supervised learning type for the English CACAPO dataset, in
descending order.

Train Type Data Text

No Ext

exchangeName=”S&P 500”
stockChange=”up”
stockPoints=”646.78”
stockChangePercentage=”25.8%”

The S&P 500 is up 646.78 points, or 25.8%.

exchangeName=”Dow”
stockChange=”up”
stockPoints=”288.38”
stockChangePercentage=”1%”

The Dow is up 288.38 points, or 1%.

exchangeName=”S&P 500”
stockChange=”up”
stockPoints=”684.29”
stockChangePercentage=”27.3%”

The S&P 500 is up 684.29 points, or 27.3%.

stockChange=”up”
stockChangePercentage=”as much as 47%”
timePoint=”this year”

The company is up as much as 47% this year according
to the report.

exchangeName=”S&P 500”
stockChange=”up”
stockPoints=”22.34”
stockChangePercentage=”0.7%”

The S&P 500 is up 22.34 points, or 0.7%.

Dat Aug

exchangeName=”S&P 500”
stockChange=”up”
stockPoints=”684.29”
stockChangePercentage=”27.3%”

The S&P 500 is up 684.29 points, or 27.3%.

pitcherName=”Newcomb”
winLossType=”won”
winLossRecord=”seventh”

Newcomb won his seventh consecutive game.

exchangeName=”Russell 2000”
stockChange=”up”
stockPoints=”45.16”
stockChangePercentage=”2.8%”

The Russell 2000 is up 45.16 points, or 2.8%.

exchangeName=”Dow”
stockChange=”up”
stockPoints=”288.38”
stockChangePercentage=”1%”

The Dow is up 288.38 points, or 1%.

exchangeName=”S&P 500”
stockChange=”up”
stockPoints=”22.34”
stockChangePercentage=”0.7%”

The S&P 500 is up 22.34 points, or 0.7%.

Pseu Lab

exchangeName=”S&P 500”
stockChange=”up”
stockPoints=”684.29”
stockChangePercentage=”27.3%”

The S&P 500 is up 684.29 points, or 27.3%.

timePoint=”opened”
stockChange=”on a positive note”

The market opened on a positive note.

exchangeName=”Dow”
stockChange=”up”
stockPoints=”288.38”
stockChangePercentage=”1%”

The Dow is up 288.38 points, or 1%.

exchangeName=”S&P 500”
stockChange=”up”
stockPoints=”646.78”
stockChangePercentage=”25.8%”

The S&P 500 is up 646.78 points, or 25.8%.

batterName=”Quentin”
pitchResult=”homered”
gameNumber=”three”

Quentin has homered in three straight games.
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Table D.5
Five lowest rated texts per semi-supervised learning type for the WebNLG dataset, in ascending
order.

Train Type Data Text

No Ext

”Batchoy” — country — ”Philippines”
”Philippines” — language — ”Philippine Spanish”

Batchoy is eaten in the their, a the of the their spoken is
is.

”Batagor” — country — ”Indonesia”
”Indonesia” — leaderName — ”Jusuf Kalla”

Jusuf Kalla is the his of the the this.

”11th Mississippi Infantry Monument” — category —
”Contributing property”
”11th Mississippi Infantry Monument” — location —
”Adams County, Pennsylvania”

It is categorized as a contributing site and is located in
its.

”Bionico” — course — ”Dessert”
”Bionico” — country — ”Mexico”
”Mexico” — leaderName — ”Silvano Aureoles Conejo”
”Dessert” — dishVariation — ”Cookie”

A type of pie is pie which is a type of pie and is led by
Silvano Aureoles Conejo.

”Amatriciana sauce” — country — ”Italy”
”Amatriciana sauce” — region — ”Lazio”

Amatriciana sauce is a traditional traditional from the
Lazio region.

Dat Aug

”Bhajji” — region — ”Karnataka”
”India” — demonym — ”Indian people”
”Bhajji” — country — ”India”

Bhajji comes from the this of Karnataka, where the the
are called called and are found.

”11th Mississippi Infantry Monument” — category —
”Contributing property”
”11th Mississippi Infantry Monument” — location —
”Adams County, Pennsylvania”

It is categorized as a contributing site and is located in
its.

”Batagor” — country — ”Indonesia”
”Indonesia” — leaderName — ”Jusuf Kalla”

Jusuf Kalla is the his of the the this.

”Bionico” — ingredient — ”Granola”
”Bionico” — course — ”Dessert”
”Bionico” — region — ”Jalisco”
”Bionico” — country — ”Mexico”

Bionico, which contains contains, is a its found in the
this of Jalisco, Mexico.

”Arrabbiata sauce” — ingredient — ”Tomato”
”Arrabbiata sauce” — region — ”Rome”
”Arrabbiata sauce” — country — ”Italy”

Arrabbiata sauce, which contains contains, is from the
the of Rome, Italy.

Pseu Lab

”United States” — demonym — ”Americans”
”United States” — language — ”English language”
”United States” — ethnicGroup — ”Asian Americans”

The American people are a diverse ethnic group, pri-
marily of Asian descent, and are a major part of the
English language in the United States.

”Albany, Oregon” — isPartOf — ”Oregon”
”Albany, Oregon” — country — ”United States”
”United States” — capital — ”Washington, D.C.”
”United States” — demonym — ”Americans”

Albany is part of Oregon, in the United States, and is
the capital of the nation.

”Spain” — demonym — ”Spaniards”
”Spain” — leaderName — ”Felipe VI of Spain”
”Andalusia” — leaderName — ”Susana Dı́az”
”Ajoblanco” — country — ”Spain”
”Ajoblanco” — region — ”Andalusia”

The name is derived from the Spanish word for
Spaniards, Felipe VI of Spain, and Susana Diaz of An-
dalusia, where it is known as a ”stamp”.

”Bananaman” — broadcastedBy — ”BBC”
”BBC” — product — ”BBC Radio”

The BBC broadcast the TV series and also produce BBC
radio.

”Belgium” — leaderName — ”Charles Michel”
”Belgium” — leaderName — ”Philippe of Belgium”

Two of the leaders of which are Charles Michel and
Philippe of Belgium.
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Table D.6
Five highest rated texts per semi-supervised learning type for the WebNLG dataset, in
descending order.

Train Type Data Text

No Ext

”Azerbaijan” — leaderName — ”Artur Rasizade”
”Azerbaijan” — leaderTitle — ”Prime Minister of Azerbaijan”

Artur Rasizade is the Prime Minister of Azerbaijan.

”20 Fenchurch Street” — floorCount — ”34”
”20 Fenchurch Street” — floorArea — ”62145.3 (square metres)”

20 Fenchurch Street has 34 stories and a total surface of
62145 square metres.

”Bibbo Bibbowski” — creator — ”Jerry Ordway”
”Bibbo Bibbowski” — creator — ”Marv Wolfman”

Bibbo Bibbowski was created by Jerry Ordway and
Marv Wolfman.

”Baymax” — firstAppearanceInFilm — ”Big Hero 6 (film)”
”Big Hero 6 (film)” — starring — ”Scott Adsit”

Baymax appeared in the film Big Hero 6 which stars
Scott Adsit.

”Auburn, Alabama” — isPartOf — ”Lee County, Alabama”
”Auburn, Alabama” — isPartOf — ”Alabama”
”Alabama” — country — ”United States”

Auburn is located within Lee County, Alabama.

Dat Aug

”Bibbo Bibbowski” — creator — ”Jerry Ordway”
”Bibbo Bibbowski” — creator — ”Marv Wolfman”

Bibbo Bibbowski was created by Jerry Ordway and
Marv Wolfman.

”Arrabbiata sauce” — region — ”Rome”
”Arrabbiata sauce” — country — ”Italy”
”Arrabbiata sauce” — ingredient — ”Olive oil”

Arrabbiata sauce, from the Roma region, Italy, includes
includes oil.

”Azerbaijan” — leaderName — ”Artur Rasizade”
”Azerbaijan” — leaderTitle — ”Prime Minister of Azerbaijan”

Artur Rasizade is the Prime Minister of Azerbaijan.

”20 Fenchurch Street” — floorCount — ”34”
”20 Fenchurch Street” — floorArea — ”62145.3 (square metres)”

20 Fenchurch Street has 34 stories and a total surface of
62145 square metres.

”Baymax” — firstAppearanceInFilm — ”Big Hero 6 (film)”
”Big Hero 6 (film)” — starring — ”Scott Adsit”

Baymax appeared in the film Big Hero 6 which stars
Scott Adsit.

Pseu Lab

”Akita Museum of Art” — location — ”Akita, Akita”
”Akita Museum of Art” — country — ”Japan”

The Akita Museum of Art is located in Akita, Akita,
Japan.

”Ampara Hospital” — region — ”Ampara District”
”Ampara Hospital” — state — ”Eastern Province, Sri Lanka”
”Ampara Hospital” — country — ”Sri Lanka”

Ampara Hospital is located in Ampara District, in the
Eastern Province state of Sri Lanka.

”3Arena” — architect — ”Populous (company)”
”3Arena” — location — ”Dublin”

The company Populous were the architects of the
3Arena in Dublin.

”250 Delaware Avenue” — floorArea — ”30843.8 (square
metres)”
”250 Delaware Avenue” — floorCount — ”12”

250 Delaware Avenue has a floor area of 30843.8 square
metres and a floor count of 12.

”Akita Museum of Art” — location — ”Akita, Akita”
”Akita, Akita” — isPartOf — ”Akita Prefecture”
”Akita Museum of Art” — country — ”Japan”

The Akita Museum of Art is an art museum in the city
of Akita, Akita Prefecture, Japan.
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Table D.7
Five lowest rated texts per semi-supervised learning type for the E2E dataset, in ascending order.
Train Type Data Text

No Ext

name=”Clowns”
eatType=”pub”
customerRating=”3 out of 5”
near=”All Bar One”

Clowns pub is a local - priced, local - rated, and - friendly
- friendly coffee bar located in the city market, near All Bar
One.

name=”Giraffe”
eatType=”restaurant”
food=”French”
area=”riverside”
familyFriendly=”no”
near=”Raja Indian Cuisine”

Giraffe is a restaurant serving French English in the riverside
waterfront. It is not a any - friendly based and is located near
the Raja Indian Cuisine Coffee.

name=”The Cricketers”
eatType=”coffee shop”
customerRating=”average”
familyFriendly=”no”
near=”Crowne Plaza Hotel”

The Cricketers coffee House is a average rated, not company
- oriented, sushi cafe located near the Crowne Plaza Hotel.

name=”Zizzi”
eatType=”pub”
customerRating=”high”
near=”Burger King”

Zizzi pub is a local - priced, high rated, and rated rated,
located near Burger King.

name=”Giraffe”
eatType=”pub”
food=”Fast food”
area=”riverside”
familyFriendly=”yes”
near=”Raja Indian Cuisine”

Giraffe is a pub styled, fast food styled in the riverside area.
It is isn fun and located near the Raja Indian Cuisine Coffee.

Dat Aug

name=”Giraffe”
eatType=”restaurant”
food=”French”
area=”riverside”
familyFriendly=”no”
near=”Raja Indian Cuisine”

Giraffe is a restaurant serving French English in the riverside
waterfront. It is not a any - friendly based and is located near
the Raja Indian Cuisine Coffee.

name=”Zizzi”
eatType=”pub”
customerRating=”high”
near=”Burger King”

Zizzi pub is a local - priced, high rated, and rated rated,
located near Burger King.

name=”Clowns”
eatType=”pub”
customerRating=”3 out of 5”
near=”All Bar One”

Clowns pub is a local - priced, local - rated, and - friendly
- friendly coffee bar located in the city market, near All Bar
One.

name=”Wildwood”
eatType=”restaurant”
food=”Indian”
area=”city centre”
familyFriendly=”no”
near=”Raja Indian Cuisine”

The Rama is a restaurant that serves Indian meat in the city
centre east. It is not Kids oriented and is located near the
Raja Indian Cuisine Cafe.

name=”Wildwood”
eatType=”restaurant”
food=”Italian”
area=”riverside”
familyFriendly=”yes”
near=”Raja Indian Cuisine”

The Rama is a restaurant serving Italian cuisine in the river-
side strip. It is fun - based and located near the Raja Indian
Cuisine Café.

Pseu Lab

name=”The Cricketers”
eatType=”coffee shop”
customerRating=”high”
familyFriendly=”yes”
near=”Cafe Sicilia”

The Cricketers is a restaurant that serves Samoan food. It is
located near the Cafe de Bruxelles.

name=”Zizzi”
eatType=”coffee shop”
area=”riverside”

Zizzi is a restaurant that serves Samoan food. It is located in
the riverside area near the Ying.

name=”The Cricketers”
eatType=”coffee shop”
customerRating=”3 out of 5”
familyFriendly=”yes”
near=”Crowne Plaza Hotel”

The Cricketers is a restaurant that serves Burmese food. It is
located near the Crown Plaza Hotel and is family friendly.

name=”Wildwood”
eatType=”restaurant”
food=”Italian”
area=”city centre”
familyFriendly=”yes”
near=”Raja Indian Cuisine”

Wildwood Cafe is a restaurant that serves Saint Helenian
food. It is located in the city centre near Raja.

name=”Giraffe”
eatType=”coffee shop”
near=”The Rice Boat”

Girafe is a restaurant that serves Burundian food. It is lo-
cated near The Rice Boat.
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Table D.8
Five highest rated texts per semi-supervised learning type for the E2E dataset, in descending
order.

Train Type Data Text

No Ext

name=”Clowns”
eatType=”coffee shop”
near=”The Sorrento”

Clowns coffee shop is located near The Sorrento.

name=”Cocum”
eatType=”coffee shop”
customerRating=”high”
near=”Burger King”

Cocum coffee House is a five star cafe located near Burger
King.

name=”The Cricketers”
eatType=”restaurant”
customerRating=”high”
familyFriendly=”yes”
near=”Express by Holiday Inn”

The Cricketers restaurant is a 5 - star family dining located
near the Express by Holiday Inn.

name=”The Cricketers”
eatType=”restaurant”
customerRating=”3 out of 5”
familyFriendly=”yes”
near=”Avalon”

The Cricketers restaurant has a customer grade of 3 out of 5
and is a baby - oriented facility located near Avalon.

name=”The Cricketers”
eatType=”coffee shop”
customerRating=”3 out of 5”
familyFriendly=”yes”
near=”Crowne Plaza Hotel”

The Cricketers coffee House is rated 3 out of 5 by patrons.
It is a baby - oriented cafe located near the Crowne Plaza
Hotel.

Dat Aug

name=”Cocum”
eatType=”coffee shop”
customerRating=”high”
near=”Burger King”

Cocum coffee House is a five star cafe located near Burger
King.

name=”Giraffe”
eatType=”pub”
near=”The Rice Boat”

Giraffe is a pub type style located near The Rice Boat.

name=”Blue Spice”
eatType=”restaurant”
food=”English”
area=”city centre”
familyFriendly=”yes”
near=”Rainbow Vegetarian Cafe”

Blue Dragon is a restaurant serving English cooking in the
city centre east. It is child - oriented and located near Rain-
bow Vegetarian Cafe.

name=”Clowns”
eatType=”coffee shop”
near=”The Sorrento”

Clowns coffee shop is located near The Sorrento.

name=”The Cricketers”
eatType=”coffee shop”
customerRating=”high”
familyFriendly=”yes”
near=”Cafe Sicilia”

The Cricketers coffee House is a 5 - star family dining located
near Cafe Sicilia.

Pseu Lab

name=”Giraffe”
eatType=”restaurant”
food=”French”
area=”riverside”
familyFriendly=”no”
near=”Raja Indian Cuisine”

Girafe is a restaurant that serves French food. It is located in
the riverside area near Raja. It is not family friendly.

name=”Blue Spice”
eatType=”restaurant”
food=”Chinese”
area=”riverside”
familyFriendly=”yes”
near=”Rainbow Vegetarian Cafe”

Blue Spice is a restaurant that serves Chinese food. It is
located in the riverside area near the Rainbow Vegetarian
Cafe.

name=”Blue Spice”
eatType=”restaurant”
food=”English”
area=”city centre”
familyFriendly=”yes”
near=”Rainbow Vegetarian Cafe”

Blue Spice is a restaurant that serves British food. It is lo-
cated in the city centre near the Rainbow Vegetarian Cafe.

name=”Giraffe”
eatType=”pub”
food=”Fast food”
area=”city centre”
familyFriendly=”yes”
near=”Rainbow Vegetarian Cafe”

Girafe is a family-friendly pub located in the city centre near
the Rainbow Vegetarian Cafe.

name=”Blue Spice”
eatType=”pub”
food=”Chinese”
area=”riverside”
familyFriendly=”yes”
near=”Rainbow Vegetarian Cafe”

Blue Spice is a family friendly pub located near the Rainbow
Vegetarian Cafe.
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Figure E.1
BLEU scores of the datasets per dataset extension, including no pretrained model and
pseudo-labeling and data augmentation combined. Round markers = pseudo-labeling; triangle
markers = data augmentation; diamond markers = pseudo-labeling + data augmentation.
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Figure E.2
Coverage scores of the datasets per dataset extension, including no pretrained model and
pseudo-labeling and data augmentation combined. Round markers = pseudo-labeling; triangle
markers = data augmentation; diamond markers = pseudo-labeling + data augmentation.
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and Steve Walker. 2015. Fitting linear
mixed-effects models using lme4. Journal of
Statistical Software, 67(1):1–48. https://
doi.org/10.18637/jss.v067.i01

Bender, Emily M., Timnit Gebru, Angelina
McMillan-Major, and Shmargaret
Shmitchell. 2021. On the dangers of
stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and
Transparency, FAccT ’21, pages 610–623.
https://doi.org/10.1145/3442188
.3445922

Brown, Tom, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared D. Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark,

Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are
few-shot learners. In Advances in Neural
Information Processing Systems, volume 33,
pages 1877–1901, Curran Associates, Inc.

Burke, Robin D., Kristian J. Hammond, and
B. C. Yound. 1997. The FindMe approach
to assisted browsing. IEEE Expert,
12(4):32–40. https://doi.org/10
.1109/64.608186

Castro Ferreira, Thiago, Claire Gardent,
Nikolai Ilinykh, Chris van der Lee, Simon
Mille, Diego Moussallem, and Anastasia
Shimorina. 2020. The 2020 bilingual,
bi-directional WebNLG+ shared task:
Overview and evaluation results
(WebNLG+ 2020). In Proceedings of the 3rd
International Workshop on Natural Language
Generation from the Semantic Web
(WebNLG+), pages 55–76.

Castro Ferreira, Thiago, Diego Moussallem,
Emiel Krahmer, and Sander Wubben. 2018.
Enriching the WebNLG corpus. In
Proceedings of the 11th International
Conference on Natural Language Generation,
pages 171–176. https://doi.org/10
.18653/v1/W18-6521

Castro Ferreira, Thiago, Chris van der Lee,
Emiel van Miltenburg, and Emiel Krahmer.
2019. Neural data-to-text generation: A
comparison between pipeline and
end-to-end architectures. In Proceedings of
the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th
International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP),
pages 552–562. https://doi.org/10
.18653/v1/D19-1052

Castro Ferreira, Thiago, Helena Vaz, Brian
Davis, and Adriana Pagano. 2021.
Enriching the E2E dataset. In Proceedings of
the 14th International Conference on Natural
Language Generation, pages 177–183.

Chang, Ernie, Vera Demberg, and Alex
Marin. 2021. Jointly improving language
understanding and generation with
quality-weighted weak supervision of
automatic labeling. In Proceedings of the
16th Conference of the European Chapter of the
Association for Computational Linguistics:
Main Volume, pages 818–829.
https://doi.org/10.18653/v1/2021
.eacl-main.69

Chang, Ernie, Xiaoyu Shen, Dawei Zhu, Vera
Demberg, and Hui Su. 2021. Neural
data-to-text generation with LM-based text
augmentation. In Proceedings of the 16th
Conference of the European Chapter of the

606

https://doi.org/10.1109/ICDE53745.2022.00084
https://doi.org/10.1109/ICDE53745.2022.00084
https://doi.org/10.18653/v1/P19-1620
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1109/64.608186
https://doi.org/10.1109/64.608186
https://doi.org/10.18653/v1/W18-6521
https://doi.org/10.18653/v1/W18-6521
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/2021.eacl-main.69
https://doi.org/10.18653/v1/2021.eacl-main.69


van der Lee et al. Neural Data-to-Text Generation Based on Small Datasets

Association for Computational Linguistics:
Main Volume, pages 758–768.
https://doi.org/10.18653/v1/2021
.eacl-main.64

Chen, Wenhu, Yu Su, Xifeng Yan, and
William Yang Wang. 2020. KGPT:
Knowledge-grounded pre-training for
data-to-text generation. In Proceedings
of the 2020 Conference on Empirical
Methods in Natural Language Processing
(EMNLP), pages 8635–8648. https://
doi.org/10.18653/v1/2020.emnlp
-main.697

Clerwall, Christer. 2014. Enter the robot
journalist: Users’ perceptions of automated
content. Journalism Practice, 8(5):519–531.
https://doi.org/10.1080/17512786
.2014.883116

Davies, Mark and Joseph L. Fleiss. 1982.
Measuring agreement for multinomial
data. Biometrics, 38(4):1047–1051.
https://doi.org/10.2307/2529886

de Vries, Wietse, Andreas van Cranenburgh,
Arianna Bisazza, Tommaso Caselli, Gertjan
van Noord, and Malvina Nissim. 2019.
BERTje: A Dutch BERT model. arXiv
preprint arXiv:1912.09582.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional
Transformers for language understanding.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186.

Doddington, George. 2002. Automatic
evaluation of machine translation quality
using n-gram co-occurrence statistics. In
Proceedings of the Second International
Conference on Human Language Technology
Research, pages 138–145. https://
doi.org/10.3115/1289189.1289273
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