
Cross-Lingual Transfer with
Language-Specific Subnetworks for
Low-Resource Dependency Parsing

Rochelle Choenni
University of Amsterdam
The Institute for Logic, Language and
Computation (ILLC)
r.m.v.k.choenni@uva.nl

Dan Garrette
Google Research
dhgarrette@google.com

Ekaterina Shutova
University of Amsterdam
The Institute for Logic, Language and
Computation (ILLC)
e.shutova@uva.nl

Large multilingual language models typically share their parameters across all languages, which
enables cross-lingual task transfer, but learning can also be hindered when training updates from
different languages are in conflict. In this article, we propose novel methods for using language-
specific subnetworks, which control cross-lingual parameter sharing, to reduce conflicts and
increase positive transfer during fine-tuning. We introduce dynamic subnetworks, which are
jointly updated with the model, and we combine our methods with meta-learning, an established,
but complementary, technique for improving cross-lingual transfer. Finally, we provide extensive
analyses of how each of our methods affects the models.

1. Introduction

Large multilingual language models, such as mBERT (Devlin et al. 2019), are pretrained
on data covering many languages, but share their parameters across all languages.
This modeling approach has several powerful advantages, such as allowing similar
languages to exert positive influence on each other, and enabling cross-lingual task
transfer (i.e., fine-tuning on some source language(s), then using the model on dif-
ferent target languages) (Pires, Schlinger, and Garrette 2019). These advantages are

Action Editor: Kevin Duh. Submission received: 2 December 2022; revised version received: 13 April 2023;
accepted for publication: 16 April 2023.

https://doi.org/10.1162/coli a 00482

© 2023 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:r.m.v.k.choenni@uva.nl
mailto:dhgarrette@google.com
mailto:e.shutova@uva.nl
https://doi.org/10.1162/coli_a_00482

Computational Linguistics Volume 49, Number 3

particularly enticing in low-resource scenarios since without sufficient training data in
the target language, the model’s effectiveness hinges on its ability to derive benefit from
other languages’ data. In practice, however, even state-of-the-art multilingual models
tend to perform poorly on low-resource languages (Lauscher et al. 2020; Üstün et al.
2020), due in part to negative interference effects—parameter updates that help the
model on one language, but harm its ability to handle another—which undercut the
benefits of multilingual modeling (Arivazhagan et al. 2019; Wang, Lipton, and Tsvetkov
2020; Ansell et al. 2021).

In this article, we propose novel methods for using language-specific subnetworks,
which control cross-lingual parameter sharing, to reduce conflicts and increase positive
transfer during fine-tuning, with the goal of improving the performance of multilingual
language models on low-resource languages. While recent work applies various sub-
network based approaches to their models statically (Lu et al. 2022; Yang et al. 2022;
Nooralahzadeh and Sennrich 2022), we propose a new method that allows the model
to dynamically update the subnetworks during fine-tuning. This allows for sharing
between language pairs to a different extent at the different learning stages of the
models. We accomplish this by using pruning techniques (Frankle and Carbin 2018)
to select an optimal subset of parameters from the full model for further language-
specific fine-tuning. Inspired by studies that show that attention-heads in BERT-based
models have specialized functions (Voita et al. 2019; Htut et al. 2019), we focus on
learning subnetworks at the attention-head level. We learn separate—but potentially
overlapping—head masks for each language by fine-tuning the model on the language,
and then pruning out the least important heads.

Given our focus on low-resource languages, we also combine our methods with
meta-learning, a data-efficient technique to learn tasks from a few samples (Finn,
Abbeel, and Levine 2017). Motivated by Wang, Lipton, and Tsvetkov (2020), who find
that meta-learning can reduce negative interference in the multilingual set-up, we test
how much our subnetwork methods can further benefit performance in this learning
framework, as well as compare the subnetwork based approach to a meta-learning
baseline. Our results show that a combination of meta-learning and dynamic subnet-
works is particularly powerful. To the best of our knowledge, we are the first to adapt
subnetwork sharing to the meta-learning framework.

We extensively test the effectiveness of our methods on the task of dependency pars-
ing. We use data from Universal Dependencies (UD) (Nivre et al. 2016) comprising 82
datasets covering 70 distinct languages, from 43 language families; 58 of the languages
can be considered truly low-resource. Our experiments show, quantitatively, that our
language-specific subnetworks, when used during fine-tuning, act as an effective shar-
ing mechanism: permitting positive influence from similar languages, while shielding
each language’s parameters from negative interference that would otherwise have been
introduced by more distant languages. Moreover, we show substantial improvements
in cross-lingual transfer to new languages at test time. Importantly, we are able to
achieve this while relying on data from just 8 treebanks before few-shot fine-tuning
at test time.

Finally, we perform extensive analyses of our models to better understand how
different choices affect generalization properties. We analyze model behavior with
respect to several factors: typological relatedness of fine-tuning and test languages,
data-scarcity during pretraining, robustness to domain transfer, and their ability to
predict rare and unseen labels. We find interesting differences in model behavior that
can provide useful guidance on which method to choose based on the properties of the
target language.

614

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

2. Background and Related Work

2.1 Pruning and Sparse Networks

Frankle and Carbin (2018) were the first to show that neural network pruning (Han
et al. 2015; Li et al. 2016) can be used to find a subnetwork that matches the test
accuracy of the full network. Later studies confirmed that such subnetworks also
exist within (multilingual) BERT (Prasanna, Rogers, and Rumshisky 2020; Budhraja
et al. 2021; Li et al. 2022), and that they can even be transferred across different NLP
tasks (Chen et al. 2020). While these studies are typically motivated by a desire to find
a smaller, faster version of the model (Jiao et al. 2020; Lan et al. 2019; Sanh et al. 2019;
Held and Yang 2022; Zhang et al. 2021), we use pruning to find multiple simultaneous
subnetworks (one for each fine-tuning language) within the overall multilingual model,
which we use during both fine-tuning and inference to guide cross-lingual sharing.

2.2 Selective Parameter Sharing

Naseem, Barzilay, and Globerson (2012) used categorizations from linguistic typol-
ogy to explicitly share subsets of parameters across separate languages’ dependency
parsing models. Large multilingual models have, however, been shown to induce im-
plicit typological properties automatically, and different design decisions (e.g., train-
ing strategy) can influence the language relationships they encode (Chi, Hewitt, and
Manning 2020; Choenni and Shutova 2022). Rather than attempting to force the model
to follow an externally defined typology, we instead take a data-driven approach, using
pruning methods to automatically identify the subnetwork of parameters most relevant
to each language, and letting subnetwork overlap naturally dictate parameter sharing.

A related line of research aims to control selective sharing by injecting language-
specific parameters (Üstün et al. 2020; Wang, Lipton, and Tsvetkov 2020; Le et al. 2021;
Ansell et al. 2021; Pfeiffer et al. 2020), which is often realized by inserting adapter mod-
ules into the network (Houlsby et al. 2019). Our approach, in contrast, uses subnetwork
masking of the existing model parameters to control language interaction.

Lastly, Wang, Lipton, and Tsvetkov (2020) separate language-specific and language-
universal parameters within bilingual models, and then meta-train the language-specific
parameters only. However, given that we work in a multilingual as opposed to a
bilingual setting, most parameters are shared by at least a few languages, and are thus
somewhere between purely language-specific and fully universal. Our approach, in-
stead, allows for parameters to be shared among any specific subset of languages.

Analyzing and Training Shared Subnetworks. The idea of sharing through sparse subnet-
works was first proposed for multi-task learning (Sun et al. 2020), and was recently stud-
ied in the multilingual setting: Foroutan et al. (2022) show that both language-neutral
and language-specific subnetworks exist in multilingual models, and Nooralahzadeh
and Sennrich (2022) show that training task-specific subnetworks can help in cross-
lingual transfer as well.

Moreover, Lin et al. (2021) train multilingual models using language-pair-specific
subnetworks for neural machine translation (NMT), and Hendy et al. (2022) build on
their work, but use domain-specific subnetworks instead. In both studies, subnetworks
are found using magnitude pruning and kept static during training. In addition, while
Lin et al. (2021) show that their method can perform well in a zero-shot setting,
their strategy for merging masks for new language-pairs relies on the availability of

615

Computational Linguistics Volume 49, Number 3

translation data between English and both the source and target language. This makes
their approach unsuitable in low-resource scenarios where such resources are not avail-
able. In addition, they show that their methods work for unseen language-pairs, but the
individual languages are not unseen during training on NMT.

Furthermore, Ansell et al. (2021) learn real-valued (composable) masks instead of
binary ones. Thus, instead of fully enabling or disabling parameters, they essentially
apply new weights to them, making the workings of these masks more similar to that
of adapter modules (Pfeiffer et al. 2020).

Finally, in concurrent work, Lu et al. (2022) show that using language-specific
subnetworks at the pretraining stage can mitigate negative interference for speech
recognition, and Xu et al. (2022) apply subnetworks during the backward pass only.
We instead apply subnetworks during fine-tuning and few-shot fine-tuning at test time,
allowing us to both make use of existing pretrained models and apply our models to
truly low-resource languages. Moreover, we go beyond existing work by experimenting
with structured subnetworks, by allowing subnetworks to dynamically change during
fine-tuning, and by extensively analyzing the effects and benefits of our methods.

2.3 Meta-learning

Meta-learning is motivated by the idea that a model can “learn to learn” many tasks
from only a few samples. This has been adapted to the multilingual setting by optimiz-
ing a model to be able to quickly adapt to new languages: By using meta-learning to
fine-tune a multilingual model on a small set of (higher-resource) languages, the model
can then be adapted to a new language using only a few examples (Nooralahzadeh
et al. 2020). In this work, we use the Model-Agnostic Meta-Learning algorithm (MAML)
(Finn, Abbeel, and Levine 2017), which has already proven useful for cross-lingual
transfer of NLP tasks (Nooralahzadeh et al. 2020; Wu et al. 2020; Gu et al. 2020), includ-
ing being applied to dependency parsing by Langedijk et al. (2022), whose approach we
follow for our own experiments.

MAML iteratively selects a batch of training tasks T , also known as episodes.
For each task t ∈ T , we sample a training dataset Dt = (Dtrn

t ∪Dtst
t) that consists of

a support set used for adaptation, and a query set used for evaluation. MAML casts
the meta-training step as a bilevel optimization problem. Within each episode, the
parameters θ of a model fθ are fine-tuned on the support set of each task t yielding fφt ,
that is, the model adapts to a new task. The model fφt is then evaluated on the query
set of task t, for all of the tasks in the batch. This adaptation step is referred to as the
inner loop of MAML. In the outer loop, the original model fθ is then updated using
the gradients of the query set of each t ∈ T with respect to the original model pa-
rameters θ. MAML strives to learn a good initialization of fθ, which allows for quick
adaptation to new tasks. This set-up is mimicked at test time where we again select a
support set from the test task for few-shot adaptation, prior to evaluating the model on
the remainder of the task data.

2.4 Dependency Parsing

In dependency parsing, a model must predict, given an input sentence, a dependency
tree: A directed graph of binary, asymmetrical arcs between words. Each arc is labeled
with a dependency relation type that holds between the two words, commonly referred
to as the head and its dependent.

616

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

The UD project has brought forth a dependency formalism that allows for consistent
morphosyntactic annotation across typologically diverse languages (Nivre et al. 2016).
While UD parsing has received much attention in the NLP community, performance on
low-resource languages remains far below that of high-resource languages (Zeman et al.
2018). State-of-the-art multilingual parsers generally exploit a pretrained multilingual
language model with a deep biaffine parser (Dozat and Manning 2016) on top. The
model is then fine-tuned on data (typically) from high-resource languages. This fine-
tuning stage has been performed on English data only (Wu et al. 2020), or multiple
languages (Tran and Bisazza 2019).

UDify (Kondratyuk and Straka 2019) takes this a step further and is fine-tuned
on all available training sets together (covering 75 languages). Moreover, they use a
multi-task training objective that combines parsing with predicting part-of-speech tags,
morphological features, and lemmas.

On the modeling side, previous studies have attempted to exploit knowledge from
the field of Linguistic Typology to further improve upon this training paradigm. For
instance, UDapter (Üstün et al. 2020) is trained on 13 languages using the same set-
up as UDify, but freezes mBERT’s parameters and trains language-specific adapter
modules. It induces typological guidance by taking language embeddings predicted
from typological features as input. In a related study, Choudhary (2021) tries to induce
typological knowledge into UDify by using typology prediction as an auxiliary task
instead.

Other studies have taken a data-centric approach instead. van der Goot et al.
(2021) propose MACHAMP, a toolkit for multi-task learning of a variety of NLP tasks,
including dependency parsing. While using a similar architecture to existing literature,
they show that they can further improve performance by resampling datasets according
to a multinomial distribution on the batch level to prevent larger datasets from over-
whelming the model. In addition, Glavaš and Vulić (2021), propose hierachical source
selection, a model-agnostic method for finding the optimal subset of UD treebanks for
cross-lingual transfer to a specific target language.

3. Data

We use data from Universal Dependencies v2.91 and test on 82 datasets covering 70
unique and highly typologically diverse languages belonging to 19 language families
from 43 subfamilies. We consider 54 of these languages to be extremely low-resource
as there are fewer than 31 training samples available. For the other 28 languages, 50%
have approximately 150–2K training samples and the other 50% have 2K–15K samples
available. In total, our test data contains 233 possible arc labels. We use 8 high-resource
languages for fine-tuning, based on the selection used by Langedijk et al. (2022) and
Tran and Bisazza (2019): English, Arabic, Czech, Estonian,2 Hindi, Italian, Norwegian,
and Russian.

1 https://universaldependencies.org/.
2 Note that we swapped out Korean with Estonian as we were unable to learn a high-quality subnetwork

for Korean. The choice of Estonian is mainly motivated by the high-resource data requirement in
combination with the fact that the subfamily, that is, Uralic, was not represented by our fine-tuning
languages yet.

617

https://universaldependencies.org/

Computational Linguistics Volume 49, Number 3

4. Methodology

In §4.1–4.2 we describe the model that will be used throughout our experiments and the
training strategy. In §4.3 we then explain how we define and select subnetworks, and
how we apply them to our models. In §4.4 we explain how our approach is adapted to
the meta-learning setting, and in §4.5–4.6 we describe our test set-up and baselines.

4.1 Model

Our implementation is derived from UDify (Kondratyuk and Straka 2019), but uses
only the parsing task rather than its full multi-task set-up. The model is built on mBERT
(Devlin et al. 2019), a bidirectional Transformer (Vaswani et al. 2017) with 12 layers,
each with 12 attention heads, pretrained on the combined Wikipedia dumps of 104
languages, and using a shared WordPiece vocabulary for tokenization. We initialize the
model from mBERT, plus random initialization of the task-specific classifier. For each
input token j, a weighted sum rj over all layers i ∈ [1..12] is computed as follows:

rj = η
∑

i

Ui,j · softmax(λ)i (1)

where Ui,j is the output of layer i at token position j, λ is a vector of trainable scalar
mixing weights that distribute importance across the layers, and η is a trainable scalar
that scales the normalized averages. For words that were tokenized into multiple word
pieces, only the first word piece is used as input to the task-specific graph-based biaffine
attention classifier (Dozat and Manning 2016).

The classifier projects the word encodings rj through separate arc-head and arc-
child feedforward layers with 768 hidden dimensions and Exponential Linear Unit
non-linear activation. The resulting outputs Harc-head and Harc-dep are then combined
using the biaffine attention function with weights Warc and bias barc to score all possible
dependency arcs:

Sarc = Harc-headWarcHT
arc-dep + barc (2)

Similarly, we compute label scores Stag by using another biaffine attention function over
two separate tag-head and tag-child feedforward layers with 256 hidden dimensions.
The Chu-Liu/Edmonds algorithm (Chu 1965) is then used to select the optimal valid
candidate tree.

4.2 Training Procedure

Taking inspiration from Nooralahzadeh et al. (2020) for cross-lingual transfer to low-
resource languages, our training procedure is split into two stages: (1) fine-tune on the
full English training set (∼12.5K samples), without applying any subnetwork restric-
tions, for 60 epochs, to provide the full model with a general understanding of the task;
and (2) fine-tune on the 7 other high-resource languages, to give the model a broad view
over a typologically diverse set of languages in order to facilitate cross-lingual transfer
to new languages.

618

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

For stage 2, in each iteration, we sample a batch from each language and average the
losses of all languages to update the model. During this stage, we restrict each example
to just the parameters in that language’s subnetwork. We perform 1,000 iterations, with
a batch of size 20 from each of the 7 languages, for a total of 140K samples.

We use a cosine-based learning rate scheduler with 10% warm-up and the Adam
optimizer (Kingma and Ba 2015), with separate learning rates for updating the encoder
and the classifier (see Appendix A, Table 9 for details).

4.3 Subnetwork Masks

We represent language-specific subnetworks as masks that are applied to the model in
order to ensure that only a subset of the model’s parameters are activated (or updated)
during fine-tuning and inference. We follow Prasanna, Rogers, and Rumshisky (2020)
in using structured masks, treating entire attention heads as units which are always fully
enabled or disabled. Thus, for language `, its subnetwork is implemented as a binary
mask ξ` ∈ {0, 1}12×12.

In our experiments, we present two ways of using the masks during fine-tuning:
statically, in which we find initial masks based on the pretrained model parameters and
hold those masks fixed throughout fine-tuning and inference (SNstatic); and dynamically,
in which we update those masks over the course of fine-tuning (SNdyna). In Figure 1, we
give a general overview of our training procedure.

4.3.1 Finding Initial Subnetwork Masks. We aim to find a mask for each of the 7 fine-tuning
languages that prunes away as many heads as possible without harming performance
for that language (i.e., by pruning away heads that are only used by other languages,
or that are unrelated to the dependency parsing task). For this, we apply the procedure
introduced by Michel, Levy, and Neubig (2019).

For a language `, the procedure starts by fine-tuning the model on `’s training set.
We then iterate by repeatedly removing the 10% of heads with the lowest importance

A. Pretrained model

Fine-tuning
stage 1

train on UD
English

B. Task-specific model

Fine-tuning
stage 2

identify
subnetworks

(meta-)train
on 7

languages

C. Final model

few-shot fine-
tuning at test

time

apply typolologically
most similar
subnetwork

Warlp
iri

Moksha

Figure 1
Schematic overview of our two-stage fine-tuning and test procedure. At fine-tuning stage 1, we
first fine-tune pretrained mBERT on the task of dependency parsing using English data. We then
apply language-specific subnetworks to our task-specific model. At fine-tuning stage 2, we
either keep the subnetworks static or dynamically update the found subnetworks during
(meta-)training on the task of dependency parsing using the other 7 fine-tuning languages. At
test time, we then perform few-shot fine-tuning separately for each test language while applying
the subnetwork of the typologically most similar training language.

619

Computational Linguistics Volume 49, Number 3

scores HI(i,j)
` (i=head, j=layer), which is estimated based on the expected sensitivity of

the model to mask variable ξ(i,j)
` :

HI(i,j)
` = Ex`∼X`

∣∣∣∣∣δL(x`)

δξ
(i,j)
`

∣∣∣∣∣ (3)

where X` is `’s data distribution, x` is a sample from that distribution, and L(x`) is
the loss with respect to the sample. The procedure stops when performance on the `’s
development set reaches 95% of the original model performance.

Consistent with findings from Prasanna, Rogers, and Rumshisky (2020), we ob-
served that the subnetworks found by the procedure are unstable across different
random initializations. To ensure that the subnetwork we end up with is more robust
to these variations, we repeat the pruning procedure with 4 random seeds, and take
the union3 of their results as the true subnetwork (i.e., it includes even those heads that
were only sometimes found to be important).

4.3.2 Dynamically Adapting Subnetworks. Blevins, Gonen, and Zettlemoyer (2022) showed
that multilingual models acquire linguistic knowledge progressively—lower-level syn-
tax is learned prior to higher-level syntax, and then semantics—but that the order
in which the model learns to transfer information between specific languages varies.
As such, the optimal set of parameters to share may depend on what learning stage
the model is in, or on other factors, for example, the domains of the specific training
datasets, the amounts of data available, the complexity of the language with respect to
the task, and so forth. Thus, we propose a dynamic approach to subnetwork sharing, in
which each language’s subnetwork mask is trained jointly with the model during fine-
tuning. This allows the subnetwork masks to be improved, and also allows for different
patterns of sharing at different points during fine-tuning.

For dynamic adaptation, we initialize the identified static subnetworks as described
in §4.3.1 using small positive weights. We then allow the model to update the mask
weights during fine-tuning. After each iteration, the learned weights are fed to a thresh-
old function that sets the smallest 20% of weights to zero (i.e., 28 heads4) to obtain a
binary mask again. Given that the derivative of a threshold function is zero, we use a
straight-through estimator (Bengio, Léonard, and Courville 2013) in the backward pass,
meaning that we ignore the derivative of the threshold function and pass the incoming
gradient on as if the threshold function was an identity function.

4.4 Meta-learning with Subnetworks

Meta-learning for multilingual models has been shown to enable both quick adaptation
to unseen languages (Langedijk et al. 2022) and mitigation of negative interference
(Wang, Lipton, and Tsvetkov 2020), but it does so using techniques that are differ-
ent from—though compatible with—our subnetwork-sharing approach. Therefore, we

3 Stricter criteria (e.g., the intersection of the 4 subnetworks) resulted in lower performance on the
development set.

4 We opted for a number roughly between our largest (13 heads pruned) and smallest (37 heads pruned)
language-specific subnetwork found via pruning.

620

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

Algorithm 1 Meta-training procedure
Require: Language datasets T ; step sizes α and β; number of updates k; number of

episodes EPS; support/query set size N; and subnetworks {ξ` | ` ∈ T }. Train on ` /∈ T
to yield initial parameters θ.
for EPS do:

for ` ∈ T do : (inner loop)
Yield learner: φ` ← θ.copy()
Mask φ` using ξ`
Take N samples to form Dtrn

` = {x}N
n=1 ∈ T` and Dtst

` = {x}N
n=1 ∈ T`

Update learner φ` on the support set (Dtrn
`):

for k steps do:
φ` ← θ− α∇θL(φ`,Dtrn

`)
end for
Evaluate on the query set: L(φ`,Dtst

`)
end for
Meta-update the original model θ: (outer loop)
θ← θ− β

∑
`∈T ∇θL(φ`,Dtst

`)
end for

experiment with the combination of these methods, and test the extent to which their
benefits are complementary (as opposed to redundant) in practice.

To integrate our subnetworks within a meta-learning set-up, we just have to apply
them in the inner loop of MAML, that is, given a model f parameterized by θ, we train θ
by optimizing for the performance of the learner model of a language `masked with the
corresponding subnetwork fφ`

· ξl. See Algorithm 1 for the details of the procedure.5

For all meta-learning experiments, we train for 500 episodes with support and
query sets of size 20, that is, 10K samples per language are used for meta-training
and validation each. We use 20 inner loop updates (k) and we follow Finn, Abbeel,
and Levine (2017) in using SGD for updating the learner. All other training details are
kept consistent with the non-episodic (NONEP) models (as described in §4.2).

4.5 Few-shot Fine-tuning at Test Time

Because the primary goal of this work is to improve performance in low-resource
scenarios, we evaluate our models using a set-up that is appropriate when there is
almost no annotated data in the target language: Few-shot fine-tuning. For a given
test language, the model is fine-tuned on just 20 examples in that language, using 20
gradient updates. The examples are drawn from the development set, if there is one;
otherwise they are drawn from (and removed from) the test set. We use the same
hyperparameter values as during training. We report Labeled Attachment Scores (LAS)
averaged across 5 random seeds, as computed by the official CoNLL 2018 Shared Task
evaluation script.6

5 Note that for the meta-update, we use a first-order approximation, replacing∇θL(φ`,Dtst
`) by

∇φL(φ`,Dtst
`). See Finn, Abbeel, and Levine (2017) for more details on first-order MAML.

6 https://universaldependencies.org/conll18/evaluation.html.

621

https://universaldependencies.org/conll18/evaluation.html

Computational Linguistics Volume 49, Number 3

Table 1
Results on UD Parsing, for both non-episodic (NONEP) and meta-learning (META) set-ups. For
each of the 6 models, we report Labeled Attachment Score (LAS) averaged across all 82 test
languages, as well as the percentage of languages for which that model performed best (e.g.,
META-SNdyna yielded the highest LAS on 28% of test languages). The best performance is
denoted by boldface.

FULL SNstatic SNdyna Total

NONEP
LAS 38.49 41.32 40.0
Best% 0% 22% 8.5 % 30.5%

META
LAS 40.68 40.27 40.89
Best% 14.5% 27% 28% 69.5%

Since we do not have subnetworks for the test languages—only for the 7 high-
resource languages used in stage 2 of fine-tuning (§4.2)—we instead use the subnetwork
of the typologically most similar training language. We determine typological similarity
by computing the cosine similarity between the language vectors from the URIEL
database (syntax knn) (Littell et al. 2017).

4.6 Baselines

To measure the effectiveness of our subnetwork-based methods, we train and evaluate
baselines in which no subnetwork masking is applied (but for which all other details of
the training and testing set-ups are kept unchanged). We refer to this as full model train-
ing (FULL) to contrast our training approaches that use static or dynamic subnetworks
(SNstatic and SNdyna), and we report these baselines for both the non-episodic (NONEP)7

and meta-learning (META) frameworks. For a fair comparison to existing literature, we
also re-train UDify on dependency parsing using only our 8 treebanks for training and
perform few-shot fine-tuning at test time as was done for all other models (UDF8).

5. Results

Overall, the results show that our subnetwork-based methods yield improvements over
baseline models trained without any subnetwork masking. In Table 1, we see that, based
on average LAS scores across all test languages, static subnetworks (SNstatic) perform
best in the non-episodic training set-up, resulting in +2.8% average improvement over
the FULL baseline, and yielding the highest average LAS of all the models. Dynamic
subnetworks (SNdyna), on the other hand, exhibit superior performance in the meta-
learning setting, resulting in the model that performed best across all settings for the
largest number of languages. In Table 2, we report the full set of results on all 82 test
languages.

To gain more insight into the effects of our methods across the test languages, we
plot the distribution over performance changes compared with the baseline per method

7 Note that Non-Episodic (NONEP) is used throughout the article to refer to models trained without
meta-learning.

622

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

and learning framework in Figure 2. We find that static and dynamic subnetworks
exhibit opposite trends. NONEP-SNstatic achieves large gains (up to +25%), but can also
cause more deterioration on other languages (up to −6%). In contrast, the performance
change distribution for NONEP-SNdyna is centered around more modest improvements,
but is also the safest option given that it deteriorates performance for the fewest lan-
guages. The same trade-off can be observed in the meta-learning framework, except
that now META-SNstatic results in modest changes compared with META-SNdyna.

Table 2
Average LAS scores across 5 random seeds for all test languages (we do not report standard
deviations as they were overall very small [6e-05–0.09]). Within each learning framework
(NONEP and META) the best performance is denoted by boldface. Subnetwork-based models
that substantially improve over their full-model baselines are highlighted, and color-code based
on the amount of improvement: +3–5%, +5–7 %, +7–10 %, +10–15%, +20–25%.
Results are grouped according to which high-resource language was the source of their
subnetwork mask (i.e., which high-resource language is most typologically similar), and we
report average typological similarity between transfer and test languages (θ̄). Lastly, next to
results from our Udf8 baseline, we report available scores for UDify trained on 75 languages
(Udf75) from Kondratyuk and Straka (2019), but note that these scores are not directly
comparable as they come from zero-shot testing.

623

Computational Linguistics Volume 49, Number 3

624

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

Figure 2
Kernel density estimation plot over the relative performance changes of each model for all test
languages when comparing with its corresponding full model training baseline.

Lastly, we do not find strong trends for transfer languages; different magnitudes of
performance changes are scattered across all transfer languages. Yet, when transferring
from Norwegian, META-SNstatic and META-SNdyna particularly often underperform
compared with META-FULL; see Table 2. In contrast, META-SNdyna performs particu-
larly well when transferring from Arabic; similarly, SNstatic performs especially well
when transferring from Czech. Thus, the best approach might be dependent on the
relationship between the transfer and test languages, or the properties of the transfer
language itself.

625

Computational Linguistics Volume 49, Number 3

We note that despite the observed improvements, overall performance remains
low for many languages. Yet we would like to point out that we also find instances
where our methods might already make the difference in acquiring a usable system
compared with state-of-the-art models. For example, even with few-shot fine-tuning
Udf75’s performance on Faroese OFT only reaches 53.8%, which is much lower than
our 70.4% (NONEP-SNstatic), and for Indonesian PUD it reaches 69.0% versus 74.9%
(NONEP-SNstatic)

6. Analysis

In this section, we provide more insight into the effects of our methods by analyzing
performance with respect to four factors: typological relatedness, data-scarcity, robust-
ness to domain transfer, and ability to predict unseen and rare labels. We focus on the
best model from each learning framework: NONEP-SNstatic and META-SNdyna.

Typological Relatedness. The languages most similar to a low-resource language are often
themselves low-resource, meaning that a low-resource language is often quite dissimilar
from all the languages that are resource-rich enough to be used for fine-tuning. A
method that only works well when a very similar high-resource language is available
for fine-tuning will not be as useful in practice. Thus, we want to understand the degree
to which our methods depend on similarity to a high-resource fine-tuning language.
In Figure 3 (top), we plot each test language’s performance improvement against its
typological closeness to the nearest high-resource fine-tuning, where that distance is as
computed using the cosine similarity between the languages’ URIEL features. Interest-
ingly, we find that our models show opposite trends: Whereas NONEP-SNstatic works
well for typologically similar languages, the biggest gains from META-SNdyna actually
come from less similar languages.

Data Scarcity. Given that language distribution in the mBERT pretraining corpus is
very uneven, and 37 of our 70 unique test languages are not covered at all, we want
to understand what effect this has on downstream model performance. As shown in
Figure 3 (middle), we find that META-SNdyna provides the most benefit to previously
unseen languages. In contrast, more data in pretraining positively correlates with the
performance of NONEP-SNstatic.

Out-of-domain Data. For cross-lingual transfer we often focus on the linguistic properties
of source and target languages. However, the similarity of the source and target datasets
will also be based on the domains from which they were drawn (Glavaš and Vulić 2021).
For example, our training datasets cover only 11 of 17 domains, as annotated by the
creators of the UD treebank. While we acknowledge that it is difficult to neatly separate
data based on source domain, we test for a correlation between performance and the
proportion of out-of-domain data. Interestingly, we find no clear correlation with the
percentage of domains from the test language covered by the transfer language. We do,
however, find a strong correlation with the domain diversity of the transfer and test
language in general for NONEP-SNstatic, as shown in Figure 3 (bottom), where we plot
improvements against number of domain sources our test data is coming from (more
sources→more diversity). In contrast, we see that META-SNdyna remains insensitive to
this variable.

626

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

Figure 3
Plots of the relationships between a test language’s performance gains and: (top) how
typologically similar the language is to the nearest high-resource fine-tuning language, (middle)
the amount of in-language data used to pretrain mBERT, and (bottom) the number of domain
sources represented in its test data. Note that different colors were only used for visual ease.

Unseen and Rare Labels. Lastly, another problem in cross-lingual transfer, especially when
fine-tuning on only a few languages, is that the fine-tuning data may not cover the entire
space of possible labels from our test data. In principle, only a model that is able to
adequately adapt to unseen and rare labels can truly succeed in cross-lingual transfer.
Given that we perform few-shot fine-tuning at test time, we could potentially overcome
this problem (Lauscher et al. 2020). Thus, we investigate the extent to which our models
succeed in predicting such labels for our test data. We consider a label to be rare when
it is covered by our training data, but makes up <0.1% of training instances (23 such
labels). There are 169 unseen labels, thus in total, 192 of 233 (82%) of the labels from our
test data are rare or unseen during training. In Table 3, we report how often each model
correctly predicts instances of unseen and rare labels. We find that models differ greatly,
and, in particular, META-SNdyna vastly outperforms all other models when it comes to
both unseen and rare labels. Upon further inspection, we find that two unseen labels are
particularly often predicted correctly: sentence particle (discourse:sp) and inflectional
dependency (dep:infl). The former label seems specific to Chinese linguistics and has
a wide range of functions (e.g., modifying the modality of a sentence or its proposition,
and expressing discourse and pragmatic information). The latter represents inflectional
suffixes for the morpheme-level annotations, something that is unlikely to be observed
in morphologically poor languages such as English; but, for instance, Yupik has much
of its performance boost due to it.

627

Computational Linguistics Volume 49, Number 3

Table 3
Percentages of correctly predicted instances of unseen and rare labels. We also report across how
many labels/languages correct predictions were made.

NONEP- FULL SNstatic SNdyna

Unseen 0.04% (3/3) 0.003% (1/1) 0.004% (2/2)
Rare 12.5% (12/50) 6.4% (11/41) 9.9% (8/49)

META- FULL SNstatic SNdyna

Unseen 0% 0% 6.6% (15/23)
Rare 3.5% (10/39) 3.0% (7/36) 21.3% (13/55)

7. Effect of Subnetworks at Training Time

7.1 Interaction Between Subnetworks

We now further investigate the selected subnetworks and their impact during training.
Our findings were similar for meta-learning, so we just focus our analysis here on the
non-episodic models.

Table 4 shows how using subnetworks affects performance on the training lan-
guages. Training with the subnetworks always improves performance, however, this
effect is larger when subnetworks are kept static during training. Moreover, for the static
subnetworks, the number of heads that are masked out can vary considerably per lan-
guage; for example, for Arabic we only disable 13 heads compared with 37 for Estonian.
Yet, we observe similar effects on performance, obtaining ∼+4% improvement for both
languages. To disentangle how much of the performance gain comes from disabling
suboptimal heads vs. protection from negative interference by other languages, we re-
train NONEP-SNstatic in two ways using Czech as a test case: (1) we keep updates from
Czech restricted to its subnetwork (i.e., we disable the suboptimal heads for Czech),
but drop subnetwork masking for the other languages (i.e., we do not protect Czech
from negative interference as all other languages can still update the full model); (2) we
use subnetworks for all languages except Czech (i.e., we protect Czech from the other
languages by restricting their updates to their subnetworks only, but still allow Czech
to use the full model capacity).

Table 4
Labeled Attachment Scores for Non-Episodic models on each training language. Number of
heads disabled by the subnetwork is shown in parentheses.

Language FULL SNstatic SNdyna

Arabic 68.6 72.9 (13) 69.1 (28)
Czech 75.4 81.2 (13) 77.9 (28)
Estonian 65.4 69.2 (37) 68.3 (28)
Hindi 74.4 77.2 (21) 75.2 (28)
Italian 85.0 87.7 (23) 86.1 (28)
Norwegian 73.2 79.8 (24) 73.6 (28)
Russian 79.5 81.6 (27) 80.4 (28)

628

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

Table 5
Labeled Attachment Scores for the baseline model FULL on each fine-tuning language ` ∈ T
when either using a subnetwork for the fine-tuning language ` only (selection) or using a
subnetwork for all fine-tuning languages in T \ {`} (protection). Percentage of improvement
over the FULL baseline is shown in parentheses.

Language FULL Selection Protection

Arabic 68.6 71.2 (+2.5) 72.2 (+3.6)
Czech 75.4 79.5 (+4.1) 80.1 (+4.7)
Estonian 65.4 67.9 (+2.5) 67.9 (+2.5)
Hindi 74.4 76.8 (+2.4) 76.7 (+2.3)
Italian 85.0 86.8 (+1.8) 87.3 (+2.3)
Norwegian 73.2 80.2 (+7.1) 80.3 (+7.2)
Russian 79.5 80.5 (+1.0) 80.4 (+0.9)

We find that (1) disabling suboptimal heads for Czech only, results in 79.5 LAS on
Czech (+4.1% improvement compared to baseline), while (2) just protection from the
other languages, results in 80.3 LAS (+4.7% improvement); see Table 5 for results on
the other training languages. This indicates that protection from negative interference
has a slightly larger positive effect on the training language in this case. Still, a combi-
nation of both (i.e., using subnetworks for all fine-tuning languages) results in the best
performance in most cases (81.2 LAS for Czech, a +5.9% improvement, as reported in
Table 4). This suggests that the interaction between the subnetworks is a driving factor
behind the selective sharing mechanism that resolves language conflicts. We confirm
that similar trends were found for the other languages.

This, however, also means that if the quality of one subnetwork is suboptimal, it is
still likely to negatively affect other languages. Moreover, analyzing the subnetworks
can provide insights on language conflicts. For instance, using a subnetwork for only
Czech or Arabic results in the biggest performance gains for Norwegian (+7.1% and
+7.3% compared with the FULL baseline), indicating that, in this set-up, Norwegian
suffers more from interference.

7.2 Gradient Conflicts and Similarity

In multilingual learning, we aim to maximize knowledge transfer between languages
while minimizing negative transfer between them. In this study, our main goal is
the latter. To evaluate the extent to which our methods succeed in doing this, we
explicitly test whether we are able to mitigate negative interference by adopting the
gradient conflict measure from Yu et al. (2020). They show that conflicting gradients
between dissimilar tasks, defined as a negative cosine similarity between gradients,
is predictive of negative interference in multi-task learning. Similar to Wang, Lipton,
and Tsvetkov (2020), we deploy this method in the multilingual setting: We study how
often gradient conflicts occur between batches from different languages. For batches
from each language, we compute the gradient of the loss with respect to the parameters
of the full model during backpropagation. To get a stable estimate, we use gradient
accumulation for 50 episodes/iterations before computing conflicts. Gradient conflicts
are then computed between each language pair,

(
7
2
)

pairs in total, and the percentage of
total conflicts is computed across all language pairs.

629

Computational Linguistics Volume 49, Number 3

Table 6
We report the percentage of gradient conflicts and average cosine similarity between gradients
over the last 50 iterations/episodes for our non-episodic and meta-trained models. We report
average results over 4 random seeds.

Conflicts Cosine Sim.

NONEP-FULL 42% 0.03
NONEP-SNstatic 26% 0.05
NONEP-SNdyna 38% 0.07

META-FULL 55% −0.04
META-SNstatic 54% −0.02
META-SNdyna 44% 0.12

At the same time, Lee et al. (2021) argue that lower cosine similarity between
language gradients indicates that the model starts memorizing language-specific
knowledge that at some point might cause catastrophic forgetting of the pretrained
knowledge. This suggests that, ideally, our approach would find a good balance
between minimizing gradient conflicts and maximizing the cosine similarity between
the language gradients.

We quantitatively find that both subnetwork-based methods indeed reduce the
percentage of gradient conflicts between languages. Over the last 50 iterations, we find
that NONEP-SNstatic has reduced conflicts by 16% and NONEP-SNdyna by 4% compared
with the NONEP-FULL baseline as reported in Table 6. In the meta-learning set-up, we
found an opposite trend where META-SNstatic reduces conflicts by 1% and META-SNdyna
by 11% over the last 50 iterations compared to META-FULL. This partly explains why
NONEP-SNstatic and META-SNdyna are found to be the best performing models: They
suffer the least from gradient conflicts. Interestingly, we do not find that our meta-
trained models suffer less from gradient conflicts than the non-episodic models. In
fact, while we found that, on average, META-FULL improves over NONEP-FULL (recall
Table 1), its training procedure suffers from 13% more conflicts, meaning that we do not
find meta-learning in itself to be a suitable method for reducing gradient conflicts, but
our subnetwork-based methods are.

At the same time, the average cosine similarity between gradients increases when
using both subnetwork methods compared with the FULL model baselines. We com-
pute the Pearson correlation coefficient between the relative decrease in percentage of
gradient conflicts and increase in cosine similarity over training iterations compared
with the baselines. We test for statistical significance (p-value <0.02), and average
results over 4 random seeds. We get statistically significant positive correlation scores of
0.08, 0.16, 0.33, and 0.58 for NONEP-SNstatic, NONEP-SNdyna, META-SNstatic, and META-
SNdyna, respectively. This indicates that our subnetwork-based methods try to minimize
negative interference while simultaneously maximizing knowledge transfer.

8. Ablations

To ensure that each of the aspects of our set-up are indeed contributing to the improve-
ments shown in our experiments, we retrained models with specific aspects ablated.

630

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

Static Shuff. R20 R30 R40 R50 Bad DR20
45

50

55

60

65

70

75

80

85

90
ar
cs
et
hi
it
no
ru
avg

Figure 4
Effect of training with masks randomly generated under different constraints (across 3 seeds):
Shuffled, masking n heads, only select bad heads, and start dynamic training from a random
subnetwork (DR20).

8.1 Random Ablations

Random Mask Initialization – Static. In these experiments, we verify that there is value in
using the iterative pruning procedure to generate subnetwork masks (as opposed to the
value coming entirely from the mere fact that masks were used).

First, we re-trained NONEP-SNstatic, but swapped out the subnetwork masks de-
rived from iterative pruning with masks containing the same number of enabled heads,
but that were randomly generated (Shuffle). Second, given that the number of masked
heads might be more important than which exact heads are being masked out, we
experiment with masking 20, 30, 40, and 50 random heads. We find that using the
random masks results, on average, in ∼5% performance decreases on the training
languages compared with using the subnetworks initialized using importance pruning;
see Figure 4. In addition, we see that randomly masking out more heads results in
further negative effects on performance.

Lastly, given that for many languages our subnetworks mask out very few heads
(e.g., 13 for Arabic and Czech), we also try swapping these out with “intentionally bad”
masks, where we randomly choose 20 heads to mask out, but do not allow any of the
heads selected by the real pruning procedure to be chosen (Bad). From this, we see
that preventing the right heads from being selected for masking does result in lower
performance versus pure random selection (R20).

Random Mask Initialization – Dynamic. In these experiments, we verify that there is value
in using the iterative pruning procedure to initialize subnetwork masks that will then
by dynamically updated during fine-tuning.

We retrained NONEP-SNdyna 3 times using randomly initialized subnetworks. Fig-
ure 4 (DR20) shows that average performance across all test languages drops substan-
tially (∼10%), making this method considerably worse than any of our other random
baselines. We hypothesize that this is because the model is able to correct for any
random static subnetwork, but that with dynamic masking, the subnetworks keep
changing, which deprives the model of the chance to properly re-structure its infor-
mation. This also gives us a strong indication that the improvements we observe are not
merely an effect of regularization (Bartoldson et al. 2020).

Random Transfer Language. To test the effectiveness of our typology-based approach to
selecting which high-resource fine-tuning language’s subnetwork should be used for

631

Computational Linguistics Volume 49, Number 3

a given test language, we experimented with just picking one of the high-resource
languages at random, and found that this performed worse overall, resulting in lower
scores for 78 of 82 test languages.

8.2 Unstructured Pruning

Our approach relies on the assumption that attention heads function independently.
However, attention head interpretability studies have sometimes given mixed results
on their function in isolation (Prasanna, Rogers, and Rumshisky 2020; Clark et al. 2019;
Htut et al. 2019). Moreover, related works commonly focus on unstructured methods
(Lu et al. 2022; Nooralahzadeh et al. 2020). Thus, we compare our strategy of masking
whole attention heads against versions of NONEP-SNstatic and NONEP-SNdyna that
were retrained using subnetwork masks found using the most popular unstructured
method, magnitude pruning. In magnitude pruning, instead of disabling entire heads
during the iterative pruning procedure, as described in §4.3.1, we prune the 10% of
parameters with the lowest magnitude weights across all heads. Again, we check the
development set score in each iteration and keep pruning until reaching <95% of the
original performance. Note that we exclude the embedding and MLP layers.8

We find that for both the static and dynamic strategies, unstructured pruning
performs worse overall, resulting in lower scores for 76% of test languages, and is
especially harmful for dynamic subnetworks (SNstatic: 40.4 vs. 39.9, and SNdyna: 39.0
vs. 36.7 average LAS). We hypothesize that it might be more difficult to learn to adapt
the unstructured masks as there are more weights to learn (weights per head × heads
per layer × layers).

8.3 Effect of Selected Training Languages

Given that the selection of training languages can have an important effect on the
overall performance, we now also perform a set of ablations to test the robustness of
our findings with respect to the choice of training languages.

Fine-tuning Stage 1. As presented above, we fine-tune mBERT first using English to learn
the task of dependency parsing. While English is still the most commonly used source
language for cross-lingual transfer, it is important to understand how this choice may
affect downstream performance. Therefore, we also tried using three other languages in
place of English for this step: (1) Chinese (GSD) as it uses a different script, (2) Turkish
(PENN) as it has a different word order (SOV), and (3) German (GSD) as it has no
dominant word order and it was found to be the best source language for transfer by
Turc et al. (2021) (together with Russian).

In Table 7, we show, for each of the three languages, how much the average per-
formance changes in comparison with using English. For both Chinese and Turkish,
we find that the average performance across test languages slightly decreases for all
NONEP models. Even though the decreases are only minor, it indicates that Chinese and
Turkish do not transfer as well to our test languages as English. This is not completely
surprising as more of our test languages are written in the Latin script and, like English,

8 We recognize that the interaction between the MLPs and attention heads is important, but by focusing on
the attention heads, we keep results comparable to importance pruning.

632

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

Table 7
Average change in LAS across all test languages for the NONEP models trained with different
languages for fine-tuning stage 1 compared with the original results obtained using English for
fine-tuning stage 1. Note that we remove the datasets pertaining to languages used during
fine-tuning when comparing—for example, Turkish datasets are removed from our test
languages when we use the models fine-tuned on Turkish in our comparison.

Language FULL SNstatic SNdyna

Chinese –0.89 –0.46 –0.78
Turkish –0.95 –0.62 –0.35
German –0.22 +0.17 +0.07

Figure 5
Average change in LAS for languages grouped by their typologically most similar training
language. We show the average change in LAS for each language used during fine-tuning stage
1 compared with using English.

use SVO word ordering. Yet, similar to Turc et al. (2021), we find that German is the
best source language as it increases our average results when using both static and
dynamic subnetworks compared with using English. Interestingly, in Figure 5, we see
that all languages are able to increase average performance for the languages most
closely related to Hindi, which could indicate that English has some properties that
are particularly badly suited for transfer to this set of languages. At the same time,
swapping out English with any of our three new languages causes an average decrease
in performance on test languages that are most closely related to Arabic.

Fine-tuning Stage 2. The set of 7 languages we used above for the second stage of fine-
tuning was chosen to be comparable to previous studies, but that set of languages
is dominated by the Indo-European language family, which may result in poor gen-
eralization to other language families. Thus, we also re-trained our NONEP models
on a completely different set of 7 languages, which were chosen from among those
languages with relatively large treebanks (≥ 100K tokens), but selected in order to
maximize diversity with respect to: (1) language family, (2) word order, and (3) data
domain. This yielded the following set of languages: Belarusian (IE, Slavic, no dominant
order), Chinese (Sino-Tibetan, SVO), Finnish (Uralic, SVO), Hebrew (Afro-Asiatic, SOV),
Indonesian (Austronesian, SVO), Irish (Celtic, VSO), and Turkish (Turkic, SOV). These 7
languages cover 7 language families, 4 word orderings, and 14 data domains. Note that
to limit the scope of this experiment, and to keep the results comparable to our original
findings, we now again use English for fine-tuning stage 1.

633

Computational Linguistics Volume 49, Number 3

We find that average results across all test languages9 are very similar using this
different set of training languages. More concretely, for our FULL, SNstatic, and SNdyna
(NONEP) models we only get +0.12, −1.09, and +0.02 average differences in LAS scores
compared with our original results.10 Thus, our methods seem to be fairly robust with
respect to the choice of training languages, and more diversity in training languages
does not automatically result in better performance. One artifact that could influence
this is the fact that we have much less training data for some of these selected languages
(e.g., Irish and Indonesian [see Appendix A, Table 10]), so the quality of the retrieved
subnetworks could be worse than those found for our more high-resource training
languages. Thus, it could be possible that with more training data, this same set of
training languages would result in higher performance gains.

9. Conclusion

We present and compare two methods, namely, static and dynamic subnetworks, that
successfully help us guide selective sharing in multilingual training across two learning
frameworks: non-episodic learning and meta-learning. We show that through the use of
subnetworks, we can obtain considerable performance gains on cross-lingual transfer
to low resource languages compared to full model training baselines for dependency
parsing. Moreover, we quantitatively show that our subnetwork-based methods are
able to reduce negative interference. Finally, we extensively analyze the behavior of
our best performing models and show that they possess different strengths, obtaining
relatively large improvements on different sets of test languages with often opposing
properties. Given that our META-SNdyna model performs particularly well on data-
scarce and typologically distant languages from our training languages, this is an
interesting approach to further explore in future work on low-resource languages. In
particular, it would be interesting to investigate methods to integrate the strengths of
NONEP-SNstatic and META-SNdyna into one model.

Lastly, we test our results only on the task of dependency parsing, which is some-
what different from other NLP tasks as it has an annotation scheme explicitly designed
to be applied across languages universally. However, we would like to point out that
many NLP tasks are implicitly multilingual as well since most tasks do not involve a
language-specific annotation scheme. For instance, in Named Entity Recognition (NER),
the goal is to classify named entities into predefined categories such as “person”, “loca-
tion”, “organization”, and so forth. When performing NER for other languages, we still
select from the same categories. Moreover, negative interference is a general problem,
first addressed in multi-task learning (Ruder 2017), and later studied in multilingual
NLP (Wang, Lipton, and Tsvetkov 2020), that seems to occur whenever we attempt
to learn multiple tasks/languages within one model. In multilingual NLP, languages
will compete for the limited model capacity regardless of the task we are trying to
solve. It was already shown that across a wide range of NLP tasks—NER, POS tagging,
question answering, and natural language inference—negative interference occurs in
multilingual models, and resolving such language conflicts can improve overall cross-
lingual performance (Wang, Lipton, and Tsvetkov 2020). From our analysis of gradient
conflicts, we find that similar negative interference issues can be found for the task

9 For a fair comparison, we removed test languages included in our new training set, e.g., Indonesian, so
we average over 74 test languages instead. This was done for every experiment, where applicable.

10 We did not find clear patterns for the individual languages on which performance improvements are
obtained.

634

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

of dependency parsing, and are mitigated by our subnetwork-based methods. Thus,
as training with subnetworks appears to be a general approach to mitigating negative
interference, we expect it to bring the same benefits to other NLP tasks for which this
problem occurs. Moreover, we would like to point out that other studies have already
shown the effectiveness of various other types of subnetworks for different tasks, for
example, for Neural Machine Translation (Lin et al. 2021; Hendy et al. 2022) and cross-
lingual speech recognition (Lu et al. 2022), making it less likely that the effectiveness of
our methods are limited to dependency parsing only.

10. Limitations

One problem in multilingual NLP is that performance increases tend to happen for
a specific set of languages at a time rather than across all languages simultaneously.
This makes it hard to compare models and determine the state-of-the-art performance.
Moreover, it is hard to determine the usefulness of a new method as average scores are
not very informative when your test languages have a detrimental effect on this—for
instance, taking out a few low performing languages would already boost our average
performance substantially.

This also makes it more complicated to choose training languages. Changing the
training languages can positively influence our performance at test time, especially if
they are more similar to a large number of our test languages. However, when we want
our model to generalize beyond our chosen set of test languages, it can be misleading
to tailor the training set-up to the test data. Thus, while we do show that our methods
generally improve performance when using two completely different sets of training
languages, further experiments on finding an “optimal” set of training languages are
omitted from this study. In addition, meta-learning is notorious for being hard to
optimize; for example, slight changes in learning rates can have a detrimental effect
on performance (Antoniou, Edwards, and Storkey 2019). This also means that different
training languages can require different hyperparameter settings to work, which further
complicates the search for an optimal training set.

Another limitation is that while we use a diverse set of test languages, our approach
relies on the pretrained mBERT model, which means that it is unsuited to low-resource
languages whose scripts are not seen during pretraining. Finding useful ways to cir-
cumvent this problem would be a good direction for follow-up work.

Lastly, given that we fine-tune on only 8 languages, the smallest typological dis-
tance between the training languages and a test language is often still relatively large.
This makes the motivation for typology-informed subnetwork transfer at test time less
satisfactory. In future work, it should be further investigated what the effect is of using
more similar training and test language pairs for subnetwork transfer.

635

Computational Linguistics Volume 49, Number 3

A. Training and Data Details

Table 8
Number of sentences in the UD treebanks for our training languages.

Family TB Train Val. Test
ar Afro-Asiatic PADT 6,075 909 680
cs Slavic PDT 68,495 9,270 10,148
en German. EWT 12,543 2,002 2,077
hi Indic HDTB 13,304 1,659 1,684
it Roman. ISDT 13,121 564 482
et Urallic EDT 24,633 3,125 3,214
no German. Norsk 14,174 1,890 1,511
ru Slavic SynTag 48,814 6,584 6,491

Table 9
Final selection of learning rates. For all non-episodic models, we use the same learning rates
(NONEP). Similarly, we found the same optimal hyperparameter values for all outer-loop
learning rates of the meta-trained models (Meta-All). Moreover, the hyperparameter selection is
performed based on 4 validation languages: Bulgarian, Japanese, Telugu, and Persian.

Inner/Test LR
mBERT decoder

NONEP {1e-04, 5e-05, 1e-05} {1e-03, 5e-04, 1e-04}
Unstructured {1e-04, 5e-05, 1e-05} {1e-03, 5e-04, 1e-04}
META-FULL {1e-04, 5e-05, 1e-05} {1e-03, 5e-04, 1e-04}
META-SNstatic {1e-04, 5e-05, 1e-05} {1e-03, 5e-04, 1e-04}
META-SNdyna {1e-04, 5e-05, 1e-05} {1e-03, 5e-04, 1e-04}

Outer LR
Meta-All {1e-04, 5e-05, 1e-05 } {1e-03, 5e-04, 1e-04}

Table 10
Number of sentences in the UD treebanks for our new training languages used in Section 8.3.
The set covers 7 languages from 7 language families and 4 word orderings (i.e., SVO, SOV, VSO,
and no dominant order), and they cover 14 data domains.

Family TB Train Val. Test
be IE, Slavic HSE 22,853 1,301 1,077
fi Uralic TDT 12,217 1,364 1,555
ga Celtic IDT 4,005 451 454
he Afro-Asiatic HTB 5,241 484 491
id Austronesian GSD 4,482 559 557
tr Turkic Penn 14,850 622 924
zh Sino-Tibetan GSD 3,997 500 500

636

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

All models use the same UDify architecture with the dependency tag and arc
dimensions set to 256 and 768, respectively. At fine-tuning stage 1, we train for 60
epochs following the procedure of Langedijk et al. (2022) and Kondratyuk and Straka
(2019). The Adam optimizer is used with the learning rates of the decoder and BERT
layers set to 1e-3 and 5e-5, respectively. Weight decay of 0.01 is applied, and we use
a gradual unfreezing scheme, freezing the BERT layer weights for the first epoch. For
more details on the training procedure and hyperparameter selection, see Langedijk
et al. (2022). For fine-tuning on seperate languages to find the subnetworks, we apply
the same procedure.

Moreover, we need∼3 hours for pretraining and, depending on the training set size,
∼4 hours per language for fine-tuning and finding a subnetwork (note that this step is
run in parallel for all languages and only needs to be performed once for all models
trained with subnetworks). We then only require ∼1 hour for non-episodic training or
∼6 hours for meta-training. All models are trained on a NVIDIA TITAN RTX.

Acknowledgments
This project was in part supported by a
Google PhD Fellowship for the first author.
We would like to thank Tim Dozat and Vera
Axelrod for their thorough feedback and
insights.

References
Ansell, Alan, Edoardo Maria Ponti, Jonas

Pfeiffer, Sebastian Ruder, Goran Glavaš,
Ivan Vulić, and Anna Korhonen. 2021.
MAD-G: Multilingual adapter generation
for efficient cross-lingual transfer. In
Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4762–4781.
https://doi.org/10.18653/v1/2021
.findings-emnlp.410

Antoniou, Antreas, Harri Edwards, and
Amos Storkey. 2019. How to train your
MAML. In Seventh International Conference
on Learning Representations.

Arivazhagan, Naveen, Ankur Bapna, Orhan
Firat, Dmitry Lepikhin, Melvin Johnson,
Maxim Krikun, Mia Xu Chen, Yuan Cao,
George Foster, Colin Cherry, et al. 2019.
Massively multilingual neural machine
translation in the wild: Findings and
challenges. In Proceedings of the 2019
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long and Short Papers), pages 3874–3884.

Bartoldson, Brian, Ari Morcos, Adrian Barbu,
and Gordon Erlebacher. 2020. The
generalization-stability tradeoff in neural
network pruning. In Advances in Neural
Information Processing Systems, volume 33,
pages 20852–20864.

Bengio, Yoshua, Nicholas Léonard, and
Aaron Courville. 2013. Estimating or

propagating gradients through stochastic
neurons for conditional computation.
arXiv preprint arXiv:1308.3432. https://
doi.org/10.48550/arXiv.1308.3432

Blevins, Terra, Hila Gonen, and Luke
Zettlemoyer. 2022. Analyzing the
mono-and cross-lingual pretraining
dynamics of multilingual language
models. arXiv preprint arXiv:2205.11758.
https://doi.org/10.48550/arXiv
.2205.11758

Budhraja, Aakriti, Madhura Pande, Pratyush
Kumar, and Mitesh M. Khapra. 2021. On
the prunability of attention heads in
multilingual BERT. arXiv preprint
arXiv:2109.12683. https://doi.org
/10.48550/arXiv.2109.12683

Chen, Tianlong, Jonathan Frankle, Shiyu
Chang, Sijia Liu, Yang Zhang, Zhangyang
Wang, and Michael Carbin. 2020. The
lottery ticket hypothesis for pre-trained
BERT networks. In Advances in Neural
Information Processing Systems, volume 33,
pages 15834–15846.

Chi, Ethan A., John Hewitt, and
Christopher D. Manning. 2020. Finding
universal grammatical relations in
multilingual BERT. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 5564–5577.
https://doi.org/10.18653/v1/2020
.acl-main.493

Choenni, Rochelle and Ekaterina Shutova.
2022. Investigating language relationships
in multilingual sentence encoders through
the lens of linguistic typology.
Computational Linguistics, 48(3):635–672.
https://doi.org/10.1162/coli_a_00444

Choudhary, Chinmay. 2021. Improving the
performance of UDify with linguistic
typology knowledge. In Proceedings of the

637

https://doi.org/10.18653/v1/2021.findings-emnlp.410
https://doi.org/10.18653/v1/2021.findings-emnlp.410
https://doi.org/10.48550/arXiv.1308.3432
https://doi.org/10.48550/arXiv.1308.3432
https://doi.org/10.48550/arXiv.2205.11758
https://doi.org/10.48550/arXiv.2205.11758
https://doi.org/10.48550/arXiv.2109.12683
https://doi.org/10.48550/arXiv.2109.12683
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.1162/coli_a_00444

Computational Linguistics Volume 49, Number 3

Third Workshop on Computational Typology
and Multilingual NLP, pages 38–60.
https://doi.org/10.18653/v1/2021
.sigtyp-1.5

Chu, Yoeng Jin. 1965. On the shortest
arborescence of a directed graph. Scientica
Sinica, 14:1396–1400.

Clark, Kevin, Urvashi Khandelwal, Omer
Levy, and Christopher D. Manning. 2019.
What does BERT Look at? An analysis of
BERT’s attention. In Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP,
pages 276–286. https://doi.org/10
.18653/v1/W19-4828

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional
transformers for language understanding.
In Proceedings of NAACL-HLT,
pages 4171–4186.

Dozat, Timothy and Christopher D.
Manning. 2016. Deep biaffine attention for
neural dependency parsing. arXiv preprint
arXiv:1611.01734. https://doi.org
/10.48550/arXiv.1611.01734

Finn, Chelsea, Pieter Abbeel, and Sergey
Levine. 2017. Model-agnostic
meta-learning for fast adaptation of deep
networks. In International Conference on
Machine Learning, pages 1126–1135.

Foroutan, Negar, Mohammadreza Banaei,
Remi Lebret, Antoine Bosselut, and
Karl Aberer. 2022. Discovering
language-neutral sub-networks in
multilingual language models. arXiv
preprint arXiv:2205.12672.

Frankle, Jonathan and Michael Carbin. 2018.
The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In
International Conference on Learning
Representations.

Glavaš, Goran and Ivan Vulić. 2021.
Climbing the tower of treebanks:
Improving low-resource dependency
parsing via hierarchical source selection. In
Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021,
pages 4878–4888. https://doi.org/10
.18653/v1/2021.findings-acl.431

Gu, Jiatao, Yong Wang, Yun Chen,
Kyunghyun Cho, and Victor O. K. Li. 2020.
Meta-learning for low-resource neural
machine translation. In 2018 Conference on
Empirical Methods in Natural Language
Processing, EMNLP 2018, pages 3622–3631.
https://doi.org/10.18653/v1/D18-1398

Han, Song, Jeff Pool, John Tran, and William
Dally. 2015. Learning both weights and

connections for efficient neural network. In
Advances in Neural Information Processing
Systems, volume 28, pages 1135–1143.

Held, William and Diyi Yang. 2022. Shapley
head pruning: Identifying and removing
interference in multilingual transformers.
arXiv preprint arXiv:2210.05709. https://
doi.org/10.48550/arXiv.2210.05709

Hendy, Amr, Mohamed Abdelghaffar,
Mohamed Afify, and Ahmed Y. Tawfik.
2022. Domain specific sub-network for
multi-domain neural machine translation.
In Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for
Computational Linguistics and the 12th
International Joint Conference on Natural
Language Processing, pages 351–356.

Houlsby, Neil, Andrei Giurgiu, Stanislaw
Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for
NLP. In International Conference on Machine
Learning, pages 2790–2799.

Htut, Phu Mon, Jason Phang, Shikha Bordia,
and Samuel R. Bowman. 2019. Do
attention heads in BERT track syntactic
dependencies? arXiv preprint
arXiv:1911.12246. https://doi.org
/10.48550/arXiv.1911.12246

Jiao, Xiaoqi, Yichun Yin, Lifeng Shang, Xin
Jiang, Xiao Chen, Linlin Li, Fang Wang,
and Qun Liu. 2020. TinyBERT: Distilling
BERT for natural language understanding.
In Findings of the Association for
Computational Linguistics: EMNLP 2020,
pages 4163–4174. https://doi.org/10
.18653/v1/2020.findings-emnlp.372

Kingma, Diederik P. and Jimmy Ba. 2015.
Adam: A method for stochastic
optimization. In International Conference on
Learning Representations.

Kondratyuk, Dan and Milan Straka. 2019. 75
languages, 1 model: Parsing universal
dependencies universally. In Proceedings of
the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th
International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP),
pages 2779–2795. https://doi.org/10
.18653/v1/D19-1279

Lan, Zhenzhong, Mingda Chen, Sebastian
Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. 2019. ALBERT: A lite
BERT for self-supervised learning of
language representations. In International
Conference on Learning Representations.

Langedijk, Anna, Verna Dankers, Phillip
Lippe, Sander Bos, Bryan Cardenas

638

https://doi.org/10.18653/v1/2021.sigtyp-1.5
https://doi.org/10.18653/v1/2021.sigtyp-1.5
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.48550/arXiv.1611.01734
https://doi.org/10.48550/arXiv.1611.01734
https://doi.org/10.18653/v1/2021.findings-acl.431
https://doi.org/10.18653/v1/2021.findings-acl.431
https://doi.org/10.18653/v1/D18-1398
https://doi.org/10.48550/arXiv.2210.05709
https://doi.org/10.48550/arXiv.2210.05709
https://doi.org/10.48550/arXiv.1911.12246
https://doi.org/10.48550/arXiv.1911.12246
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

Guevara, Helen Yannakoudakis, and
Ekaterina Shutova. 2022. Meta-learning
for fast cross-lingual adaptation in
dependency parsing. In Proceedings of
the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1:
Long Papers), pages 8503–8520.
https://doi.org/10.18653/v1/2022.acl
-long.582

Lauscher, Anne, Vinit Ravishankar, Ivan
Vulić, and Goran Glavaš. 2020. From zero
to hero: On the limitations of zero-shot
language transfer with multilingual
transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural
Language Processing (EMNLP),
pages 4483–4499. https://doi.org/10
.18653/v1/2020.emnlp-main.363

Le, Hang, Juan Pino, Changhan Wang, Jiatao
Gu, Didier Schwab, and Laurent Besacier.
2021. Lightweight adapter tuning for
multilingual speech translation. In The
Joint Conference of the 59th Annual Meeting
of the Association for Computational
Linguistics and the 11th International Joint
Conference on Natural Language Processing
(ACL-IJCNLP 2021), volume 2,
pages 817–824. https://doi.org/10
.18653/v1/2021.acl-short.103

Lee, Seanie, Hae Beom Lee, Juho Lee, and
Sung Ju Hwang. 2021. Sequential reptile:
Inter-task gradient alignment for
multilingual learning. In International
Conference on Learning Representations.

Li, Hao, Asim Kadav, Igor Durdanovic,
Hanan Samet, and Hans Peter Graf. 2016.
Pruning filters for efficient convNets.
arXiv preprint arXiv:1608.08710.

Li, Yanyang, Fuli Luo, Runxin Xu, Songfang
Huang, Fei Huang, and Liwei Wang.
2022. Probing structured pruning on
multilingual pre-trained models: Settings,
algorithms, and efficiency. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1:
Long Papers), pages 1852–1865. https://
doi.org/10.18653/v1/2022.acl-long
.130

Lin, Zehui, Liwei Wu, Mingxuan Wang, and
Lei Li. 2021. Learning language specific
sub-network for multilingual machine
translation. In Proceedings of the 59th
Annual Meeting of the Association for
Computational Linguistics and the 11th
International Joint Conference on Natural
Language Processing (Volume 1: Long
Papers), pages 293–305. https://
doi.org/10.18653/v1/2021.acl
-long.25

Littell, Patrick, David R. Mortensen, Ke Lin,
Katherine Kairis, Carlisle Turner, and Lori
Levin. 2017. URIEL and Lang2Vec:
Representing languages as typological,
geographical, and phylogenetic vectors.
In Proceedings of the 15th Conference of the
European Chapter of the Association for
Computational Linguistics: Volume 2, Short
Papers, volume 2, pages 8–14. https://
doi.org/10.18653/v1/E17-2002

Lu, Yizhou, Mingkun Huang, Xinghua Qu,
Pengfei Wei, and Zejun Ma. 2022.
Language adaptive cross-lingual speech
representation learning with sparse
sharing sub-networks. In ICASSP
2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing
(ICASSP), pages 6882–6886. https://
doi.org/10.1109/ICASSP43922.2022
.9747671

Michel, Paul, Omer Levy, and Graham
Neubig. 2019. Are sixteen heads really
better than one? In Advances in Neural
Information Processing Systems, volume 32,
pages 14037–14047.

Naseem, Tahira, Regina Barzilay, and Amir
Globerson. 2012. Selective sharing for
multilingual dependency parsing. In
Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics:
Long Papers-Volume 1, pages 629–637.

Nivre, Joakim, Marie-Catherine De Marneffe,
Filip Ginter, Yoav Goldberg, Jan Hajic,
Christopher D. Manning, Ryan McDonald,
Slav Petrov, Sampo Pyysalo, Natalia
Silveira, et al. 2016. Universal
dependencies v1: A multilingual treebank
collection. In Proceedings of the Tenth
International Conference on Language
Resources and Evaluation (LREC’16),
pages 1659–1666.

Nooralahzadeh, Farhad, Ioannis Bekoulis,
Johannes Bjerva, and Isabelle Augenstein.
2020. Zero-shot cross-lingual transfer with
meta learning. In the 2020 Conference on
Empirical Methods in Natural Language
Processing, pages 4547–4562. https://
doi.org/10.18653/v1/2020.emnlp
-main.368

Nooralahzadeh, Farhad and Rico Sennrich.
2022. Improving the cross-lingual
generalisation in visual question
answering. arXiv preprint arXiv:2209.02982.
https://doi.org/10.48550/
arXiv.2209.02982

Pfeiffer, Jonas, Ivan Vulić, Iryna Gurevych,
and Sebastian Ruder. 2020. MAD-X: An
adapter-based framework for multi-task
cross-lingual transfer. In Proceedings of the

639

https://doi.org/10.18653/v1/2022.acl-long.582
https://doi.org/10.18653/v1/2022.acl-long.582
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2021.acl-short.103
https://doi.org/10.18653/v1/2021.acl-short.103
https://doi.org/10.18653/v1/2022.acl-long.130
https://doi.org/10.18653/v1/2022.acl-long.130
https://doi.org/10.18653/v1/2022.acl-long.130
https://doi.org/10.18653/v1/2021.acl-long.25
https://doi.org/10.18653/v1/2021.acl-long.25
https://doi.org/10.18653/v1/2021.acl-long.25
https://doi.org/10.18653/v1/E17-2002
https://doi.org/10.18653/v1/E17-2002
https://doi.org/10.1109/ICASSP43922.2022.9747671
https://doi.org/10.1109/ICASSP43922.2022.9747671
https://doi.org/10.1109/ICASSP43922.2022.9747671
https://doi.org/10.18653/v1/2020.emnlp-main.368
https://doi.org/10.18653/v1/2020.emnlp-main.368
https://doi.org/10.18653/v1/2020.emnlp-main.368
https://doi.org/10.48550/arXiv.2209.02982
https://doi.org/10.48550/arXiv.2209.02982

Computational Linguistics Volume 49, Number 3

2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP),
pages 7654–7673. https://doi.org/10
.18653/v1/2020.emnlp-main.617

Pires, Telmo, Eva Schlinger, and Dan
Garrette. 2019. How multilingual is
multilingual BERT? In Proceedings of the
57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001.
https://doi.org/10.18653/v1/P19
-1493

Prasanna, Sai, Anna Rogers, and Anna
Rumshisky. 2020. When BERT plays the
lottery, all tickets are winning. In
Proceedings of the 2020 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 3208–3229.
https://doi.org/10.18653/v1/2020
.emnlp-main.259

Ruder, Sebastian. 2017. An overview of
multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098.
https://doi.org/10.48550/arXiv
.1706.05098

Sanh, Victor, Lysandre Debut, Julien
Chaumond, and Thomas Wolf. 2019.
DistilBERT, a distilled version of BERT:
Smaller, faster, cheaper and lighter.
arXiv preprint arXiv:1910.01108. https://
doi.org/10.48550/arXiv.1910.01108

Sun, Tianxiang, Yunfan Shao, Xiaonan Li,
Pengfei Liu, Hang Yan, Xipeng Qiu, and
Xuanjing Huang. 2020. Learning sparse
sharing architectures for multiple tasks.
In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 8936–8943.
https://doi.org/10.1609/aaai
.v34i05.6424

Tran, Ke M. and Arianna Bisazza. 2019.
Zero-shot dependency parsing with
pre-trained multilingual sentence
representations. In Proceedings of the 2nd
Workshop on Deep Learning Approaches for
Low-Resource NLP (DeepLo 2019),
pages 281–288. https://doi.org/10
.18653/v1/D19-6132

Turc, Iulia, Kenton Lee, Jacob Eisenstein,
Ming-Wei Chang, and Kristina Toutanova.
2021. Revisiting the primacy of English in
zero-shot cross-lingual transfer. arXiv
preprint arXiv:2106.16171. https://
doi.org/10.48550/arXiv.2106.16171

Üstün, Ahmet, Arianna Bisazza, Gosse
Bouma, and Gertjan van Noord. 2020.
UDapter: Language adaptation for truly
universal dependency parsing. In
Proceedings of the 2020 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 2302–2315.

https://doi.org/10.18653/v1/2020
.emnlp-main.180

van der Goot, Rob, Ahmet Üstün, Alan
Ramponi, Ibrahim Sharaf, and Barbara
Plank. 2021. Massive choice, ample tasks
(MaChAmp): A toolkit for multi-task
learning in NLP. In 16th Conference of the
European Chapter of the Association for
Computational Linguistics: System
Demonstrations (EACL), pages 176–197.
https://doi.org/10.18653/v1/2021
.eacl-demos.22

Vaswani, Ashish, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information
Processing Systems, volume 30,
pages 6000–6010.

Voita, Elena, David Talbot, Fedor Moiseev,
Rico Sennrich, and Ivan Titov. 2019.
Analyzing multi-head self-attention:
Specialized heads do the heavy lifting,
the rest can be pruned. In 57th Annual
Meeting of the Association for Computational
Linguistics, pages 5797–5808.
https://doi.org/10.18653/v1/P19
-1580

Wang, Zirui, Zachary C. Lipton, and Yulia
Tsvetkov. 2020. On negative interference
in multilingual models: Findings and a
meta-learning treatment. In Proceedings
of the 2020 Conference on Empirical
Methods in Natural Language Processing
(EMNLP), pages 4438–4450. https://
doi.org/10.18653/v1/2020.emnlp
-main.359

Wu, Qianhui, Zijia Lin, Guoxin Wang, Hui
Chen, Börje F. Karlsson, Biqing Huang,
and Chin-Yew Lin. 2020. Enhanced
meta-learning for cross-lingual named
entity recognition with minimal resources.
In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 9274–9281.
https://doi.org/10.1609/aaai
.v34i05.6466

Xu, Runxin, Fuli Luo, Baobao Chang,
Songfang Huang, and Fei Huang. 2022.
S4-Tuning: A simple cross-lingual
sub-network tuning method. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2:
Short Papers), pages 530–537. https://
doi.org/10.18653/v1/2022.acl
-short.58

Yang, Mu, Andros Tjandra, Chunxi Liu,
David Zhang, Duc Le, John H. L. Hansen,
and Ozlem Kalinli. 2022. Learning ASR
pathways: A Sparse multilingual ASR

640

https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/2020.emnlp-main.259
https://doi.org/10.18653/v1/2020.emnlp-main.259
https://doi.org/10.48550/arXiv.1706.05098
https://doi.org/10.48550/arXiv.1706.05098
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.1609/aaai.v34i05.6424
https://doi.org/10.1609/aaai.v34i05.6424
https://doi.org/10.18653/v1/D19-6132
https://doi.org/10.18653/v1/D19-6132
https://doi.org/10.48550/arXiv.2106.16171
https://doi.org/10.48550/arXiv.2106.16171
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/2020.emnlp-main.359
https://doi.org/10.18653/v1/2020.emnlp-main.359
https://doi.org/10.18653/v1/2020.emnlp-main.359
https://doi.org/10.1609/aaai.v34i05.6466
https://doi.org/10.1609/aaai.v34i05.6466
https://doi.org/10.18653/v1/2022.acl-short.58
https://doi.org/10.18653/v1/2022.acl-short.58
https://doi.org/10.18653/v1/2022.acl-short.58

Choenni, Garrette, and Shutova Language-Specific Subnetworks for Dependency Parsing

model. arXiv preprint arXiv:2209.05735.
https://doi.org/10.
48550/arXiv.2209.05735

Yu, Tianhe, Saurabh Kumar, Abhishek
Gupta, Sergey Levine, Karol Hausman,
and Chelsea Finn. 2020. Gradient surgery
for multi-task learning. In Advances in
Neural Information Processing Systems,
volume 33, pages 5824–5836.

Zeman, Daniel, Jan Hajic, Martin Popel,
Martin Potthast, Milan Straka, Filip Ginter,
Joakim Nivre, and Slav Petrov. 2018.
CoNLL 2018 shared task: Multilingual

parsing from raw text to universal
dependencies. In Proceedings of the CoNLL
2018 Shared Task: Multilingual parsing from
raw text to universal dependencies,
pages 1–21. https://doi.org/10.18653
/v1/K18-2001

Zhang, Zhengyan, Fanchao Qi, Zhiyuan Liu,
Qun Liu, and Maosong Sun. 2021. Know
what you don’t need: Single-shot
meta-pruning for attention heads. In AI
Open, volume 2, pages 36–42. https://
doi.org/10.1016/j.aiopen.2021.05
.003

641

https://doi.org/10.48550/arXiv.2209.05735
https://doi.org/10.48550/arXiv.2209.05735
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.1016/j.aiopen.2021.05.003
https://doi.org/10.1016/j.aiopen.2021.05.003
https://doi.org/10.1016/j.aiopen.2021.05.003

	Introduction
	Background and Related Work
	Pruning and Sparse Networks
	Selective Parameter Sharing
	Meta-learning
	Dependency Parsing

	Data
	Methodology
	Model
	Training Procedure
	Subnetwork Masks
	Meta-learning with Subnetworks
	Few-shot Fine-tuning at Test Time
	Baselines

	Results
	Analysis
	Effect of Subnetworks at Training Time
	Interaction Between Subnetworks
	Gradient Conflicts and Similarity

	Ablations
	Random Ablations
	Unstructured Pruning
	Effect of Selected Training Languages

	Conclusion
	Limitations
	Training and Data Details

