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Grammatical Error Correction (GEC) is the task of automatically detecting and correcting
errors in text. The task not only includes the correction of grammatical errors, such as missing
prepositions and mismatched subject–verb agreement, but also orthographic and semantic errors,
such as misspellings and word choice errors, respectively. The field has seen significant progress
in the last decade, motivated in part by a series of five shared tasks, which drove the development
of rule-based methods, statistical classifiers, statistical machine translation, and finally neural
machine translation systems, which represent the current dominant state of the art. In this
survey paper, we condense the field into a single article and first outline some of the linguistic
challenges of the task, introduce the most popular datasets that are available to researchers (for
both English and other languages), and summarize the various methods and techniques that have
been developed with a particular focus on artificial error generation. We next describe the many
different approaches to evaluation as well as concerns surrounding metric reliability, especially
in relation to subjective human judgments, before concluding with an overview of recent progress
and suggestions for future work and remaining challenges. We hope that this survey will serve as
a comprehensive resource for researchers who are new to the field or who want to be kept apprised
of recent developments.

1. Introduction

Writing is a learned skill that is particularly challenging for non-native language users.
We all make occasional mistakes with punctuation, spelling, and minor infelicities of
word choice in our native language, but non-native writers often also struggle to create
grammatical and comprehensible texts. Research in the field of Natural Language Pro-
cessing (NLP) has addressed the problem of “ill-formed input” at least since the 1980s
because downstream parsing of text usually collapsed unless input was grammatical
(Kwasny and Sondheimer 1981; Jensen et al. 1983). However, useful applications able
to significantly assist non-native writers only began to appear in the 2000s, such as
ETS’s Criterion (Burstein, Chodorow, and Leacock 2003) and Microsoft’s ESL Assistant
(Leacock, Gamon, and Brockett 2009). These systems were largely based on hand-
coded “mal-rules” applied to the output from robust parsers that suggested corrections
for errors.

Around the same time, researchers began exploring more data-driven approaches
using supervised machine learning models built from annotated corpora of errorful text
with exemplary corrections (Brockett, Dolan, and Gamon 2006; De Felice and Pulman
2008; Rozovskaya and Roth 2010b; Tetreault, Foster, and Chodorow 2010; Dahlmeier
and Ng 2011b). The Helping Our Own (HOO) shared task (Dale, Anisimoff, and
Narroway 2012), which attracted 14 research groups to compete and report their results
on correcting English determiner and preposition choice errors using the First Cer-
tificate in English (FCE) corpus (Yannakoudakis, Briscoe, and Medlock 2011), marked
with hindsight the turning point from rule-based to data-driven methods as well as
burgeoning interest in the task. Leacock et al. (2014) subsequently published a book-
length survey summarizing progress in the field up to this point.

The next decade has seen three further expanded shared tasks and an explosion
of research and publications, both from participants in these competitions and others
benchmarking their systems against the released test sets. Performance has increased
roughly three-fold, and today, most state-of-the-art systems treat the task as one of
“translation” from errorful to corrected text, including the latest system deployed in
Google Docs and Gmail (Hoskere 2019). Recently, Wang et al. (2021) provided another
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detailed survey of work on grammatical error correction summarizing most work
published since Leacock et al. (2014). In this article, we provide a more in-depth focus
on very recent deep learning–based approaches to the task as well as a more detailed
discussion of the nature of the task, its evaluation, and other remaining challenges
(such as multilingual Grammatical Error Correction [GEC]) in order to better equip
researchers with the insights required to be able to contribute to further progress.

1.1 The Task

The definition of a grammatical error is surprisingly difficult. Some types of spelling
errors (such as accomodation with a single m) are about equally distributed between
native and non-native writers and have no grammatical reflexes, so could be reason-
ably excluded. Others, such as he eated, are boundary cases as they result from over-
regularization of morphology, whereas he would eated is clearly ungrammatical in the
context of a modal auxiliary verb. At the interpretative boundary, infelicitous discourse
organization, such as Kim fell. Sandy pushed him. where the intention is to explain why
Kim fell, is not obviously a grammatical error per se but nevertheless can be “corrected”
via a tense change (Sandy had pushed him.) as opposed to a reordering of the sentences.
Other tense changes that can span sentences appear more grammatical, such as Kim will
make Sandy a sandwich. Sandy ate it., as the discourse is incoherent and correction will
require a tense change in one or other sentence.

In practice, the task has increasingly been defined in terms of what corrections
are annotated in corpora used for the shared tasks. These use a variety of annotation
schemes but all tend to adopt minimal modifications of errorful texts to create error-
free text with the same perceived meaning. Other sources of annotated data, such as
that sourced from the online language learning platform Lang-8 (Mizumoto et al. 2012;
Tajiri, Komachi, and Matsumoto 2012), often contain much more extensive rewrites of
entire paragraphs of text. Given this resource-derived definition of the task, systems are
evaluated on their ability to correct all kinds of mistakes in text, including spelling and
discourse level errors that have no or little grammatical reflex. The term “Grammatical”
Error Correction is thus something of a misnomer, but is nevertheless now commonly
understood to encompass errors that are not always strictly grammatical in nature. A
more descriptive term is Language Error Correction.

Table 1 provides a small sample of (constructed) examples that illustrate the range
of errors to be corrected and some of the issues that arise with the precise definition and

Table 1
Example error types.

Type Error Correction

Preposition I sat in the talk I sat in on the talk
Morphology dreamed dreamt
Determiner I like the ice cream I like ice cream
Tense/Aspect I like kiss you I like kissing you
Agreement She likes him and kiss him She likes him and kisses him
Syntax I have not the book I do not have the book
Punctuation We met they talked and left We met, they talked and left
Unidiomatic We had a big conversation We had a long conversation
Multiple I sea the see from the seasoar I saw the sea from the seesaw
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evaluation of the task. Errors can be classified into three broad categories: replacement
errors, such as dreamed for dreamt in the second example; omission errors, such as
on in the first example; and insertion errors, such as the in the third example. Some
errors are complex in the sense that their correction requires a sequence of replacement,
omission, or insertion steps to correct, as with the syntax example. Sentences may also
contain multiple distinct errors that require a sequence of corrections, as in the multiple
example. Both the classification and specification of correction steps for errors can be
and has been achieved using different schemes and approaches. For instance, correction
of the syntax example involves transposing two adjacent words so we could introduce
a fourth broad class and correction step of transposition (word order). All extant an-
notation schemes break these broad classes down into further subclasses based on the
part-of-speech of the words involved, and perceived morphological, lexical, syntactic,
semantic, or pragmatic source of the error. The schemes vary in the number of such
distinctions, ranging from just over two dozen (NUCLE: Dahlmeier, Ng, and Wu 2013)
to almost one hundred (CLC: Nicholls 2003). The schemes also identify different error
spans in source sentences and thus suggest different sets of edit operations to obtain the
suggested corrections. For instance, the agreement error example might be annotated
as She likes him and [kiss → kisses] him at the token level or simply [ε → es] at the
character level. These differing annotation decisions affected the evaluation of system
performance in artefactual ways, so a two-stage automatic standardization process
was developed, ERRANT (Felice, Bryant, and Briscoe 2016; Bryant, Felice, and Briscoe
2017), which maps parallel errorful and corrected sentence pairs to a single annotation
scheme using a linguistically enhanced alignment algorithm and series of error type
classification rules. This scheme uses 25 main error type categories, based primarily on
part-of-speech and morphology, which are further subdivided into missing (omission),
unnecessary (insertion), and replacement errors. This approach allows consistent au-
tomated training and evaluation of systems on any or all parallel corpora as well as
supporting a more fined-grained analysis of the strengths and weaknesses of systems
in terms of different error types.

Ultimately, however, the correction of errors requires an understanding of the
communicative intention of the writer. For instance, the determiner example in Table 1
implicitly assumes a “neutral” context where the intent is to make a statement about
generic ice cream rather than a specific instance. In a context where, say, a specific
ice cream dessert is being compared to an alternative dessert, then the determiner is
felicitous. Similarly, the preposition omission error might not be an error if the writer
is describing a context in which a talk was oversubscribed and many attendees had
to stand because of a lack of seats. Though annotators will most likely take both the
context and perceived writer’s intention into account when identifying errors, GEC
itself is instead often framed as an isolated sentence-based task that ignores the wider
context. This can introduce noise in the task in that errorful sequences in context may
appear correct in isolation out of context. A related issue is that correction may not
only depend on communicative intent, but also factors such as dialect and genre. For
example, correcting dreamed to dreamt may be appropriate if the target is British English,
but incorrect for American English.

A larger issue arises with differing possibilities for correction. For example, correct-
ing the tense/aspect example to kissing or to kiss in the context of likes seems equally
correct. However, few existing corpora provide more than one possibility, which means
the true performance of systems is often underestimated. However, the same two
corrections are not equally correct as complements of a verb, such as try depending on
whether the context implies that a kissing event occurred or not. The issue of multiple
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possible corrections arises with many if not most examples: For instance, I haven’t the
book; We met them, talked and left; We had an important conversation; The sea I see from
the seesaw (is calm) are all plausible alternative corrections for some of the examples in
Table 1. For this reason, several of the shared tasks have also evaluated performance on
grammatical error detection, as this is valuable in some applications. Recently, some
work has explored treating the GEC task as one of document-level correction (e.g.,
Chollampatt, Wang, and Ng 2019; Yuan and Bryant 2021) which, in principle, could
ameliorate some of these issues but is currently hampered by a lack of appropriately
structured corpora.

1.2 Survey Structure

We organize the remainder of this survey according to Table 2. We note that our taxon-
omy of core approaches, additional techniques, and data augmentation (Section 3–5)
is similar to that of Wang et al. (2021), because these sections contain unavoidable
discussions of well-established techniques. We nevertheless believe this is the most
effective way of categorizing this information and have endeavored to make the sections
complementary in terms of the insights and information they provide.

2. Data

Like most tasks in NLP, the cornerstone of modern GEC systems is data. State-of-the-art
neural models depend on millions or billions of words and the quality of this data is
paramount to model success. Collecting high-quality annotated data is a slow and labo-
rious process, however, and there are fewer resources available in GEC than other fields
such as machine translation. This section hence first outlines some key considerations of

Table 2
Survey structure.

Subject Topics

Section 2 Data Data collection and annotation, benchmark English
datasets, other English datasets, non-English datasets

Section 3 Core Approaches Classifiers, statistical machine translation, neural machine
translation, edit-based approaches, language models and
low-resource systems

Section 4 Additional Techniques Reranking, ensembling and system combination, multi-
task learning, custom inference methods, contextual GEC,
Generative Adversarial Networks (GANs)

Section 5 Data Augmentation Rule-based noise injection, probabilistic error patterns,
back-translation, round-trip translation

Section 6 Evaluation Benchmark metrics, reference-based metrics, reference-
less metrics, metric reliability and human judgments,
common experimental settings

Section 7 System Comparison Recent state-of-the-art systems
Section 8 Future Challenges Domain generalization, personalized systems, feedback

comment generation, model interpretability, semantic er-
rors, contextual GEC, system combination, training data
selection, unsupervised approaches, multilingual GEC,
spoken GEC, improved evaluation

Section 9 Conclusion –
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data collection in GEC and highlights the importance of robust annotation guidelines.
It next introduces the most commonly used corpora in English, as well as some less
commonly used corpora, before concluding with GEC corpora for other languages.
Artificial data has also become a popular topic in recent years, but this section only
covers human annotated data; artificial data will be covered in Section 5.

2.1 Annotation Challenges

As mentioned in Section 1.1, the notion of a grammatical error is hard to define as
different errors may have different scope (e.g., local vs. contextual), complexity (e.g.,
orthographic vs. semantic), and corrections (e.g., [this books → this book] vs. [this books
→ these books]. Human annotation is thus an extremely cognitively demanding task
and so clear annotation guidelines are a crucial component of dataset quality. This
section briefly outlines three important aspects of data collection: Minimal vs. Fluent
Corrections, Annotation Consistency, and Preprocessing Challenges.

Minimal vs. Fluent Corrections. Most GEC corpora have been annotated on the principle
of minimal corrections, that is, annotators should make the minimum number of changes
to make a text grammatical. Sakaguchi et al. (2016) argue, however, that this can of-
ten lead to corrections that sound unnatural, and so it would be better to annotate
corpora on the principle of fluent corrections instead. Consider the following example:

Original I want explain to you some interesting part from my experience.
Minimal I want to explain to you some interesting parts of my experience.
Fluent I want to tell you about some interesting parts of my experience.

While the minimal correction primarily inserts a missing infinitival to before explain to
make the sentence grammatical, the fluent correction also changes explain to tell you
about because it is more idiomatic to tell someone about an experience rather than
explain an experience.

One of the main challenges of this distinction, however, is that it is very difficult
to draw a line between what constitutes a minimal correction and what constitutes a
fluent correction. This is because minimal corrections (e.g., missing determiners) are a
subset of fluent corrections, and so there cannot be fluent corrections without minimal
corrections. It is also the case that minimal corrections are typically easier to make than
fluent corrections (for both humans and machines), although it is undeniable that fluent
corrections are the more desirable outcome. Ultimately, although it is very difficult to
precisely define a fluent correction, annotation guidelines should nevertheless attempt
to make clear the extent to which annotators are expected to edit.

Annotation Consistency. A significant challenge of human annotation is that corrections
are subjective and there is often more than one way to correct a sentence (Bryant and Ng
2015; Choshen and Abend 2018b). It is nevertheless important that annotators attempt to
be consistent in their judgments, especially if they are explicitly annotating edit spans.
For example, the edit [has eating → was eaten] can also be represented as [has → was]
and [eating→ eaten], and this choice not only affects data exploration and analysis, but
can also have an impact on edit-based evaluation. Similarly, the edit [the informations→
information] can also be represented as [the → ε] and [informations → information], but
the latter may be more intuitive because it represents two independent edits of clearly
distinct types. Explicit error type classification is thus another important aspect of
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annotator consistency, as an error type framework (if any) not only increases the cogni-
tive burden on the annotator, but also might influence an annotator toward a particular
correction given the error types that are available (Sakaguchi et al. 2016). Ultimately, if
annotators are tasked with explicitly defining the edits they make to correct a sentence,
annotator guidelines must clearly define the notion of an edit.

Preprocessing Challenges. While human annotators are trained to correct natural text,
GEC systems are typically trained to correct word tokenized sentences (mainly for
evaluation purposes). This mismatch means that human annotations typically undergo
several preprocessing steps in order to produce the desired output format (Bryant and
Felice 2016). The first of these transformations involves converting character-level edits
to token-level edits. While this is often straightforward, it can sometimes be the case
that a human-annotated character span does not map to a complete token; for example,
[ing → ed] to denote the edit [dancing → danced]. Although such cases can often (but
not always) be resolved automatically (e.g., by expanding the character spans of the
edit or calculating token alignment), they can also be reduced by training annotators to
explicitly annotate longer spans rather than sub-words.

The second transformation involves sentence tokenization, which is potentially
more complex given human edits may change sentence boundaries (e.g., [A. B, C. →
A, B. C.]). Sentences are nevertheless typically tokenized based solely on the original
text, with the acknowledgment that some may be sentence fragments (to be joined with
the following sentence) and that edits that cross sentence boundaries are ignored (e.g.,
[. Because→ , because]. It is worth noting that this issue only affects sentence-based GEC
systems (the vast majority) but paragraph or document-based systems are unaffected.

2.2 English Datasets

A small number of English GEC datasets have become popular for training and testing
GEC systems, mostly as a result of shared tasks.1 This section introduces them as well
as other less popular datasets for English (Table 3). We acknowledge that this is by no
means an exhaustive list, but highlight datasets that have gained some traction in the
last few years.

2.2.1 Benchmark English Datasets

FCE. The First Certificate in English (FCE) corpus (Yannakoudakis, Briscoe, and
Medlock 2011) is a public subset of the Cambridge Learner Corpus (CLC) (Nicholls
2003) that consists of 1,244 scripts (∼531k words) written by international learners of
English as a second language (L2 learners). Each script typically contains two answers
to a prompt in the style of a short essay, letter, or description, and each answer has been
corrected by a single annotator who has identified and classified each edit according to
a framework of 88 error types (Nicholls 2003) (71 unique error types are represented in
the FCE). The authors are all intermediate level (B1-B2 level on the Common European
Framework of Reference for Languages (CEFR) (Council of Europe 2001)) and the
data is split into standard training, development, and test sets. The FCE was used
as the official dataset of the HOO-2012 shared task (Dale, Anisimoff, and Narroway
2012), one of the official training datasets of the BEA-2019 shared task (Bryant et al.

1 https://www.cl.cam.ac.uk/research/nl/bea2019st/#data.
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Table 3
Human-annotated GEC datasets for English. The top half are commonly used to benchmark
GEC systems. A question mark (?) indicates unknown or approximated information. CEFR
levels: beginner (A1–A2), intermediate (B1–B2), advanced (C1–C2).

Corpus Use Sents Toks Refs Edit
Spans

Error
Types

Level Domain

FCE Train 28.3k 454k 1 3 71 B1-B2 Exams
Dev 2.2k 34.7k 1 3 71 B1-B2 Exams
Test 2.7k 41.9k 1 3 71 B1-B2 Exams

NUCLE Train 57.1k 1.16m 1 3 28 C1 Essays
CoNLL-2013 Dev/Test 1.4k 29.2k 1 3 28 C1 Essays

CoNLL-2014 Test 1.3k 30.1k 2–18 3 28 C1 Essays

Lang-8 Train 1.03m 11.8m 1–8 7 0 A1-C2? Web
JFLEG Dev 754 14.0k 4 7 0 A1-C2? Exams

Test 747 14.1k 4 7 0 A1-C2? Exams
W&I+ Train 34.3k 628k 1 3 55 A1-C2 Exams
LOCNESS Dev 4.4k 87.0k 1 3 55 A1-Native Exams, Essays
(BEA-2019) Test 4.5k 85.7k 5 3 55 A1-Native Exams, Essays

CLC Train 1.96m 29.1m 1 3 77 A1-C2 Exams
EFCamDat Train 4.60m 56.8m 1 3 25 A1-C2 Exams
WikEd Train 28.5m 626m 1 7 0 Native Wiki
AESW Train 1.20m 28.4m 1 3 0 C1-Native Science

Dev 148k 3.51m 1 3 0 C1-Native Science
Test 144k 3.45m 1 3 0 C1-Native Science

GMEG Dev 2.9k 60.9k 4 7 0 B1-B2,
Native

Exams, Web, Wiki

Test 2.9k 61.5k 4 7 0 B1-B2,
Native

Exams, Web, Wiki

CWEB Dev 6.7k 148k 2 3 55 Native Web
Test 6.8k 149k 2 3 55 Native Web

GHTC Train? 353k edits only 1 3 0 Native? Documentation

2019), and has otherwise commonly been used for grammatical error detection (Rei
and Yannakoudakis 2016; Bell, Yannakoudakis, and Rei 2019; Yuan et al. 2021). It also
contains essay level scores, as well as other limited metadata about the learner, and has
been used for automatic essay scoring (e.g., Ke and Ng 2019).

NUCLE/CoNLL. The National University of Singapore Corpus of Learner English
(NUCLE) (Dahlmeier, Ng, and Wu 2013) consists of 1,397 argumentative essays (∼1.16m
words) written by NUS undergraduate students who needed L2 English language
support. The essays, which are approximately C1 level, are written on a diverse range of
topics including technology, healthcare, and finance, and were each corrected by a single
annotator who identified and classified each edit according to a framework of 28 error
types. NUCLE was used as the official training corpus of the CoNLL-2013 and CoNLL-
2014 shared tasks (Ng et al. 2013, 2014) as well as one of the official training datasets of
the BEA-2019 shared task (Bryant et al. 2019). The CoNLL-2013 and CoNLL-2014 test
sets were annotated under similar conditions to NUCLE and respectively consist of 50
essays each (∼30k words) on the topics of (i) surveillance technology and population
aging, and (ii) genetic testing and social media. The CoNLL-2014 test set was also
doubly annotated by 2 independent annotators, resulting in 2 sets of official reference
annotations; Bryant and Ng (2015) and Sakaguchi et al. (2016) subsequently collected
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another 8 sets of annotations each for a total of 18 sets of reference annotations. The
CoNLL-2013 dataset is now occasionally used as a development set, while the CoNLL-
2014 dataset is one of the most commonly used benchmark test sets. One limitation of
the CoNLL-2014 test set is that it is not very diverse given that it consists entirely of
essays written by a narrow range of learners on only two different topics.

Lang-8. The Lang-8 Corpus of Learner English (Mizumoto et al. 2012; Tajiri, Komachi,
and Matsumoto 2012) is a preprocessed subset of the multilingual Lang-8 Learner
Corpus (Mizumoto et al. 2011), which consists of 100,000 submissions (∼11.8m words)
to the language learning social network service, Lang-8.2 The texts are wholly uncon-
strained by topic, and hence include the full range of ability levels (A1–C2), and were
written by international L2 English language learners with a bias toward Japanese L1
speakers. Although Lang-8 is one of the largest publicly available corpora, it is also
one of the noisiest as corrections are provided by other users rather than professional
annotators. A small number of submissions also contain multiple sets of corrections, but
all annotations are provided as parallel text and so do not contain explicit edits or error
types. Lang-8 was also one of the official training datasets of the BEA-2019 shared task
(Bryant et al. 2019).

JFLEG. The Johns Hopkins Fluency-Extended GUG corpus (JFLEG) (Napoles,
Sakaguchi, and Tetreault 2017) is a collection of 1,501 sentences (∼28.1k words) split
roughly equally into a development and test set. The sentences were randomly sampled
from essays written by L2 learners of English of an unspecified ability level (Heilman
et al. 2014) and corrected by crowdsourced annotators on Amazon Mechanical Turk
(Crowston 2012). Each sentence was annotated a total of 4 times, resulting in 4 sets of
parallel reference annotations, but edits were not explicitly defined or classified. The
main innovation of JFLEG is that sentences were corrected to be fluent rather than
minimally grammatical (Section 2.1). The main criticisms of JFLEG are that it is much
smaller than other test sets, the sentences are presented out of context, and it was not
corrected by professional annotators (Napoles, Nădejde, and Tetreault 2019).

W&I+LOCNESS. The Write & Improve (W&I) and LOCNESS corpora (Bryant et al.
2019) respectively consist of 3,600 essays (∼755k words) written by international learn-
ers of all ability levels (A1–C2) and 100 essays (∼46.2k words) written by native
British/American English undergraduates. It was released as the official training, de-
velopment, and test corpus of the BEA-2019 shared task and was designed to be
more balanced than other corpora such that there are roughly an equal number of
sentences at each ability level: Beginner, Intermediate, Advanced, Native. The W&I
essays come from submissions to the Write & Improve online essay-writing platform3

(Yannakoudakis et al. 2018), and the LOCNESS essays, which only constitute part of
the development and test sets, come from the LOCNESS corpus (Granger 1998). The
training and development set essays were each corrected by a single annotator, while
the test set essays were corrected by 5 annotators resulting in 5 sets of parallel reference
annotations. Edits were explicitly defined, but not manually classified, so error types
were added automatically using the ERRANT framework (Bryant, Felice, and Briscoe
2017). The test set references are not currently publicly available, so all evaluation on

2 http://lang-8.com.
3 https://writeandimprove.com/.
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this dataset is done via the BEA-2019 Codalab competition platform,4 which ensures
that all systems are evaluated under the same conditions.

2.2.2 Other English Datasets

CLC. The Cambridge Learner Corpus (CLC) (Nicholls 2003) is a proprietary collection
of over 130,000 scripts (∼29.1m words) written by international learners of English
(130 different first language backgrounds) for different Cambridge exams of all levels
(A1–C2) (Yuan, Briscoe, and Felice 2016; Bryant 2019). It is the superset of the public
FCE and annotated in the same way.

EFCAMDAT. The Education First Cambridge Database (EFCAMDAT) (Geertzen,
Alexopoulou, and Korhonen 2013) consists of 1.18m scripts (∼83.5m words) written
by international learners of all ability levels (A1–C2) submitted to the English First
online school platform. Approximately 66% of the scripts (∼56.8m words) have been
annotated with explicit edits that have been classified according to a framework of 25
error types (Huang et al. 2017). Since the annotations were made by teachers for the
purposes of giving feedback to students rather than for GEC system development, they
are not always complete (too many corrections may dishearten the learner).

WikEd. The Wikipedia Edit Error Corpus (WikEd) (Grundkiewicz and Junczys-
Dowmunt 2014) consists of tens of millions of sentences of revision histories from
articles on English Wikipedia. The texts are written and edited by native speakers
rather than L2 learners and not all changes are grammatical edits (e.g., information
updates). A preprocessed version of the corpus is available5 (28.5m sentences, 626m
words) that filters and modifies sentences such that they only contain edits similar to
those in NUCLE. The corpus also includes tools to facilitate the collection of similar
Wiki-based corpora for other languages.

AESW. The Automatic Evaluation of Scientific Writing (AESW) dataset consists of
316k paragraphs (∼35.5m words) extracted from 9,919 published scientific journal ar-
ticles and split into a training, development, and test set for the AESW shared task
(Daudaravicius et al. 2016). A majority of the paragraphs come from Physics, Math-
ematics, and Engineering journals and were written by advanced or native speakers.
The articles were edited by professional language editors who explicitly identified the
required edits but did not classify them by error type. Although large, one of the main
limitations of the AESW dataset is that the texts come from a very specific domain and
many sentences contain placeholder tokens for mathematical notation and reference
citations, which do not generalize to other domains.

GMEG. The Grammarly Multidomain Evaluation for GEC (GMEG) dataset (Napoles,
Nădejde, and Tetreault 2019) consists of 5,919 sentences (∼122.4k words) split approx-
imately equally across 3 different domains: formal native, informal native, and learner
text. Specifically, the formal text is sampled from the WikEd corpus (Grundkiewicz
and Junczys-Dowmunt 2014), the informal text is sampled from Yahoo Answers, and
the learner text is sampled from the FCE (Yannakoudakis, Briscoe, and Medlock 2011).

4 https://www.cl.cam.ac.uk/research/nl/bea2019st/#instr.
5 https://github.com/snukky/wikiedits.
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The sentences were sampled at the paragraph level (except for WikEd) to include some
context and were annotated by 4 professional annotators to produce 4 sets of alternative
references. One of the goals of GMEG was to diversify researchers away from purely L2
learner-based corpora.

CWEB. The Corrected Websites (CWEB) dataset (Flachs et al. 2020) consists of 13.6k
sentences (297k words) sampled from random paragraphs on the web in the Common-
Crawl dataset.6 Paragraphs were filtered to reduce noise (e.g., non-English and dupli-
cates) and loosely defined as formal (“sponsored”) and informal (“generic”) based on
the domain of the URL. The paragraphs, which are split equally between a development
set and a test set, were doubly annotated by 2 professional annotators and edits were
extracted and classified automatically using ERRANT (Bryant, Felice, and Briscoe 2017).
Like GMEG, one of the aims of CWEB was to introduce a dataset that extended beyond
learner corpora.

GHTC. The GitHub Typo Corpus (GHTC) (Hagiwara and Mita 2020) consists of 353k
edits from 203k commits to repositories in the GitHub software hosting website.7 All
the edits were gathered from repositories that met certain conditions (e.g., a permissive
license) and from commits that contained the word “typo” in the commit message. The
intuition behind the corpus was that developers often make small commits to correct
minor spelling/grammatical errors and that these annotations can be used for GEC.
The main limitation of GHTC is that the majority of edits are spelling or orthographic
errors from a specific domain (i.e., software documentation) and that the context of the
edit is not always a full sentence.

2.3 Non-English Datasets

Although most work on GEC has focused on English, corpora for other languages are
also slowly being created and publicly released for the purposes of developing GEC
models. This section introduces some of the most prominent (Table 4), along with other
relevant resources, but is again by no means an exhaustive list. These resources are
ultimately helping to pave the way for research into multilingual GEC (Náplava and
Straka 2019; Katsumata and Komachi 2020; Rothe et al. 2021).

Arabic. The Qatar Arabic Language Bank (QALB) project (Zaghouani et al. 2014) is
an initiative that aims to collect large corpora of annotated Arabic for the purposes
of Arabic GEC system development. A subset of this corpus was used as the official
training, development, and test data of the QALB-2014 and QALB-2015 shared tasks on
Arabic text correction (Mohit et al. 2014; Rozovskaya et al. 2015). In particular, QALB-
2014 released 21.3k documents (1.1m words) of annotated user comments submitted
to the Al Jazeera news website by native speakers, while QALB-2015 released 622
documents (90.8k words) of annotated essays written by the full range of Arabic L2
learners (A1–C2) (Zaghouani et al. 2015) along with an additional 920 documents (48.5k
words) of unreleased Al Jazeera comments. QALB-2015 thus had 2 test sets: one on
native Al Jazeera data and one on Arabic L2 learner essays. In all cases, files were
provided at the document level (rather than the sentence level) and edits were explicitly

6 https://commoncrawl.org/.
7 https://github.com/.
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Table 4
Human-annotated GEC datasets for non-English languages. A question mark (?) indicates
unknown or approximated information. CEFR levels: beginner (A1–A2), intermediate (B1–B2),
advanced (C1–C2).

Language Corpus Use Sents Toks Refs
Edit Error

Level Domain
Spans Types

Arabic QALB-2014 Train 19.4k∗ 1m 1 X 7 Native Web
Dev 1k∗ 53.8k 1 X 7 Native Web
Test 948∗ 51.3k 1 X 7 Native Web

QALB-2015 Train 310∗ 43.3k 1 X 7 A1-C2 Essays
Dev 154∗ 24.7k 1 X 7 A1-C2 Essays
Test 158∗ 22.8k 1 X 7 A1-C2 Essays
Test 920∗ 48.5k 1 X 7 Native Web

Chinese NLPTEA-2020 Train 1.1k† 36.9k‡ 1 X 4 A1-C2 Exams
Test 1.4k† 55.2k‡ 1 X 4 A1-C2 Exams

NLPCC-2018 Train 717k 14.1m‡ 1–21 7 0 A1-C2? Web
Test 2k 61.3k‡ 1–2 X 4 A1-C2? Essays

MuCGEC Dev 1.1k 50k‡ 2.3 X 19 A1-C2? Exams
Test 5.9k 228k‡ 2.3 X 19 A1-C2? Essays, Exams, Web

Czech AKCES-GEC Train 42.2k 447k 1 X 25 A1-Native Essays, Exams
Dev 2.5k 28.0k 2 X 25 A1-Native Essays, Exams
Test 2.7k 30.4k 2 X 25 A1-Native Essays, Exams

GECCC Train 66.6k 750k 1 X 65 A1-Native Essays, Exams, Web
Dev 8.5k 101k 1–2 X 65 A1-Native Essays, Exams, Web
Test 7.9k 98.1k 2 X 65 A1-Native Essays, Exams, Web

German Falko-MERLIN Train 19.2k 305k 1 X 56 A1-C2 Essays, Exams
Dev 2.5k 39.5k 1 X 56 A1-C2 Essays, Exams
Test 2.3k 36.6k 1 X 56 A1-C2 Essays, Exams

Japanese TEC-JL Test 1.9k 41.5k‡ 2 7 0 A1-C2? Forum

Russian RULEC-GEC Train 5k 83.4k 1 X 23 C1-C2 Essays
Dev 2.5k 41.2k 1 X 23 C1-C2 Essays
Test 5k 81.7k 1 X 23 C1-C2 Essays

Ukrainian UA-GEC Train 18.2k 285k 1 X 4 B1-Native Essays, Fiction
Test 2.5k 43.5k 1 X 4 B1-Native Essays, Fiction

∗
The Arabic datasets are split into documents rather than sentences.
† The Chinese NLPTEA datasets are split into paragraphs (1–5 sentences) rather than sentences.
‡ The Chinese and Japanese datasets are split into characters rather than tokens.

identified by trained annotators and classified automatically using a framework of 7
error types.

Chinese. The Test of Chinese as a Foreign Language (TOCFL) corpus (Lee, Tseng, and
Chang 2018) and the Hanyu Shuiping Kaoshi (HSK: Chinese Proficiency Test) corpus8

(Zhang 2009) respectively consist of 2.8k essays (1m characters) and 11k essays (4m
characters) written by the full range of language learners (A1–C2) who took Mandarin
Chinese language proficiency exams. Various subsets of these corpora were used as
the official training and test sets in the NLPTEA series of shared tasks on Chinese
Grammatical Error Diagnosis (i.e., error detection) between 2014 and 2020 (Yu, Lee,

8 http://yuyanziyuan.blcu.edu.cn/en/info/1043/1501.htm.
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and Chang 2014; Rao, Yang, and Zhang 2020). The most recent of these shared tasks,
NLPTEA-2020, released a total of 2.6k paragraphs (92.1k characters, 1–5 sentences each),
which were annotated by a single annotator according to a framework of 4 error types:
Redundant (R), Missing (M), Word Selection (S), or Word Order (W).

The NLPCC-2018 shared task (Zhao et al. 2018), which was the first shared task
on full error correction in Mandarin Chinese, released a further 717k training sentences
(14.1m characters) that were extracted from a cleaned subset of Lang-8 user submissions
(Mizumoto et al. 2011). Like the Lang-8 Corpus of Learner English, the ability level of
the authors in this dataset is unknown and corrections were provided by other users.
The test data for this shared task came from the PKU Chinese Learner Corpus and
consists of 2,000 sentences (61.3k characters) written by foreign college students. All test
sentences were first annotated by a single annotator, who also classified edits according
to the same 4-error-type framework as NLPTEA, and subsequently checked by a second
annotator who was allowed to make changes to the annotations if necessary.

The Multi-Reference Multi-Source Evaluation Dataset for Chinese Grammatical
Error Correction (MuCGEC) Zhang et al. (2022b) is a new corpus that is intended
to be a more robust test set for Chinese GEC. It contains a total of 7,063 sentences
(∼278k characters) sampled approximately equally from the NLPCC-2018 training set
(Lang-8), the NLPCC-2018 test set (PKU Chinese Learner Corpus), and the NLPTEA-
2018/2020 test sets (HSK Corpus). All sentences were annotated by multiple annotators,
but identical references were removed, so we report an average of 2.3 references per
sentence (90% of all sentences have 1–3 references). Edits were also classified according
to a scheme of 19 error types, including 5 main error types and 14 minor sub-types.

Czech. The AKCES-GEC corpus (Náplava and Straka 2019) consists of 47.3k sentences
(505k words) written by both learners of Czech as a second language (from both Slavic
and non-Slavic backgrounds) and Romani children who speak a Czech ethnolect as
a first language. The essays and exam-style scripts come from the Learner Corpus of
Czech as a Second Language (CzeSL) (Rosen 2016), which falls under the larger Czech
Language Acquisition Corpora (AKCES) project (Šebesta 2010). The essays in the train-
ing set were annotated once (1 set of annotations) and the essays in the development
and test sets were annotated twice (2 sets of annotations), all with explicit edits that
were classified according to a framework of 25 error types.

The Grammar Error Correction Corpus for Czech (GECCC) (Náplava et al. 2022) is
an extension of AKCES-GEC that includes both formal texts written by native Czech
primary and secondary school students as well as informal website discussions on
Facebook and Czech news websites, in addition to the texts written by Czech language
learners and Romani children. The total corpus consists of 83k sentences (949k words),
all of which were manually annotated (or re-annotated in order to preserve annota-
tion style) by 5 experienced annotators who explicitly identified edits. Edits were then
classified automatically by a variant of ERRANT (Bryant, Felice, and Briscoe 2017)
for Czech, which included a customized tagset of 65 error types. GECCC is currently
one of the largest non-English corpora and is also larger than most popular English
benchmarks.

German. The Falko-MERLIN GEC corpus (Boyd 2018) consists of 24k sentences (381k
words) written by learners of all ability levels (A1–C2). Approximately half the data
comes from the Falko corpus (Reznicek et al. 2012), which consists of minimally cor-
rected advanced German learner essays (C1–C2), while the other half comes from the
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MERLIN corpus (Boyd et al. 2014), which consists of standardized German language
exam scripts from a wide range of ability levels (A1–C1). Edits were not explicitly anno-
tated, but extracted and classified automatically using a variation of ERRANT (Bryant,
Felice, and Briscoe 2017) that was adapted for German and included a customized tagset
for German error types.

Japanese. The TMU Evaluation Corpus for Japanese Learners (TEC-JL) (Koyama et al.
2020) consists of 1.9k sentences (41.5k characters) written by language learners of un-
known level (A1–C2?) and submitted to the language learning social network service
Lang-8. TEC-JL is a subset of the multilingual Lang-8 Learner Corpus (Mizumoto et al.
2011) and was doubly annotated by 3 native Japanese university students (2 sets of
annotations) to be a more reliable test set than the original Lang-8 Learner Corpus,
which can be quite noisy.

Russian. The Russian Learner Corpus of Academic Writing (RULEC) (Alsufieva,
Kisselev, and Freels 2012) consists of essays written by L2 university students and
heritage Russian speakers in the United States. A subset of this corpus, 12.5k sentences
(206k words), was annotated by 2 native speakers of Russian with backgrounds in
linguistics and released as the RULEC-GEC corpus (Rozovskaya and Roth 2019). Edits
were explicitly annotated and classified according to a framework of 23 error types.
Another corpus of annotated Russian errors, the Russian Lang-8 corpus (RU-Lang8)
(Trinh and Rozovskaya 2021), which is a subset of the aforementioned multilingual
Lang-8 Learner Corpus (Mizumoto et al. 2011), was also recently announced; however,
the data has not yet been publicly released.

Ukrainian. The UA-GEC corpus (Syvokon and Nahorna 2021) consists of 20.7k sentences
(329k words) written by almost 500 authors from a wide variety of backgrounds (mostly
technical and humanities) and ability levels (two-thirds native). The texts cover a wide
range of topics, including short essays (formal, informal, fictional, or journalistic) and
translated works of literature, and were annotated by two native speakers with degrees
in Ukrainian linguistics. Edits were explicitly annotated and classified according to a
scheme of 4 error types: Grammar, Spelling, Punctuation, or Fluency.

3. Core Approaches

This section introduces some of the core approaches to GEC including classifiers (statis-
tical and neural), machine translation (statistical and neural), edit-based approaches,
and language models. We provide a high-level overview of how each of these ap-
proaches works and highlight notable models that have led to breakthroughs in system
development. These approaches provide the foundation on which additional techniques
(Section 4) and artificial error generation (Section 5) are built.

3.1 Classifiers

Machine learning classifiers were historically one of the most popular approaches to
GEC. The main reason for this was that some of the most common error types for
English as a second language (ESL) learners, such as article and preposition errors, have
small confusion sets and so are well-suited to multiclass classification. For example,
it is intuitive to build a classifier that predicts one of {a/an, the, ε} before every noun
phrase in a sentence. To do this, a classifier receives a number of features representing

656



Bryant et al. Grammatical Error Correction: A Survey

the context of the analyzed word or phrase in a sentence and outputs a predicted class
that constitutes a correction. Errors are flagged and corrected by comparing the original
word used in the text with the most likely candidate predicted by the classifier. This
approach has been applied to several common error types including:

• articles (Lee 2004; Han, Chodorow, and Leacock 2006; De Felice 2008;
Gamon et al. 2008; Gamon 2010; Dahlmeier and Ng 2011b; Kochmar,
Andersen, and Briscoe 2012; Rozovskaya and Roth 2013, 2014);

• prepositions (Chodorow, Tetreault, and Han 2007; De Felice 2008; Gamon
et al. 2008; Tetreault and Chodorow 2008; Gamon 2010; Dahlmeier and
Ng 2011b; Kochmar, Andersen, and Briscoe 2012; Rozovskaya and Roth
2013, 2014);

• noun number (Berend et al. 2013; van den Bosch and Berck 2013; Jia,
Wang, and Zhao 2013; Xiang et al. 2013; Yoshimoto et al. 2013;
Kunchukuttan, Chaudhury, and Bhattacharyya 2014);

• verb form (Lee and Seneff 2008; Tajiri, Komachi, and Matsumoto 2012;
van den Bosch and Berck 2013; Jia, Wang, and Zhao 2013; Rozovskaya
and Roth 2013, 2014; Rozovskaya, Roth, and Srikumar 2014).

Training examples consisting of native and/or learner data are represented as vec-
tors of features that are considered useful for the error type. Since the most useful fea-
tures often depend on the word class, it is necessary to build separate classifiers for each
error type and most of the prior classification-based approaches have focused on feature
engineering. For the vast majority of syntactically-motivated errors, features such as
contextual word and part-of-speech (POS) n-grams, lemmas, phrase constituency infor-
mation, and dependency relations are generally useful (Felice and Yuan 2014b; Leacock
et al. 2014; Rozovskaya and Roth 2014; Wang et al. 2021). The details of training vary
depending upon the classification algorithm, but popular examples include naive Bayes
(Rozovskaya and Roth 2011; Kochmar, Andersen, and Briscoe 2012), maximum entropy
(Lee 2004; Han, Chodorow, and Leacock 2006; Chodorow, Tetreault, and Han 2007;
De Felice 2008), decision trees (Gamon et al. 2008), support-vector machines (Putra and
Szabó 2013), and the averaged perceptron (Rozovskaya and Roth 2010a, 2010b, 2011).

More recently, neural network techniques have been applied to classification-based
GEC, where neural classifiers have been built using context words with pre-trained
word embeddings, like Word2Vec (Mikolov et al. 2013) and GloVe (Pennington, Socher,
and Manning 2014). Different neural network models have been proposed, including
convolutional neural networks (CNNs) (Sun et al. 2015), recurrent neural networks
(RNNs) (Wang, Li, and Lin 2017; Li et al. 2019), and pointer networks (Li et al. 2019).

One limitation of these classifiers, however, is that they only target very specific
error types with small confusion sets and do not extend well to errors involving
open-class words (such as word choice errors). Another weakness is that they heavily
rely on local context and treat errors independently, assuming that there is only one
error in the context and all the surrounding information is correct. When multiple
classifiers are combined for multiple error types, classifier order also matters and predic-
tions from individual classifiers may become inconsistent (Yuan 2017). These limitations
consequently mean that classifiers are generally no longer explored in GEC in favor of
other methods.
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3.2 Statistical Machine Translation

In contrast with statistical classifiers, one of the main advantages treating GEC as a
statistical machine translation (SMT) problem is that SMT can theoretically correct all
error types simultaneously without expert knowledge or feature engineering. This also
includes interacting errors, which are problematic for rule-based systems and classifiers.
Despite originally being developed for translation between different languages, SMT
has been successfully applied to GEC, which can be seen as a translation problem
from errorful to correct sentences. More specifically, although both the source and
target sentences are in the same language (i.e., monolingual translation), the source
may contain grammatical errors that should be “translated” to appropriate corrections.
SMT is inspired by the noisy channel model (Shannon 1948) and is mathematically
formulated using Bayes’ rule:

Ĉ = arg max
C

P(C|E) = arg max
C

P(E|C)P(C)
P(E) = arg max

C
P(E|C)P(C) (1)

where a correct sentence C is said to have passed through a noisy channel to produce an
erroneous sentence E, and the goal is to reconstruct the correct sentence Ĉ using a lan-
guage model (LM) P(C) and a translation model (TM) P(E|C)—see Figure 1. Candidate
sentences are generated by means of a decoder, which normally uses a beam search
strategy. The denominator P(E) in Equation (1) is ignored since it is constant across
all Cs.

The use of SMT for GEC was pioneered by Brockett, Dolan, and Gamon (2006),
who built a system to correct errors involving 14 countable and uncountable nouns.
Their training data comprised a large corpus of sentences extracted from news articles
that were deliberately modified to include artificial mass noun errors. Mizumoto et al.
(2011) applied the same techniques to Japanese error correction but improved on them
by not only considering a wider set of error types, but also training on real learner
examples extracted from the language learning social network website Lang-8. Yuan
and Felice (2013) subsequently trained a POS-factored SMT system to correct five types
of errors in learner text for the CoNLL-2013 shared task, and revealed the potential of
using SMT as a general approach for correcting multiple error types and interacting
errors simultaneously. In the following year, the two top-performing systems in the
CoNLL-2014 shared task demonstrated that SMT yielded state-of-the-art performance
on general error correction, in contrast with other methods (Felice et al. 2014; Junczys-
Dowmunt and Grundkiewicz 2014). This success led to SMT becoming a dominant

Source
P(C)

Noisy channel
P(E|C) Receiver

C E Ĉ

Figure 1
The noisy channel model (Shannon 1948).
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approach in the field and inspired other researchers to adapt SMT technology for GEC,
including:

• Adding GEC-specific features to the model to allow for the fact that most
words translate into themselves and errors are often similar to their
correct forms. Two types of these features include the Levenshtein
distance (Felice et al. 2014; Junczys-Dowmunt and Grundkiewicz 2014,
2016; Yuan, Briscoe, and Felice 2016; Grundkiewicz and
Junczys-Dowmunt 2018) and edit operations (Junczys-Dowmunt and
Grundkiewicz 2016; Chollampatt and Ng 2017; Grundkiewicz and
Junczys-Dowmunt 2018).

• Tuning parameter weights with different algorithms, including minimum
error rate training (MERT) (Kunchukuttan, Chaudhury, and
Bhattacharyya 2014; Junczys-Dowmunt and Grundkiewicz 2014), the
margin infused relaxed algorithm (MIRA) (Junczys-Dowmunt and
Grundkiewicz 2014), and pairwise ranking optimization (PRO)
(Junczys-Dowmunt and Grundkiewicz 2016).

• Training additional large-scale LMs on monolingual native data, such as
the British National Corpus (BNC) (Yuan 2017), Wikipedia
(Junczys-Dowmunt and Grundkiewicz 2014; Chollampatt and Ng 2017),
and Common Crawl (Junczys-Dowmunt and Grundkiewicz 2014, 2016;
Chollampatt and Ng 2017).

• Introducing neural network components, such as a neural network global
lexicon model (NNGLM) and neural network joint model (NNJM)
(Chollampatt, Taghipour, and Ng 2016; Chollampatt and Ng 2017).

Despite their success in GEC, SMT-based approaches suffer from a few shortcom-
ings. In particular, they (i) tend to produce locally well-formed phrases with poor over-
all grammar, (ii) exhibit a predilection for changing phrases to more frequent versions
even when the original is correct, resulting in unnecessary corrections, (iii) are unable to
process long-range dependencies, and (iv) are hard to constrain to particular error types
(Felice 2016; Yuan 2017). Last but not least, the performance of SMT systems depends
heavily on the amount and quality of parallel data available for training, which is very
limited in GEC. A common solution to this problem is to generate artificial datasets,
where errors are injected into well-formed text to produce pseudo-incorrect sentences,
as described in Section 5.

3.3 Neural Machine Translation

With the advent of deep learning and the promising results reported in machine trans-
lation and other sequence-to-sequence tasks, neural machine translation (NMT) was
naturally extended to GEC. Compared with SMT, NMT uses a single large neural
network to model the entire correction process, eliminating the need for complex GEC-
specific feature engineering. Training an NMT system is furthermore an end-to-end
process and so does not require separately trained and tuned components as in SMT.
Despite its simplicity, NMT has achieved state-of-the-art performance on various GEC
tasks (Flachs, Stahlberg, and Kumar 2021; Rothe et al. 2021).
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NMT employs the encoder–decoder framework (Cho et al. 2014). An encoder
first reads and encodes an entire input sequence x = (x1, x2, . . . , xT ) into hidden state
representations, and a decoder then generates an output sequence y = (y1, y2, . . . , yT′ )
by predicting the next word yt based on the input sequence x and all the previously
generated words {y1, y2, . . . , yt−1}:

p(y|x) =
T′∏

t=1

p(yt|{y1, y2, . . . , yt−1}, x) (2)

Different network architectures have been proposed for building the encoders and
decoders; three commonly used sequence-to-sequence models are RNNs (Bahdanau,
Cho, and Bengio 2015), CNNs (Gehring et al. 2017), and Transformers (Vaswani et al.
2017).

3.3.1 Recurrent Neural Networks. RNNs are a type of neural network that is specifically
designed to process sequential data. RNNs are used to transform a variable-length
input sequence to another variable-length output sequence (Cho et al. 2014; Sutskever,
Vinyals, and Le 2014). To handle long-term dependencies, gated units are usually used
in RNNs (Goodfellow, Bengio, and Courville 2016). The two most effective RNN gates
are Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) and Gated
Recurrent Units (GRU) (Cho et al. 2014). Bahdanau, Cho, and Bengio (2015) introduced
an attention mechanism to implement variable-length representations, which eased
optimization difficulty and resulted in improved performance. Yuan and Briscoe (2016)
presented the first work on the NMT-based approach for GEC. Their model consists
of a bidirectional RNN encoder and an attention-based RNN decoder. Xie et al. (2016)
proposed the use of a character-level RNN sequence-to-sequence model for GEC. Fol-
lowing their work, a hybrid model with nested attention at both the word and character
level was later introduced by Ji et al. (2017).

3.3.2 Convolutional Neural Networks. Another way of processing sequential data is by
using a CNN across a temporal sequence. CNNs are a type of neural network that
is designed to process grid-like data and specializes in capturing local dependen-
cies (Goodfellow, Bengio, and Courville 2016). CNNs were first applied to NMT by
Kalchbrenner and Blunsom (2013), but they were not as successful as RNNs until
Gehring et al. (2017) stacked several CNN layers followed by non-linearities. Inspired
by this work, Chollampatt and Ng (2018a) proposed a 7-layer CNN sequence-to-
sequence model for GEC. In their model, local context is captured by the convolution
operations performed over smaller windows and wider context is captured by the
multilayer structure. Their model was the first NMT-based model that significantly
outperformed prior SMT-based models. This model was later used in combination with
Transformers to build a state-of-the-art GEC system (Yuan et al. 2019).

3.3.3 Transformers. The Transformer (Vaswani et al. 2017) is the first sequence transducer
network that entirely relies on a self-attention mechanism to compute the representa-
tions of its input, without the need for recurrence or convolution. Its architecture allows
better parallelization on multiple GPUs, overcoming the weakness of RNNs.
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The Transformer has become the architecture of choice for machine translation since
its inception (Edunov et al. 2018; Wang et al. 2019; Liu et al. 2020). Previous work has
investigated the adaptation of NMT to GEC, such as optimizing the model with edit-
weighted loss (Junczys-Dowmunt et al. 2018) and adding a copy mechanism (Zhao
et al. 2019; Yuan et al. 2019). A copy mechanism allows the model to directly copy
tokens from the source sentence, which often has substantial overlap with the target
sentence in GEC. The Copy-Augmented Transformer has become a popular alternative
architecture for GEC (Hotate, Kaneko, and Komachi 2020; Wan, Wan, and Wang 2020).
Another modification to the Transformer architecture is altering the encoder-decoder
attention mechanism in the decoder to accept and make use of additional context. For
example, Kaneko et al. (2020) added the BERT representation of the input sentence as
additional context for GEC, while Yuan and Bryant (2021) added the previous sentences
in the document, and Zhang et al. (2022c) added a tree-based syntactic representation
of the input sentence.

As the Transformer architecture has a large number of parameters, yet parallel GEC
training data is limited, pre-training has become a standard procedure in building GEC
systems. The first Transformer-based GEC system (Junczys-Dowmunt et al. 2018) pre-
trained the Transformer decoder on a language modeling task, but it has since become
more common to pre-train on synthetic GEC data. The top two systems in the BEA-
2019 shared task (Grundkiewicz, Junczys-Dowmunt, and Heafield 2019; Choe et al.
2019) and a recent state-of-the-art GEC system (Stahlberg and Kumar 2021) all pre-
trained their Transformer models with synthetic data, but they generated their synthetic
data in different ways. We discuss different techniques for generating synthetic data
in Section 5.1. More recently, with the advances in large pre-trained language models,
directly fine-tuning large pre-trained language models with GEC parallel data has been
shown to achieve comparable performance with synthetic data pre-training (Katsumata
and Komachi 2020), even reaching state-of-the-art performance (Rothe et al. 2021;
Tarnavskyi, Chernodub, and Omelianchuk 2022).

Irrespective of the type of NMT architecture (RNN, CNN, Transformer), however,
NMT systems share several weaknesses with SMT systems, most notably in terms of
data requirements. In particular, although NMT systems are more capable at correcting
longer range and more complex errors than SMT, they also require as much training
data as possible, which can lead to extreme resource and time requirements: It is not
uncommon for some models to require several days of training time on a cluster of
GPUs. Moreover, neural models are almost completely uninterpretable (which further-
more makes them difficult to customize) and it is nearly impossible for a human to
determine the reasoning behind a given decision; this is particularly problematic if we
also want to explain the cause of an error to a user rather than just correct it. Ultimately,
however, a key strength of NMT is that it is an end-to-end approach, and so does not
require feature engineering or much human intervention, and it is undeniable that it
produces some of the most convincing output to date.

3.4 Edit-based Approaches

While most GEC approaches generate a corrected sentence from an input sentence,
the edit generation approach generates a sequence of edits to be applied to the input
sentence instead. As GEC has a high degree of token copying from the input to the out-
put, Stahlberg and Kumar (2020) argued that generating the full sequence is wasteful.
By generating edit operations instead of all tokens in a sentence, the edit generation
approach typically has a faster inference speed, reported to be five to ten times faster
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than GEC systems that generate the whole sentence. One limitation of this approach,
however, is that edit operations tend to be token-based, and so sometimes fail to capture
more complex, multi-token fluency edits (Lai et al. 2022). Edit generation has been cast
as a sequence tagging task (Malmi et al. 2019; Awasthi et al. 2019; Omelianchuk et al.
2020; Tarnavskyi, Chernodub, and Omelianchuk 2022) or a sequence-to-sequence task
(Stahlberg and Kumar 2020).

In the sequence tagging approach, for each token of an input sentence, the system
predicts an edit operation to be applied to that token (Table 5). This approach requires
the user to define a set of tags representing the edit operations to be modeled by the
system. Some edits can be universally modeled, such as conversion of verb forms or
conversion of nouns from singular to plural form. Some others, such as word insertion
and word replacement, are token-dependent. Token-dependent edits need a different
tag for each possible word in the vocabulary, resulting in the number of tags growing
linearly with the number of unique words in the training data. Thus, the number
of token-dependent tags to be modeled in the system becomes a trade-off between
coverage and model size.

On the other hand, the sequence-to-sequence approach is more flexible as it does
not limit the output to pre-defined edit operation tags. It produces a sequence of edits,
each consisting of a span position, a replacement string, and an optional tag for edit
type (Table 6). These tags add interpretability to the process and have been shown to
improve model performance. As generation in the sequence-to-sequence approach has
a left-to-right dependency, the inference procedure is slower than that in the sequence
tagging approach. It is still five times faster than that in the whole sentence generation
approach as the edit sequence generated is much shorter than the sequence of all tokens
in the sentence (Stahlberg and Kumar 2020).

The main advantages of edit-based approaches to GEC are thus that they not only
add much needed transparency and explainability to the correction process, but they are
also much faster at inference time than NMT. Their main disadvantages, however, are
that they generally require human engineering to define the size and scope of the edit
label set, and that it is more difficult to represent interacting and complex multi-token
edits with token-based labels. Like all neural approaches, they also depend on as much

Table 5
Example task formulation of edit generation in the sequence tagging approach from
(Omelianchuk et al. 2020). APP x denotes an operation of appending token x, and REP x denotes
replacing the current token with x.
Source After many years he still dream to become a super hero
Target After many years , he still dreams of becoming a super hero
Edits KEEP KEEP APP , KEEP KEEP VB VBZ REP of VB VBG KEEP KEEP KEEP

Table 6
Example task formulation of edit generation in the sequence-to-sequence approach from
(Stahlberg and Kumar 2020). Each tuple represents a tag, a span’s ending position, and a
replacement string.

Source After many years he still dream to become a super hero .
Target After many years , he still dreams of becoming a super hero .
Edits (SELF,3,SELF), (PUNCT,3,‘,’), (SELF,5,SELF), (SVA,6,‘dreams’), (PART,7,‘of’),

(FORM,8,‘becoming’), (SELF,12,SELF)
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training data as possible, but when data is available, edit-based approaches are very
competitive with state-of-the-art NMT models.

3.5 Language Models for Low-Resource and Unsupervised GEC

Unlike previous strategies, language model–based GEC does not require training a sys-
tem with parallel data. Instead, it uses various techniques using n-gram or Transformer
language models. LM-based GEC was a common approach before machine translation–
based GEC became popular (Dahlmeier and Ng 2012a; Lee and Lee 2014), but has
experienced a recent resurgence with low-resource GEC and unsupervised GEC due to
the effectiveness of large Transformer-based language models (Alikaniotis and Raheja
2019; Grundkiewicz and Junczys-Dowmunt 2019; Flachs, Lacroix, and Søgaard 2019).
Recent advances have enabled Transformer-based language models to more adequately
capture syntactic phenomena (Jawahar, Sagot, and Seddah 2019; Wei et al. 2021), making
them capable GEC systems when little or no data is available. These systems can,
however, become even more capable when exposed to a small amount of parallel data
(Mita and Yanaka 2021).

3.5.1 Language Models as Discriminators. The traditional LM-based approach to GEC
makes the assumption that low probability sentences are more likely to contain gram-
matical errors than high probability sentences, and so a GEC system must determine
how to transform the former into the latter based on language model probabilities
(Bryant and Briscoe 2018). Correction candidates can be generated from confusion sets
(Dahlmeier and Ng 2011a; Bryant and Briscoe 2018), classification-based GEC models
(Dahlmeier and Ng 2012a), or finite-state transducers (Stahlberg, Bryant, and Byrne
2019).

Yasunaga, Leskovec, and Liang (2021) proposed an alternative method using the
break-it-fix-it (BIFI) approach (Yasunaga and Liang 2021), with a language model as
the critic (LM-critic). Specifically, BIFI trains a breaker (noising channel) and a fixer
(GEC model) on multiple rounds of feedback loops. An initial fixer is used to correct
erroneous text, then the sentence pairs are filtered using LM-critic. Using this filtered
data, the breaker is trained and used to generate new synthetic data from a clean corpus.
These new sentence pairs are then also filtered using LM-critic and subsequently used
to train the fixer again. The BIFI approach can be used for unsupervised GEC by training
the fixer on synthetic data.

3.5.2 Language Models as Generators. A more recent LM-based approach to GEC is to
use a language model as a zero-shot or few-shot generator to generate a correction
given a prompt and noisy input sentence. For example, given the prompt “Correct the
grammatical errors in the following text:” followed by an input sentence, the language
model is expected to generate a corrected form of the input sentence given the prompt
as context. This approach has become possible largely due to the advent of Large
Language Models (LLMs), such as GPT-2 (Radford et al. 2019), GPT-3 (Brown et al.
2020), OPT (Zhang et al. 2022a), and PaLM (Chowdhery et al. 2022), which have been
trained on up to a trillion words and parameterized using tens or hundreds of billions of
parameters. These models have furthermore been shown to be capable of generalizing
to new unseen tasks or languages by being fine-tuned on a wide variety of other NLP
tasks (Sanh et al. 2022; Wei et al. 2022; Muennighoff et al. 2022), and so it is possible, for
the first time, to build a system that is capable of carrying out multilingual GEC without
having been explicitly trained to do so.
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Despite their potential, however, there have not yet been any published studies that
have formally benchmarked generative LLMs against any of the standard GEC test sets.
Although a number of studies were beginning to appear at the time of final submission
of this survey paper, most only evaluated LLM performance on a small sample (100
sentences) of the official test sets (Wu et al. 2023; Coyne and Sakaguchi 2023). These
studies generally conclude, however, that LLMs have a tendency to overcorrect for flu-
ency, which causes them to underperform on datasets that were developed for minimal
corrections (Fang et al. 2023). We expect further investigation of this phenomenon in the
coming year.

Regardless of the type of language model, the main advantage of language model–
based approaches is that they only require unannotated monolingual data and so are
much easier to extend to other languages than all other approaches. While discrimina-
tive LMs may not perform as well as state-of-the-art models and generative LLMs mod-
els have not been formally benchmarked, LMs have nevertheless proven themselves
capable and can theoretically correct all types of errors, including complex fluency
errors. The main disadvantage of language model approaches, however, is that it can be
hard to adequately constrain the model, and so models sometimes replace grammatical
words with other words that simply occur more frequently in a given context. An addi-
tional challenge in generative LLM-based GEC is that prompt engineering is important
(Liu et al. 2023) and output may vary depending on whether a system was asked to
“correct” a grammatical error or “fix” a grammatical error (Coyne and Sakaguchi 2023).
Ultimately, all LM-based approaches suffer from the limitation that probability is not
grammaticality, and so rare words may be mistaken for errors.

4. Additional Techniques

While Section 3 introduced the core technologies underpinning modern GEC systems,
a number of other techniques are also commonly applied to further boost performance.
Several of these techniques are introduced in this section, including re-ranking, en-
sembling and system combination, multi-task learning, custom inference methods (e.g.,
iterative decoding), contextual GEC, and Generative Adversarial Networks (GANs).

4.1 Re-ranking

Machine translation–based (both SMT and NMT) systems can produce an n-best list of
alternative corrections for a single sentence. This has led to much work on n-best list
re-ranking, which aims to determine whether the best correction for a sentence is not
the most likely candidate produced by the system (i.e., n = 1), but is rather somewhere
further down the top n most likely candidates (Yuan, Briscoe, and Felice 2016; Mizumoto
and Matsumoto 2016; Hoang, Chollampatt, and Ng 2016). As a separate post-processing
step, candidates produced by an SMT-based or NMT-based GEC system can be re-
ranked using a rich set of features that have not been explored by the decoder before,
so that better candidates can be selected as “optimal” corrections. During re-ranking,
GEC-specific features can then be easily adapted without worrying about fine-grained
model smoothing issues. In addition to the original model scores of the candidates,
useful features include:

• sentence fluency scores calculated from: LMs (Yuan, Briscoe, and Felice
2016; Chollampatt and Ng 2018a), neural error detection models
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(Yannakoudakis et al. 2017; Yuan et al. 2019), neural quality estimation
models (Chollampatt and Ng 2018c), and BERT (Kaneko et al. 2019);

• similarity measures like Levenshtein Distance (Yannakoudakis et al. 2017;
Yuan et al. 2019) and edit operations (Chollampatt and Ng 2018a; Kaneko
et al. 2019);

• length-based features (Yuan, Briscoe, and Felice 2016);

• right-to-left models (Grundkiewicz, Junczys-Dowmunt, and Heafield
2019; Kaneko et al. 2020);

• syntactic features like POS n-grams, dependency relations (Mizumoto
and Matsumoto 2016);

• error detection information that has been used in a binary setting
(Yannakoudakis et al. 2017; Yuan et al. 2019), as well as a multiclass
setting (Yuan et al. 2021).

N-best list reranking has traditionally been one of the simplest and most popular
methods of boosting system performance. An alternative form of reranking is to collect
all the edits from the N-best corrections and filter them using an edit-scorer (Sorokin
2022).

4.2 Ensembling and System Combination

Ensembling is a common technique in machine learning to combine the predictions
of multiple individually trained models. Ensembles often generate better predictions
than any of the single models that are combined (Opitz and Maclin 1999). In GEC,
ensembling usually refers to averaging the probabilities of individually trained GEC
models when predicting the next token in the sequence-to-sequence approach or the
edit tag in the edit-based approach. GEC models that are combined into ensembles
usually have similar properties with only slight variations, which can be the random
seed (Stahlberg and Kumar 2021), the pre-trained model (Omelianchuk et al. 2020), or
the architecture (Choe et al. 2019).

On the other hand, different GEC approaches have different strengths and weak-
nesses. Susanto, Phandi, and Ng (2014) have shown that combining different GEC
systems can produce a better system with higher accuracy. When combining systems
that have substantial differences, training a system combination model is preferred
over ensembles. A system combination model allows the combined system to properly
integrate the strengths of the GEC systems and has been shown to produce better results
than ensembles (Kantor et al. 2019; Qorib, Na, and Ng 2022). The combination model
can be trained through learning the characteristic of the GEC systems (Kantor et al.
2019; Lin and Ng 2021; Qorib, Na, and Ng 2022) or learning how to score a correction
by supplying the model with examples of good and bad corrections for different kinds
of student sentences (Sorokin 2022). Moreover, most system combination methods for
GEC work on a black-box setup (Kantor et al. 2019; Lin and Ng 2021; Qorib, Na, and Ng
2022), only requiring the systems’ outputs without any access to the systems’ internals
and the prediction probabilities. When the individual component systems are not differ-
ent enough, encouraging the individual systems to be more diverse before combining
them can also improve performance (Han and Ng 2021).
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4.3 Multi-task Learning

Multi-task learning allows systems to use information from related tasks and learn
from multiple objectives via shared representations, leading to performance gains on
individual tasks. Rei and Yannakoudakis (2017) were the first to investigate the use of
different auxiliary objectives for the task of error detection in learner writing through
a neural sequence-labeling model. In addition to predicting the binary error labels
(i.e., correct or incorrect), they experimented with also predicting specific error type
information, including the learner’s L1, token frequency, POS tags, and dependency
relations. Asano et al. (2019) utilized a similar approach in which their error correction
model additionally estimated the learner’s language proficiency level and performed
sentence-level error detection simultaneously. Token-level and sentence-level error de-
tection have also both been explored as auxiliary objectives in NMT-based GEC (Yuan
et al. 2019; Zhao et al. 2019), where systems have been trained to jointly generate a
correction and predict whether the source sentence (or any token in it) is correct or
incorrect. Labels for these auxiliary error detection tasks can be extracted automatically
from existing datasets using automatic alignment tools like ERRANT (Bryant, Felice,
and Briscoe 2017).

4.4 Custom Inference Methods

Various inference techniques have been proposed to improve the quality of system out-
put or speed up inference time in GEC. The most common of these, which specifically
improves output quality, is to apply multiple rounds of inference, known as iterative
decoding or multi-turn decoding. Because the input and output of GEC are in the same
language, the output of the model can be passed through the model again to produce a
second iteration of output. The advantage of this is that the model gets a second chance
to correct errors it might have missed during the first iteration. Lichtarge et al. (2019)
thus proposed an iterative decoding algorithm that allows a model to make multiple
incremental corrections. In each iteration, the model is allowed to generate a different
output only if it has high confidence. This technique proved effective for GEC systems
trained on noisy data such as Wikipedia edits, but not as effective on GEC systems
trained on clean data. Ge, Wei, and Zhou (2018) proposed an alternative iterative
decoding technique called fluency boost, in which the model performs multiple rounds
of inference until a fluency score stops increasing, while Lai et al. (2022) proposed an
iterative approach that investigated the effect of correcting different types of errors
(missing, replacement, unnecessary words) in different orders. Iterative decoding is
commonly used in sequence-labeling GEC systems, which cannot typically correct all
errors in a single pass. In these systems, iterative decoding is applied until the model
stops making changes to the output or the number of iterations reaches a limit (Awasthi
et al. 2019; Omelianchuk et al. 2020; Tarnavskyi, Chernodub, and Omelianchuk 2022).

Other inference techniques have been proposed to speed up inference time in GEC.
As many tokens in GEC are copied from the input to the output, standard left-to-
right inference can be inefficient. Chen et al. (2020a) thus proposed a two-step process
that only performs correction on text spans that are predicted to contain grammatical
errors. Specifically, their system first predicts erroneous spans using an erroneous span
detection (ESD) model, and then corrects only the detected spans using an erroneous
span correction (ESC) model. They reported reductions in inference time of almost 50%
compared with a standard sequence-to-sequence model. In contrast, Sun et al. (2021)
proposed a parallelization technique to speed up inference, aggressive decoding, which
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can be applied to any sequence-to-sequence model. Specifically, aggressive decoding
first decodes as many tokens as possible in parallel and then only re-decodes tokens one-
by-one at the point where the input and predictions differ (if any). When the input and
predicted tokens start to match again, aggressive decoding again decodes the remainder
in parallel until either the tokens no longer match or the end-of-sentence token is
predicted. Since the input and output sequences in GEC are often very similar, this
means most tokens can be decoded aggressively, yielding an almost ten time speedup
in inference time.

4.5 Contextual GEC

Context provides valuable information that is crucial for correcting many types of gram-
matical errors and resolving inconsistencies. Existing GEC systems typically perform
correction at the sentence-level, however; i.e., each sentence is processed independently,
and so cross-sentence information is ignored. These systems thus frequently fail to
correct contextual errors, such as verb tense, pronoun, run-on sentence, and discourse
errors, which typically rely on information outside the scope of a single sentence.
Corrections proposed by such narrow systems are furthermore likely to be inconsistent
throughout a paragraph or entire document.

Chollampatt, Wang, and Ng (2019) were the first to address this problem by adapt-
ing a CNN sequence-to-sequence model to be more context-aware. Specifically, they
introduced an auxiliary encoder to encode the two previous sentences along with the
input sentence and incorporated the encoding in the decoder via attention and gating
mechanisms. Yuan and Bryant (2021) subsequently compared different architectures
for capturing wider context in Transformer-based GEC and showed that local context
is useful (≤ 2 sentences) but very long context (> 2 sentences) is not necessary for
improved performance.

Because human reference edits are not annotated for whether an error depends on
local context or long range context, it is often difficult to evaluate the extent to which a
context-aware system improves the correction of context-sensitive errors. Chollampatt,
Wang, and Ng (2019) thus constructed a synthetic dataset of verb tense errors that
required cross-sentence context for correction, and Yuan and Bryant (2021) proposed
a document-level evaluation framework to address this problem.

4.6 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) are an approach
to model training that makes use of both a generator, to generate some output, and
a discriminator, to discriminate between real data and artificial output. In the context
of GEC, Raheja and Alikaniotis (2020) were the first to apply this methodology to error
correction, in which they trained a standard sequence-to-sequence Transformer model
to generate grammatical sentences from parallel data (the generator) and a sentence
classification model to discriminate between these generated output sentences and
human-annotated reference sentences (the discriminator). During training, the models
competed adversarially such that the generator learned to generate corrected sentences
that are indistinguishable from the reference sentences (and thus fooled the discrim-
inator), while the discriminator learned to identify the differences between real and
generated sentences (and thus defeated the generator). This adversarial training process
was ultimately shown to produce a better sequence-to-sequence model.
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In addition to sequence-to-sequence generation, GANs have also been applied
to sequence-labeling for GEC. In particular, Parnow, Li, and Zhao (2021) trained a
generator to generate increasingly realistic errors (in the form of token-based edit la-
bels) and a discriminator to differentiate between artificially generated edits and real
human edits. They similarly reported improvements over a baseline that was not
trained adversarially.

5. Data Augmentation

A common problem in GEC is that the largest publicly available high-quality parallel
corpora only contain roughly 50k sentence pairs, and larger corpora, such as Lang-8,
are noisy (Mita et al. 2020; Rothe et al. 2021). This data sparsity problem has moti-
vated considerable research into synthetic data generation, especially in the context of
resource-heavy NMT approaches, because synthetic data primarily requires a native
monolingual source corpus rather than a labor-intensive manual annotation process.
In this section, we introduce several different types of data augmentation methods,
including rule-based noise injection and back-translation, but also noise reduction,
which aims to improve the quality of existing datasets by removing/down-weighting
noisy examples. It is an open question as to how to best evaluate the quality of synthetic
data (Htut and Tetreault 2019; White and Rozovskaya 2020). An effort has been made by
Kiyono et al. (2019) to compare the noise injection method and back-translation, but it is
hard to comprehensively compare synthetic data generation methods directly, so most
research evaluates it indirectly in terms of its impact on the performance of previous
experiments. Data augmentation has nevertheless contributed greatly to GEC system
improvement and has become a staple component of recent models.

5.1 Synthetic Data Generation

GEC is sometimes regarded as a low-resource machine translation task (Junczys-
Dowmunt et al. 2018). With the dominance of neural network approaches, the need
for more data grows as model size continues to increase. However, obtaining human
annotations is expensive and difficult. Thus, techniques to generate synthetic parallel
corpora from clean monolingual corpora have been intensely explored. A synthetic par-
allel corpus is generated by adding noise to a sentence and pairing it with the original
sentence. The corrupted sentence is then regarded as a learner’s sentence (source) and
the original clean sentence is regarded as the reference (target). There are many ways
to generate synthetic sentences, and the dominant techniques usually fall under the
category of noise injection or back-translation (Kiyono et al. 2019).

5.1.1 Noise Injection. One way to artificially generate grammatical errors to clean mono-
lingual corpora is by perturbing a clean text to make it grammatically incorrect. The
perturbations can be in the form of rule-based noising operations or error patterns that
usually appear in GEC parallel corpora.

Rule-based. The most intuitive way of adding noise to a clean corpus is by applying
a series of perturbation operations based on some pre-defined rules. The rules are
applied based on a probability, which can be decided arbitrarily, empirically, or through
some observations of available data. Ehsan and Faili (2013) apply one error to each
sentence from pre-defined error templates that include omitting prepositions, repeating
words, and so on. Lichtarge et al. (2019) introduce spelling errors to Wikipedia edit
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history by performing deletion, insertion, replacement, and transposition of characters.
Zhao et al. (2019) also apply a similar noising strategy but at the word level—that is,
deleting, adding, shuffling, and replacing words in a sentence. Grundkiewicz, Junczys-
Dowmunt, and Heafield (2019) combine both approaches, character-level and word-
level noising, but word substitution is limited to pairs from a confusion set made from
an inverted spellchecker. Similarly, Xu et al. (2019) also combine both approaches but
with a more complex word substitution strategy by making use of POS tags. The rule-
based injection technique can also be applied dynamically during training to increase
the error rate in a parallel corpus instead of creating additional training data (Zhao and
Wang 2020).

Error Patterns. Another way of generating synthetic data is through injecting errors that
frequently occur in GEC parallel corpora. In this way, the errors are more similar to the
ones that humans usually make. Rozovskaya and Roth (2010b) proposed three different
methods of injecting article errors, based on the error distribution in English as a Second
Language data. They proposed adding article errors based on the distribution of articles
in a text before correction, the distribution of articles in the corrected text, and the
distribution of article corrections themselves. Felice and Yuan (2014a) later improved
the method by taking into consideration the morphology, POS tag, semantic concept,
and word sense information of a text when generating the artificial errors. Rei et al.
(2017) further extended it to all types of errors. Another direction of emulating human
errors is by extracting the correction patterns from GEC parallel corpora and applying
the inverse of those corrections on grammatically correct sentences, as done by Yuan
and Felice (2013) using the corrections from the NUCLE corpus and by Choe et al. (2019)
using the corrections from the W&I training data. The correction patterns are extracted
both in lexical form (an→ the) and POS (NN→ NNS).

5.1.2 Back-translation. Emulating human errors can be made in a more automated and
dynamic way via a noisy channel model. The noisy channel model is trained with the
inverse of a GEC parallel corpus, treating the learner’s sentence as the target and the
reference sentence as the source. This technique is commonly called back-translation.
The technique was originally proposed for generating additional data in machine trans-
lation (Sennrich, Haddow, and Birch 2016), but it is also directly applicable to GEC.
Rei et al. (2017) were the first to apply back-translation to grammatical error detection
(GED) and Xie et al. (2018) were the first to apply it to GEC. Yuan et al. (2019) add a
form of quality control to Rei et al. (2017) based on language model probabilities in
an effort to make sure that the generated synthetic sentences are less probable (and
hence hopefully less grammatical) than the original input sentences. Between the rule-
based and back-translation strategy, Kiyono et al. (2019) report that the back-translation
strategy has better empirical performance. They also compare back-translation with a
noisy beam-search strategy (Xie et al. 2018) and back-translation with sampling strategy
(Edunov et al. 2018), and report that both achieve competitive performance. Koyama
et al. (2021) furthermore compare the effect of using different architectures (e.g., CNN,
LSTM, Transformer) for back-translation, and find that interpolating multiple genera-
tion systems tends to produce better synthetic data to train a GEC system on. Another
variant of back-translation was proposed by Stahlberg and Kumar (2021) to generate
more complex edits. They found that generating a sequence of edits using Seq2Edit
(Stahlberg and Kumar 2020) works better than generating the corrupted sentences
directly. They also reported that back-translation with sampling worked better than
beam search in their experiments.
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5.1.3 Round-trip Translation. A less popular alternative to back-translation is round-
trip translation, which generates synthetic sentence pairs via a bridge language (e.g.,
English-Chinese-English). The assumption is that the MT system will make translation
errors and so the output via the bridge language will be noisy in relation to the input.
This strategy was used by Madnani, Tetreault, and Chodorow (2012) and Lichtarge et al.
(2019), who furthermore both explored the effect of using different bridge languages.
Zhou et al. (2020) explore a similar technique, except use a bridge language as the input
to both a low-quality and high-quality translation system (namely, SMT vs. NMT), and
treat the output from the former as an ungrammatical noisy sentence and the output
from the latter as the reference.

5.2 Augmenting Official Datasets

Besides generating synthetic data to address the data sparsity problem in GEC,
other studies focus on augmenting official datasets, via noise reduction or model
enhancement.

Noise reduction aims to reduce the impact of wrong corrections in the official
GEC datasets. One direction focuses on correcting noisy sentences. Mita et al. (2020)
and Rothe et al. (2021) achieve this by incorporating a well-trained GEC model to re-
duce wrong corrections. The other direction attempts to down-weight noisy sentences.
Lichtarge, Alberti, and Kumar (2020) introduce an offline re-weighting method to score
each training sentence based on delta-log perplexity, ∆ppl, which measures the model’s
log perplexity difference between checkpoints for a single sentence. Sentences with
lower ∆ppl are preferred and assigned a higher weight during training.

Model enhancement augments official datasets to address the model’s weakness.
Parnow, Li, and Zhao (2021) aim to enhance performance by reducing the error density
mismatch between training and inference. They use a GAN (Goodfellow et al. 2014) to
produce an ungrammatical sentence that could better represent the error density at in-
ference time. Lai et al. (2022) also address the mismatch between training and inference,
but specific to multi-round inference. They propose additional training stages that make
the model consider edit type interdependence when predicting the corrections. Cao,
Yang, and Ng (2021) aim to enhance model performance in low-error density domains.
The augmented sentences are generated by beam search to capture wrong corrections
that the model tends to make. Supervised contrastive learning (Chen et al. 2020b) is then
applied to enhance model performance. Cao, Yang, and Ng (2023) use augmented sen-
tences generated during beam search to address the exposure bias problem in seq2seq
GEC models. A dynamic data reweighting method through reinforcement learning is
used to select an optimal sampling strategy for different beam search candidates.

6. Evaluation

A core component of any NLP system is the ability to measure model performance.
This section hence first introduces the most commonly used evaluation metrics in
GEC, namely, the MaxMatch (M2) scorer (Dahlmeier and Ng 2012b), ERRANT (Bryant,
Felice, and Briscoe 2017; Felice, Bryant, and Briscoe 2016), and GLEU (Napoles et al.
2015, 2016), as well as other reference-based and reference-less metrics that have been
proposed. It next discusses the problem of metric reliability, particularly in relation
to correlation with human judgments, and explains why it is difficult to draw any
robust conclusions. The section concludes with a discussion of best practices in GEC
evaluation, including defining standard experimental settings and highlighting their
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limitations. To date, almost all evaluation in GEC has been carried out at the sentence
level.

6.1 MaxMatch

One of the most prevalent evaluation methods used in current GEC research is the
MaxMatch (M2) scorer9 (Dahlmeier and Ng 2012b), which calculates an Fβ-score (van
Rijsbergen 1979). Specifically, the M2 scorer is a reference-based metric that compares
system hypothesis edits against human-annotated reference edits and counts a True
Positive (TP) if a hypothesis edit matches a reference edit, a False Positive (FP) if a
hypothesis edit does not match any reference edit, and a False Negative (FN) if a refer-
ence edit does not match any hypothesis edit. An example of each case is shown below.

TP FN FP
Original I likes to drive a bicycle .
Hypothesis I like to drive the bicycle .
Reference I like to ride a bicycle .

The total number of TPs, FPs, and FNs for a dataset can then be used to calculate
Precision (P) Equation (3) and Recall (R) Equation (4), which respectively denote the
proportion of hypothesis edits that were correct and the proportion of reference edits
that were found in the hypothesis edits, which in turn can be used to calculate the
Fβ-score Equation (5). In current GEC research, it is common practice to use β = 0.5,
first introduced in Ng et al. (2014), which weights precision twice as much as recall,
because it is generally considered more important for a GEC system to be precise than
to necessarily correct all errors.

P = TP
TP + FP (3) R = TP

TP + FN (4) Fβ = (1 + β2)× P× R
(β2 × P) + R

(5)

One issue of using edit overlap to measure performance is that there is often more
than one way to define an edit. For example, the edit [has eating→ was eaten] can also
be realized as [has → was] and [eating → eaten]. If the hypothesis combines them, but
the reference does not, the edit will not be counted as a TP even though it produces the
same valid correction. As a result, system performance is not measured correctly.

The innovation of the M2 scorer is that it uses a Levenshtein alignment (Levenshtein
1966) between the original text and a system hypothesis to dynamically explore the
different ways of combining edits such that the hypothesis edits maximally match
the reference edits. As such, it overcomes a limitation of the previous scorer used in
the HOO shared tasks which could return erroneous scores. Whenever there is more
than one set of reference edits for a test sentence, the M2 scorer tries each set in turn and
chooses the one that leads to the best performance for that test sentence.

6.2 ERRANT

The ERRANT scorer10 (Bryant, Felice, and Briscoe 2017) is similar to the M2 scorer, in
that it is a reference-based metric that measures performance in terms of an edit-based

9 https://www.comp.nus.edu.sg/~nlp/conll14st.html.
10 https://github.com/chrisjbryant/errant.
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F-score, but differs primarily in that it is also able to calculate error types scores.
Specifically, unlike the M2 scorer, it uses a linguistically enhanced Damerau-Levenshtein
alignment algorithm to extract edits from the hypothesis text (Felice, Bryant, and Briscoe
2016), and then classifies them according to a rule-based error type framework. This fa-
cilitates the calculation of F-scores for each error type rather than just overall, which can
be invaluable for a detailed system analysis. For example, System A might outperform
System B overall, but System B might outperform System A on certain error types, and
this information can be used to improve System A.

ERRANT was the first scorer to be able to evaluate GEC systems in terms of error
types and is moreover able to do so at three different levels of granularity:

• Edit Operation (3 labels): Missing, Replacement, Unnecessary

• Main Type (25 labels): e.g., Noun, Spelling, Verb Tense

• Full Type (55 labels): e.g., Missing Noun, Replacement Noun,
Unnecessary Noun

It is also able to carry out this analysis in terms of both error detection and correction.
ERRANT currently only supports English, but other researchers have independently
extended it for German (Boyd 2018), Greek (Korre, Chatzipanagiotou, and Pavlopoulos
2021), Arabic (Belkebir and Habash 2021), and Czech (Náplava et al. 2022).

6.3 GLEU

Like M2 and ERRANT, GLEU11 (Napoles et al. 2015, 2016) is also a reference-based
metric except it does not require explicit edit annotations but rather only corrected
reference sentences. It was inspired by the BLEU score (Papineni et al. 2002) commonly
used in machine translation and was motivated by the fact that human-annotated edit
spans are somewhat arbitrary and time-consuming to collect. The main intuition behind
GLEU is that it rewards hypothesis n-grams that overlap with the reference but not the
original text, and penalizes hypothesis n-grams that overlap with the original text but
not the reference. It is important to be aware that GLEU is often attributed to Napoles
et al. (2015), but actually implemented according to Napoles et al. (2016), which is a
revised formulation. The revised formulation is calculated as follows.

Consider a corpus of original sentences O = {o1, . . . , ok} and their corresponding
hypothesis sentences H = {h1, . . . , hk} and reference sentences R = {r1, . . . , rk}. For each
original, hypothesis, and reference sentence, let oi, hi, and ri, respectively, denote the
sequences of n-grams of length n = {1, 2, . . . , N} (N = 4 by default in GLEU) in the
sentences rather than the sentences themselves. This can then be used to calculate a
precision term pn Equation (6) that takes the intuition about rewarding or penalizing
n-gram overlap into account.

pn =

|H|∑
i=1

( ∑
g∈{hi∩ri}

counthi,ri (g)−
∑

g∈{hi∩oi}
max[0, counthi,oi (g)− counthi,ri (g)]

)
|H|∑
i=1

∑
g∈{hi}

counthi (g)

11 https://github.com/cnap/gec-ranking.
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counta(g) = # occurrences of n-gram g in a

counta,b(g) = min(# occurrences of n-gram g in a, # occurrences of n-gram g in b) (6)

BP =

{
1 if lh > lr
exp(1− lr/lh) if lh ≤ lr

(7)

GLEU(O, H, R) = BP · exp

(
1
N

N∑
n=1

log pn

)
(8)

Like the BLEU score, GLEU also has a Brevity Penalty (BP) to penalize hypotheses
that are shorter than the references Equation (7), where lh denotes the total number
of tokens in the hypothesis corpus and lr denotes the total number of tokens in the
sampled reference corpus. It is important to note that when there is more than one
reference sentence, GLEU iteratively selects one at random and averages the score over
500 iterations. GLEU is finally calculated as in Equation (8).

6.4 Other Metrics

In addition to M2, ERRANT, and GLEU, other metrics have also been proposed in
GEC. Some of these are reference-based, that is, they require human-annotated target
sentences, while others are reference-less, that is, they do not require human-annotated
target sentences. This section briefly introduces metrics of both types.

6.4.1 Reference-based Metrics

I-measure. The I-measure (Felice and Briscoe 2015) was designed to overcome certain
shortcomings of the M2 scorer—for example, the M2 scorer is unable to differentiate
between a bad system (TP=0, FP>0) and a do-nothing system (TP=0, FP=0), which
both result in F=0, and instead measure system performance in terms of relative textual
Improvement. The I-measure is calculated by carrying out a 3-way alignment between
the original, hypothesis, and reference texts and classifying each token according to an
extended version of the Writer-Annotator-System (WAS) evaluation scheme (Chodorow
et al. 2012). This ultimately enables the calculation of accuracy, which Felice and Briscoe
(2015) modify to weight TPs and FPs differently to more intuitively reward or punish a
system. Having calculated a weighted accuracy score for a system, a baseline weighted
accuracy score is computed in the same manner using a copy of the original text as the
hypothesis. The difference between these scores is then normalized to fall between −1
and 1, where I < 0 indicates text degradation and I > 0 indicates text improvement.

GMEG. The GMEG metric (Napoles, Nădejde, and Tetreault 2019) is an ensemble metric
that was designed to correlate with human judgments on three different datasets. It was
motivated by the observation that different metrics correlate very differently with hu-
man judgments in different domains, and so a better metric would be more consistent.
As an ensemble metric, GMEG depends on features (e.g., precision and recall) from
several other metrics, including M2, ERRANT, GLEU, and the I-measure (73 features in
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total). The authors then use these features to train a ridge regression model that was
optimized to predict the human scores for different systems.

GoToScorer. The GoToScorer (Gotou et al. 2020) was motivated by the observation that
some errors are more difficult to correct than others yet all metrics treat them equally.
The GoToScorer hence models error difficulty by weighting edits according to how
many different systems were able to correct them; for example, edits that were suc-
cessfully corrected by all systems would yield a smaller reward than those successfully
corrected by fewer systems. Although this methodology confirmed the intuition that
some error types were easier to correct than others, for example, spelling errors (easy)
vs. synonym errors (hard); one disadvantage of this approach is that the difficulty
weights depend entirely on the type and number of systems involved. Consequently,
results do not generalize well and error difficulty (or gravity) remains an unsolved
problem.

SERCL/SERRANT. SERCL (Choshen et al. 2020) is not a metric per se, but rather a
method of automatically classifying grammatical errors by their syntactic properties
using the Universal Dependencies formalism (Nivre et al. 2020). It is hence similar to
ERRANT except it can more easily support other languages. The main disadvantage
of SERCL is that it is not always meaningful to classify errors entirely based on their
syntactic properties (e.g., spelling and orthography errors), and some error types are
not very informative (e.g., “VERB→ADJ”). SERRANT (Choshen et al. 2021) is hence a
compromise that attempts to combine the advantages of both SERCL and ERRANT.

PT-M2. The pretraining-based MaxMatch (PT-M2) metric (Gong et al. 2022) is a hy-
brid metric that combines traditional edit-based metrics, such as M2, with recent
pretraining-based metrics, such as BERTScore (Zhang et al. 2020). The main advantage
of pretraining-based metrics over edit-based metrics is that they are more capable of
measuring the semantic similarity between pairs of sentences, rather than just compar-
ing edits. Since Gong et al. (2022) found that off-the-shelf pretraining metrics correlated
poorly with human judgments on GEC at the sentence level, they instead proposed
measuring performance at the edit level. This approach ultimately produced the highest
correlation with human judgments on the CoNLL-2014 test set to date, but should
be considered with caution, as Hanna and Bojar (2021) also highlight some of the
limitations of pretraining metrics and cite sources that claim correlation with human
judgments may not be the best way to evaluate a metric (see Section 6.5).

6.4.2 Reference-less Metrics

GBMs. The first work to explore the idea of a reference-less metric for GEC (Napoles,
Sakaguchi, and Tetreault 2016) was inspired by similar work on quality estimation in
machine translation (e.g., Specia et al. (2020)). Specifically, the authors proposed three
Grammaticality-Based Metrics (GBMs) that either use a benchmark GEC system to
count the errors in the output produced by other GEC systems or else predict a gram-
maticality score using a pretrained ridge regression model (Heilman et al. 2014). The
main limitation of these metrics is that they (i) require an existing GEC system to
evaluate other GEC systems and (ii) are insensitive to changes in meaning. The authors
thus proposed interpolating reference-less metrics with other reference-based metrics.
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GFM. Asano, Mizumoto, and Inui (2017) extended the work on GBMs by introduc-
ing three reference-less metrics for Grammaticality, Fluency, and Meaning preserva-
tion (GFM). Specifically, the Grammaticality metric combines Napoles, Sakaguchi, and
Tetreault’s (2016) GBMs into a single model, the Fluency metric computes a score using
a language model, and the Meaning preservation metric computes a score using the
METEOR metric from machine translation (Denkowski and Lavie 2014). A weighted
linear sum of the three scores is then used as the final score. The main weaknesses of
the GFM metric are that the Grammaticality and Fluency metrics suffer from the same
limitations as GBMs, and the Meaning preservation metric only models shallow text
similarity in terms of overlapping content words.

USIM. The USIM metric (Choshen and Abend 2018c) was motivated by the fact that
no other metric takes deep semantic similarity into account and it is possible that a
GEC system might change the intended meaning of the original text—for example,
by inserting/deleting “not” or replacing a content word with an incorrect synonym.
It is calculated by first automatically annotating the original and hypothesis texts as
semantic graphs using the UCCA semantic scheme (Abend and Rappoport 2013) and
then measuring the overlap between the graphs (in terms of matching edges) as an F-
score. USIM was thus designed to operate as a complementary metric to other metrics.

SOME. Sub-metrics Optimized for Manual Evaluation (SOME) (Yoshimura et al. 2020)
is an extension of GFM that was designed to optimize each Grammaticality, Fluency,
and Meaning preservation metric to more closely correlate with human judgments. The
authors achieved this by annotating the system output of five recent systems on a 5-
point scale for each metric and then fine-tuning BERT (Devlin et al. 2019) to predict
these human scores. This differs from GFM in that GFM was fine-tuned to predict
the human ranking of different systems rather than explicit human scores. While the
authors found SOME correlates more strongly with human judgments than GFM, both
metrics nevertheless suffer from the same limitations.

Scribendi Score. The Scribendi Score (Islam and Magnani 2021) was designed to be
simpler than other reference-less metrics in that it requires neither an existing GEC
system nor fine-tuning. Instead, it calculates an absolute score (1=positive,−1=negative,
0=no change) from a combination of language model perplexity (GPT2: Radford et al.
2019) and sorted token/Levenshtein distance ratios, which respectively ensure that (i)
the corrected sentence is more probable than the original and (ii) both sentences are not
significantly different from each other. While it is intuitive that these scores correlate
with the grammaticality of a sentence, they are not, however, a robust way of evaluating
a GEC system. For example, the sentence “I saw the cat” is more probable than “I saw
a cat” in GPT2 (160.8 vs 156.4), and both sentences are moreover very similar, yet we
would not want to always reward this as a valid correction since both sentences are
grammatical. We observe the same effect in “I ate the cake.” (130.2) vs. “I ate the pie.”
(230.7) and so conclude that the Scribendi Score is highly likely to erroneously reward
false positives.

IMPARA. The Impact-based Metric for GEC using Parallel data (IMPARA) (Maeda,
Kaneko, and Okazaki 2022) is a hybrid reference-based/reference-less metric that re-
quires parallel data to train an edit-based quality estimation and semantic similarity
model, but can be used as a reference-less metric after training. It is sensitive to the
corpus it is trained on (i.e., it does not generalize well to unseen domains) but shows
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comparable or better performance to SOME in terms of correlation with human judg-
ments. Its main advantage is that it only requires parallel data for training (i.e., not
system output or human judgments), but its main disadvantage is that IMPARA scores
are not currently interpretable by humans.

6.5 Metric Reliability

Given the number of metrics that have been proposed, it is natural to wonder which
metric is best. This is not straightforward to answer, however, as all metrics have
different strengths and weaknesses. There has nevertheless been a great deal of work
based on the assumption that the “best” metric is the one that correlates most closely
with ground-truth human judgments.

With this in mind, the first work to compare metric performance with human
judgments was by Napoles et al. (2015) and Grundkiewicz, Junczys-Dowmunt, and
Gillian (2015), who independently collected human ratings for the 13 system outputs
from the CoNLL-2014 shared task (including the unchanged original text) using the Ap-
praise evaluation framework (Federmann 2010) commonly used in MT. This framework
essentially asks humans to rank randomly chosen samples of 5 system outputs (ties are
permitted) in order to build up a collection of pairwise judgments that can be used to
extrapolate an overall system ranking. A metric can then be judged in terms of how well
it correlates with this extrapolated ranking. The judgments collected by Grundkiewicz,
Junczys-Dowmunt, and Gillian (2015) in particular proved especially influential (their
dataset was much larger than Napoles et al. [2015]) and were variously used to justify
GLEU as a better metric than M2 (Napoles et al. 2015; Napoles, Sakaguchi, and Tetreault
2016; Sakaguchi et al. 2016) and motivate almost all reference-less metrics to date (except
USIM).

Unfortunately however, this methodology was later found to be problematic and
many of the conclusions drawn using these datasets were thrown into doubt. Notable
observations included:

• The correlation coefficients reported by Napoles et al. (2015) and
Grundkiewicz, Junczys-Dowmunt, and Gillian (2015) were very different
even though they essentially carried out the same experiment (albeit on
different samples) (Choshen and Abend 2018a).

• This method of human evaluation was abandoned in machine translation
due to unreliability (Choshen and Abend 2018a; Graham, Baldwin, and
Mathur 2015).

• Chollampatt and Ng (2018b) found no evidence of GLEU being a better
metric than M2 for ranking systems.

Choshen and Abend (2018a) surmise that one of the reasons these metric correlation
experiments proved unreliable is that rating sentences for grammaticality is a highly
subjective task which often shows very low inter-annotator agreement (IAA); for exam-
ple, it is difficult to determine whether a sentence containing one major error should be
considered “more grammatical” than a sentence containing two minor errors.

Napoles, Nădejde, and Tetreault (2019) nevertheless carried out a follow-up study
that not only used a continuous scale to judge sentences (rather than rank them)
(Sakaguchi and Van Durme 2018), but also collected judgments on all pairs of sentences
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Table 7
Pearson r and Spearman ρ correlation coefficients for different metrics across three different
datasets. This is a subset of the results reported in Napoles, Nădejde, and Tetreault (2019),
Table 8.

Metric FCE Wiki Yahoo
r ρ r ρ r ρ

ERRANT F0.5 0.919 0.887 0.401 0.555 0.532 0.601
GLEU 0.838 0.813 0.426 0.538 0.740 0.775
I-measure 0.819 0.839 0.854 0.875 0.915 0.900
M2 F0.5 0.860 0.849 0.346 0.552 0.580 0.699

to overcome sampling bias. They furthermore reported results on different datasets
from different domains, rather than just CoNLL-2014, in an effort to determine the
most generalizable metric. Their results, partially recreated in Table 7, hence found
that dataset does indeed have an effect on metric performance, most likely because
different error type distributions are judged inconsistently by humans. In fact, although
Napoles, Nădejde, and Tetreault (2019) reported very high IAA at the corpus level (0.9–
0.99 Pearson/Spearman), IAA at the sentence level was still low to average (0.3–0.6
Pearson/Spearman).

Ultimately, although ground-truth human judgments may be an intuitive way to
benchmark metric performance, they are also highly subjective and should be consid-
ered with caution. Nothing demonstrates this sentiment better than the conclusions
drawn about the I-measure, which was initially found to have a weak negative corre-
lation with human judgments (Napoles et al. 2015; Grundkiewicz, Junczys-Dowmunt,
and Gillian 2015; Sakaguchi et al. 2016), subsequently found to have good correlation at
the sentence level (Napoles, Sakaguchi, and Tetreault 2016) and finally considered the
best singular metric across multiple domains (Napoles, Nădejde, and Tetreault 2019).
Reliable methods of evaluating automatic metrics thus remain an active area of research.

6.6 Evaluation Best Practices

A common pitfall for new researchers in GEC concerns which metric to use with which
dataset; for example, the M2 scorer with JFLEG, or the I-measure with BEA-2019. While
there is no empirical reason to prefer one metric over another, in practice, the most
popular GEC test sets are almost always evaluated with a single, specific metric:

• CoNLL-2014 is evaluated with the M2 scorer

• JFLEG is evaluated with GLEU

• BEA-2019 is evaluated with ERRANT

This choice of experimental setup is largely motivated by historical reasons (e.g.,
GLEU and ERRANT did not exist during CoNLL-2014), but has nevertheless persisted
in order to ensure fair comparison with subsequent work. One particularly common
mistake is to evaluate CoNLL-2014 with ERRANT or BEA-2019 with the M2 scorer
because both metrics return an F-score, yet M2 F0.5 is not equivalent to ERRANT F0.5

677



Computational Linguistics Volume 49, Number 3

(Bryant, Felice, and Briscoe 2017). It is thus imperative that a dataset be evaluated with
its associated metric in order to facilitate a meaningful comparison.

6.6.1 Caveats. Despite this convention, it is also important to highlight the limitations
of this set-up, as it is not always desirable to optimize different systems for different
test sets using different metrics. Instead, we should remember that the ultimate goal
of GEC is to build systems that generalize well, and so we should not place too much
emphasis on specific experimental configurations. It is with this in mind that Mita et al.
(2019) recommend evaluating on multiple corpora in order to reveal any systematic
biases toward particular domains or user demographics, whereas Napoles, Nădejde,
and Tetreault (2019) recommend evaluating using their trained metric that was designed
to be less sensitive to dataset biases. These approaches thus add greater confidence that
a model is versatile and does not overfit to a specific type of input.

6.6.2 Recommendations. In light of the confusion surrounding different experimental set-
ups, we make the following recommendations for ensuring a meaningful comparison in
English GEC evaluation. This is not an exhaustive list, but we attempt to summarize the
current standard experimental setups that facilitate the most informative comparison
with previous work.

1. Evaluate on the BEA-2019 test set using ERRANT.
The BEA-2019 test set is one of the most diverse test sets that contains
texts from the full range of learner backgrounds and ability levels on a
wide range of topics. This makes it a good benchmark for system
robustness and generalizability. It is also the official test set of the most
recent shared task.

2. Evaluate on the CoNLL-2014 test set using the M2 scorer.
The CoNLL-2014 test set is one of the most well-known test sets that has
been widely used to benchmark progress in the field; it is thus an
important indicator of system performance. It is also the official test set
of the second most recent shared task.

3. Evaluate on the GMEG and/or CWEB test sets using ERRANT.
One of the main limitations of the BEA-2019 and CoNLL-2014 test sets is
that they mainly represent non-native language learners. It can therefore
be beneficial to evaluate on native speaker errors in GMEG and CWEB to
obtain a more complete picture of system generalizability.

4. Evaluate on JFLEG using GLEU.
The main reason to evaluate on JFLEG is to test systems on more
complex fluency edits rather than minimal edits. Not all edits in JFLEG
are fluency edits, however, and the test set is very small, so researchers
have seldom reported GLEU on JFLEG in recent years (Gong et al. 2022).

Ultimately, robust evaluation is rarely as straightforward as directly comparing
one number against another, and it is important to consider, for example, whether a
model has been trained/fine-tuned on in-domain data, optimized for a specific metric,
or only evaluated on a specific target test set. Each of these factors impacts how a score
should be interpreted, especially in relation to previous work, and there is a real danger
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of rewarding a highly optimized, specialized system, over a lower-scoring but more
versatile system that may actually be more desirable.

7. System Comparison

In this section, we compare the most recent state-of-the-art systems from the past
couple of years and comment on the innovations that led to them performing better
than previous work. The full list of systems we compare is shown in Table 8. For a
comparison of systems between 2014 and 2020, we refer the reader to Wang et al. (2021,
Table 7).

7.1 System Description

We first note that many of the systems in Table 8 are extensions of 3 other systems:
Omelianchuk et al. (2020), Sun et al. (2021), and Kiyono et al. (2019). Specifically,
Omelianchuk et al. (2020) built a sequence tagging model (Section 3.4) using a pre-
trained language model (e.g., BERT) and 9 million synthetic sentence pairs; Sun et al.
(2021) used a rule-based approach to generate 300 million synthetic sentence pairs
(Section 5.1.1) to train a modified BART model which contains 12 encoders and 2
decoders; and Kiyono et al. (2019) used 70 million synthetic sentence pairs generated
through back-translation (Section 5.1.2) to train a Transformer-big model.

Many of these systems specifically build on top of Omelianchuk et al. (2020),
including systems from Sorokin (2022), Lai et al. (2022), Parnow, Li, and Zhao (2021),
and Yasunaga, Leskovec, and Liang (2021). Specifically, Sorokin (2022) and Tarnavskyi,
Chernodub, and Omelianchuk (2022) upgraded the pre-trained language model from
base to large (e.g., RoBERTa-base vs. RoBERTa-large) and used an additional mechanism
to select the final edits by means of edit-scoring or majority voting (VT), respectively.
Parnow, Li, and Zhao (2021) and Lai et al. (2022) address the problem of edit inter-
dependence, that is, when the correction of one error depends on another, by means
of GANs and multi-turn training, respectively. Yasunaga, Leskovec, and Liang (2021)
applied the BIFI framework (Yasunaga and Liang 2021) to Omelianchuk et al. (2020)
(Section 3.5) to gradually train a system that iteratively generates and learns from more
realistic synthetic data. In contrast, Sun and Wang (2022) add a single hyperparameter
to Sun et al. (2021) to control the trade-off between precision and recall (PRT), Kaneko
et al. (2020) incorporate BERT into Kiyono et al. (2019) (Section 3.3.3), and Mita et al.
(2020) applied a self-refinement data augmentation strategy to Kiyono et al. (2019)
(Section 5.2).

Other systems include Katsumata and Komachi (2020) and Rothe et al. (2021), who
respectively explored the effectiveness of using pre-trained BART (Lewis et al. 2020) and
T5 (Raffel et al. 2020) as the base model for GEC; Zhang et al. (2022c) subsequently ex-
tended Katsumata and Komachi (2020) by adding syntactic information (Section 3.3.3).
Chen et al. (2020a) and Yuan et al. (2021) meanwhile both combined error detection
with error correction by respectively constraining the output of a GEC system based
on a separate GED system and jointly training GED as an auxiliary task (Section 4.3).
Stahlberg and Kumar (2020) proposed a seq2edit approach that explicitly predicts a se-
quence of tuple edit operations to apply to an input sentence (Section 3.4), and Stahlberg
and Kumar (2021) developed a method to generate a specific type of error in a sen-
tence (given a clean sentence and an error tag), which could be used to generate syn-
thetic datasets that more closely match the error distribution in a real corpus (Section
5.1.2). Finally, Lichtarge, Alberti, and Kumar (2020) used delta-log-perplexity to weight
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Table 8
Top-performing systems since 2020. The symbols in the Corpora column are N: NUCLE, F: FCE, L: Lang-8, W: W&I, cL: cLang-8, and CLC:
Cambridge Learner Corpus. The symbols in the Techniques column are ENS: ensemble, MTD: multi-turn decoding, PRT: precision-recall trade-off,
RE: re-ranking, SC: system combination, and VT: voting combination.

System Synthetic Sents Corpora Pre-trained Architecture Techniques CoNLL14 BEA19
Model M2 ERRANT

Qorib, Na, and Ng (2022) – W (dev) Various1 T5-large,
RoBERTa-base,
XLNet-base,
Transformer-big

SC 69.5 79.9

Lai et al. (2022) 9m N+F+L+W RoBERTa,
XLNet

RoBERTa-base,
XLNet-base

ENS+PRT+MTD 67.0 77.9

Sorokin (2022) 9m cL+N+F+W RoBERTa RoBERTa-large RE+MTD 64.0 77.1
Tarnavskyi, Chernodub, and
Omelianchuk (2022)

– N+F+L+W RoBERTa,
XLNet,
DeBERTa

RoBERTa-large,
XLNet-large,
DeBERTa-large

VT+PRT+MTD 65.3 76.1

Rothe et al. (2021) – cL T5-xxl T5-xxl – 68.9 75.9
Sun and Wang (2022) 300m N+F+L+W BART BART (12+2) PRT – 75.0
Stahlberg and Kumar (2021) 546m F+L+W – Transformer-big ENS 68.3 74.9
Cao, Yang, and Ng (2023) 200m cL+N+F+W – Transformer-big ENS 68.5 74.8
Omelianchuk et al. (2020) 9m N+F+L+W BERT,

RoBERTa,
XLNet

BERT-base,
RoBERTa-base,
XLNet-base

ENS+PRT+MTD 66.5 73.7

Lichtarge, Alberti, and Kumar (2020) 340m F+L+W – Transformer-big ENS 66.8 73.0
Zhang et al. (2022c) – cL+N+F+W BART BART-large – 67.6 72.9
Sun et al. (2021) 300m N+F+L+W BART BART (12+2) – 66.4 72.9
Yasunaga, Leskovec, and Liang (2021) 9m N+F+L+W XLNet XLNet-base PRT+MTD 65.8 72.9
Parnow, Li, and Zhao (2021) 9m N+F+L+W XLNet XLNet-base PRT+MTD 65.7 72.8
Yuan et al. (2021) – N+F+L+W

+CLC
ELECTRA Multi-encoder,

Transformer-base
RE 63.5 70.6

Stahlberg and Kumar (2020) 346m F+L+W – Seq2Edits
(modified
Transformer-big)

ENS+RE 62.7 70.5

Kaneko et al. (2020) 70m N+F+L+W – Transformer-big ENS+RE 65.2 69.8
Mita et al. (2020) 70m N+F+L+W – Transformer-big ENS+RE 63.1 67.8
Chen et al. (2020a) 260m N+F+L+W RoBERTa Transformer-big – 61.0 66.9
Katsumata and Komachi (2020) – N+F+L+W BART BART-large ENS 63.0 66.1

1
Combines Rothe et al. (2021), Omelianchuk et al. (2020), Kiyono et al. (2019), Grundkiewicz, Junczys-Dowmunt, and Heafield (2019), Choe et al. (2019).
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the contribution of each sentence in the training set toward overall model performance,
downweighting those that added the most noise (Section 5.2), and Qorib, Na, and Ng
(2022) used a binary classifier based on logistic regression to combine multiple GEC
systems using only the output from each individual component system.

7.2 Analysis

Despite all these enhancements, we first observe that it is very difficult to draw con-
clusions about the efficacy of different techniques in Table 8, because different sys-
tems were trained using different amounts/types of data (both real and artificial) and
developed using different pre-trained models and performance-boosting techniques.
Consequently, the systems are rarely directly comparable and we can only infer the
relative advantages of different approaches from the wider context. With this in mind,
the general trend in the past couple of years has been to scale models up using (i)
more artificial data, (ii) multiple pre-trained models/architectures, and (iii) multiple
performance-boosting techniques.

In terms of artificial data, the trend is somewhat mixed, as, on the one hand,
Stahlberg and Kumar (2021) introduced a system trained on more than half a billion
synthetic sentences, but on the other hand, they were still outperformed by systems
that used orders of magnitude less data (Lai et al. 2022; Tarnavskyi, Chernodub, and
Omelianchuk 2022). This pattern has been consistent for several years now and reveals
a delicate trade-off between artificial data quantity and quality. There is ultimately
no clear relationship between data quantity and performance, and some systems still
achieve competitive performance without artificial data (Rothe et al. 2021; Yuan et al.
2021; Katsumata and Komachi 2020).

The use of several pre-trained model architectures, however, tells a different story
and it is generally the case that using multiple architectures improves performance: The
top 3 latest state-of-the-art systems all use at least 2 different pre-trained models (Qorib,
Na, and Ng 2022; Lai et al. 2022; Tarnavskyi, Chernodub, and Omelianchuk 2022). This
suggests that different pre-training tasks capture different aspects of natural language
that complement each other in different ways in GEC. In contrast, approaches that rely
on a single pre-trained model typically perform slightly worse than those that combine
architectures, although it is worth keeping in mind that there is also a trade-off between
model complexity and run-time that is seldom reported (Omelianchuk et al. 2020; Sun
et al. 2021).

Finally, adding more performance-boosting techniques also tends to result in better
performance, and the systems that incorporate the most techniques typically score
highest. Among these techniques, the use of model ensembling or system combination
(Section 4.2) mitigates the instability of neural models and allows a final system to make
use of the strengths of several other systems. However, this comes at a cost to model
complexity and run-time.

8. Future Challenges

While much progress has been made in the past decade, several important challenges
remain (Qorib and Ng 2022). This section highlights some of them and offers sugges-
tions for future work.

Domain Generalization. Robustness is an important attribute of any NLP system. In the
case of GEC, we not only want our systems to work well for language learners, but also
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native speakers in different domains such as business emails, literature, and instruction
manuals. Some efforts have been made in this direction, such as the native web texts
in CWEB (Flachs et al. 2020), scientific articles in AESW (Daudaravicius et al. 2016),
and conversational dialog in ErAConD (Yuan et al. 2022), but more effort is needed to
create new corpora that represent a wider variety of domains. This is important because
previous research has shown that systems that perform well in one domain do not
necessarily perform well in other domains (Napoles, Nădejde, and Tetreault 2019).

Personalized Systems. Related to domain generalization is the fact that system perfor-
mance is also tied to the profiles of the users in the training data. For example, a system
trained on L2 English data produced by advanced L1 Spanish learners is unlikely to
perform as well on L2 English data produced by beginner L1 Japanese learners because
of the mismatch in ability level and first language. It is thus important to develop
corpora and tools that can adapt to different users (Chollampatt, Hoang, and Ng 2016),
since different ability levels and L1s can significantly affect the distribution of errors
that authors are likely to make (Nadejde and Tetreault 2019).

Feedback Comment Generation. GEC systems are currently trained to correct errors with-
out explaining why a correction was needed. This is insufficient in an educational
context, however, where it is desirable for a system to explain the cause of an error such
that a user may learn from it and not make the same mistake again. Resources have
begun to emerge to support this endeavor but much more work is needed to generate
robust feedback comments to support explainable GEC (Nagata 2019; Nagata, Inui, and
Ishikawa 2020; Hanawa, Nagata, and Inui 2021; Nagata et al. 2021).

Model Interpretability. Related to feedback generation, it is also important that model out-
put is interpretable by humans. For example, although a system may make a prediction
with high confidence, there is no guarantee that the prediction will be consistent with
human intuition. Researchers have thus begun to build systems that estimate the quality
of model output in an effort to provide more confidence that a given prediction is correct
(Chollampatt and Ng 2018c; Liu et al. 2021). Similarly, Kaneko et al. (2022) propose
an example-based approach, where a model additionally outputs similar corrections
in different contexts in order to add credibility to the notion that the model truly
understood the error.

Semantic Errors. One of the areas where state-of-the-art systems still underperform is
semantic errors, which include complex phenomenon such as collocations, idioms,
multi-word expressions, and fluency edits. Considerable work in GEC has focused
on correcting function word errors, which typically have small confusion sets and
constitute a majority of error types, but this does not mean we can neglect the correction
of content word errors. Although there has been some work on correcting collocations
(Kochmar and Briscoe 2014; Herbelot and Kochmar 2016) and multi-word expressions
(Mizumoto, Mita, and Matsumoto 2015; Taslimipoor, Bryant, and Yuan 2022), semantic
errors remain a notable area in which GEC systems could improve.

Contextual GEC. To date, most GEC systems operate at the sentence level, and so
do not perform well on errors that require cross-sentence context or document-level
understanding. Although work has already been done to incorporate multi-sentence
context into GEC systems (Chollampatt, Wang, and Ng 2019; Yuan and Bryant 2021;
Mita et al. 2022), almost all current datasets expect sentence tokenized input and so do
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not facilitate multi-sentence evaluation. Paragraph or document-level datasets, like in
the Arabic QALB shared tasks (Mohit et al. 2014; Rozovskaya et al. 2015), should thus
be developed to encourage contextual GEC in the future.

System Combination. Although much recent work focuses on NMT for GEC, this does
not mean that other approaches have nothing to offer. Work on system combination
has shown that systems built with different approaches have complementary strengths
and weaknesses such that a combined system can achieve significantly improved per-
formance (Susanto, Phandi, and Ng 2014; Han and Ng 2021; Lin and Ng 2021; Qorib,
Na, and Ng 2022). Better understanding of these strengths and weaknesses, and when
and how to combine approaches, are promising areas of research. One tool is ALLECS
(Qorib, Moon, and Ng 2023), which is a web-interface tool to produce text corrections
using GEC system combination methods.

Training Data Selection. Current state-of-the-art systems rely on pre-training on a massive
amount of synthetic parallel corpora; however this is both computationally expensive
and not environmentally friendly. It is also questionable whether so much training
data is really necessary, as humans are not exposed to training data on such a massive
scale, yet can still correct errors without issue. A more economical approach to effective
training data selection is thus an important research question that will go a long way
toward reducing training time and developing more efficient GEC systems (Lichtarge,
Alberti, and Kumar 2020; Takahashi, Katsumata, and Komachi 2020; Mita and Yanaka
2021; Rothe et al. 2021).

Unsupervised Approaches. The dependency on parallel corpora (both real and synthetic) is
a major limiting factor in GEC system development, in that it is both laborious and time-
consuming to train human annotators to manually correct errors, and also surprisingly
difficult to generate high-quality synthetic errors that reliably imitate human error
patterns. It is furthermore noteworthy that humans can correct errors without access to a
large corpus of erroneous examples and instead rely on their knowledge of grammatical
language in order to detect and correct mistakes. It should thus be intuitive that a GEC
system might be able to do the same by interpreting deviations from grammatical data
as anomalies that need to be corrected. The success of such an unsupervised approach
would significantly hasten the development of multilingual GEC systems and also
eliminate the need to compile parallel corpora.

Multilingual GEC. Although most work on GEC has focused on English, work on other
languages is also beginning to take off as new resources become available; e.g., in Ger-
man (Boyd 2018), Russian (Rozovskaya and Roth 2019), and Czech (Náplava et al. 2022).
While it is important to encourage research into GEC systems for specific languages, it is
also important to remember that it is ultimately not scalable to build a separate system
for every language. It is desirable to work toward a single multilingual system that
can correct all languages simultaneously like in machine translation (Katsumata and
Komachi 2020; Rothe et al. 2021).

Spoken GEC. Another aspect of GEC that has seldom been explored in the literature is
that of spoken GEC. While progress has largely been hindered by a lack of available
data, researchers have recently begun to build systems capable of detecting and correct-
ing errors in learner speech (Knill et al. 2019; Caines et al. 2020; Kyriakopoulos, Knill,
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and Gales; Lu, Gales, and Wang 2020; Lu, Bannò, and Gales 2022). Compared with
text-based GEC, additional challenges include recognizing non-native accented speech
(possibly including non-standard pronunciation), disfluency detection, and utterance
segmentation.

Improved Evaluation. Finally, robust evaluation of GEC system output is still an unsolved
problem and current evaluation practices may actually hinder progress (Rozovskaya
and Roth 2021). For example, almost all metrics to date require tokenized text, yet end-
users require untokenized text, and so there is a disconnect between system capability
and user expectation. Similarly, GEC systems are typically trained to output a single
best correction for a sentence, yet end-users may prefer a short n-best list of possible
corrections for each edit, as in most spellcheckers. Ultimately, alternative answers and
untokenized text are not yet properly accounted for in GEC system evaluation, leaving
room for new metrics to drive the field toward better practices.

9. Conclusion

In this survey, we set out to provide a comprehensive overview of the state of the art
in the field of Grammatical Error Correction. Our main goal was to summarize the
progress that has been made since Leacock et al. (2014) but also complement the work
of Wang et al. (2021) with more in-depth and recent coverage on various topics.

With this in mind, we first explored the nature of the task and illustrated the
inherent difficulties in defining an error according to the perceived communicative
intent of the author. We next alluded to how these difficulties can manifest in human-
annotated corpora, before introducing the most commonly used benchmark corpora for
English, several less commonly used corpora for English, and new corpora for GEC
systems in other languages, including Arabic, Chinese, Czech, German, and Russian.
Research into GEC for non-English languages has begun to take off in the last couple of
years and will no doubt continue to grow in the future.

We next characterized the evolution of approaches to GEC, from error-type specific
classifiers to state-of-the-art NMT and edit-based sequence-labeling, and summarized
some of the additional supplementary techniques that are commonly used to boost
performance, such as re-ranking, multi-task learning, and iterative decoding. We also
described different methods of artificial data generation and augmentation, which have
become core components of recent GEC systems, but also drew attention to the benefits
of low-resource GEC systems that may be less resource intensive and more easily
extended to other languages.

Robust evaluation is still an unsolved problem in GEC, but we introduced the most
commonly used metrics in the field, along with their strengths and weaknesses, and
listed previous attempts at both reference-based and reference-less metrics that were
designed to overcome various shortcomings. We furthermore highlighted the difficulty
in correlating human judgments with metric performance in light of the highly subjec-
tive nature of the task.

Finally, we provided an analysis of very recent progress in the field, including
making observations about which techniques/resources seemed to perform best (par-
ticularly in the context of model efficiency), before concluding with several possibil-
ities for future work. We hope that this survey will serve as comprehensive resource
for researchers who are new to the field or who want to be kept apprised of recent
developments.
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Flachs, Simon, Ophélie Lacroix, Helen
Yannakoudakis, Marek Rei, and Anders
Søgaard. 2020. Grammatical error
correction in low error density domains: A
new benchmark and analyses. In
Proceedings of the 2020 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 8467–8478.
https://doi.org/10.18653/v1/2020
.emnlp-main.680

Flachs, Simon, Felix Stahlberg, and Shankar
Kumar. 2021. Data strategies for
low-resource grammatical error correction.
In Proceedings of the 16th Workshop on
Innovative Use of NLP for Building
Educational Applications, pages 117–122.

Gamon, Michael. 2010. Using mostly native
data to correct errors in learners’ writing.
In Human Language Technologies: The 2010
Annual Conference of the North American
Chapter of the Association for Computational
Linguistics, pages 163–171.

Gamon, Michael, Jianfeng Gao, Chris
Brockett, Alexandre Klementiev,
William B. Dolan, Dmitriy Belenko, and
Lucy Vanderwende. 2008. Using
contextual speller techniques and
language modeling for ESL error
correction. In Proceedings of the Third
International Joint Conference on Natural

Language Processing: Volume-I,
pages 449–456.

Ge, Tao, Furu Wei, and Ming Zhou. 2018.
Fluency boost learning and inference for
neural grammatical error correction. In
Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 1055–1065.
https://doi.org/10.18653/v1/P18-1097

Geertzen, Jeroen, Theodora Alexopoulou,
and Anna Korhonen. 2013. Automatic
linguistic annotation of large scale L2
databases: The EF-Cambridge Open
Language Database (EFCAMDAT). In
Selected Proceedings of the 31st Second
Language Research Forum (SLRF)s,
pages 240–254.

Gehring, Jonas, Michael Auli, David
Grangier, and Yann Dauphin. 2017. A
convolutional encoder model for neural
machine translation. In Proceedings of the
55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 123–135. https://doi
.org/10.18653/v1/P17-1012

Gong, Peiyuan, Xuebo Liu, Heyan Huang,
and Min Zhang. 2022. Revisiting
grammatical error correction evaluation
and beyond. In Proceedings of the 2022
Conference on Empirical Methods in Natural
Language Processing, pages 6891–6902.

Goodfellow, Ian, Yoshua Bengio, and Aaron
Courville. 2016. Deep Learning. https://
www.deeplearningbook.org.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. 2014. Generative adversarial nets.
In Advances in Neural Information Processing
Systems, volume 27.

Gotou, Takumi, Ryo Nagata, Masato Mita,
and Kazuaki Hanawa. 2020. Taking the
correction difficulty into account in
grammatical error correction evaluation.
In Proceedings of the 28th International
Conference on Computational Linguistics,
pages 2085–2095.

Graham, Yvette, Timothy Baldwin, and
Nitika Mathur. 2015. Accurate evaluation
of segment-level machine translation
metrics. In Proceedings of the 2015
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies,
pages 1183–1191. https://doi.org/10
.3115/v1/N15-1124

Granger, Sylviane. 1998. The computer
learner corpus: A versatile new source of
data for SLA research. In Learner English on

689

https://doi.org/10.1145/2659833
https://doi.org/10.1145/2659833
https://doi.org/10.3115/v1/W14-1702
https://doi.org/10.3115/v1/W14-1702
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/P18-1097
https://doi.org/10.18653/v1/P17-1012
https://doi.org/10.18653/v1/P17-1012
https://www.deeplearningbook.org
https://www.deeplearningbook.org
https://doi.org/10.3115/v1/N15-1124
https://doi.org/10.3115/v1/N15-1124


Computational Linguistics Volume 49, Number 3

Computer, pages 3–18. https://doi.org
/10.4324/9781315841342-1

Grundkiewicz, Roman and Marcin
Junczys-Dowmunt. 2014. The WikEd error
corpus: A corpus of corrective Wikipedia
edits and its application to grammatical
error correction. In Advances in Natural
Language Processing – Lecture Notes in
Computer Science, volume 8686,
pages 478–490. https://doi.org/10
.1007/978-3-319-10888-9 47

Grundkiewicz, Roman and Marcin
Junczys-Dowmunt. 2018. Near
human-level performance in grammatical
error correction with hybrid machine
translation. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 2
(Short Papers), pages 284–290. https://
doi.org/10.18653/v1/N18-2046

Grundkiewicz, Roman and Marcin
Junczys-Dowmunt. 2019.
Minimally-augmented grammatical error
correction. In Proceedings of the 5th
Workshop on Noisy User-generated Text
(W-NUT 2019), pages 357–363.

Grundkiewicz, Roman, Marcin
Junczys-Dowmunt, and Edward Gillian.
2015. Human evaluation of grammatical
error correction systems. In Proceedings
of the 2015 Conference on Empirical
Methods in Natural Language Processing,
pages 461–470.

Grundkiewicz, Roman, Marcin
Junczys-Dowmunt, and Kenneth Heafield.
2019. Neural grammatical error correction
systems with unsupervised pre-training
on synthetic data. In Proceedings of the
Fourteenth Workshop on Innovative Use of
NLP for Building Educational Applications,
pages 252–263.

Hagiwara, Masato and Masato Mita. 2020.
GitHub typo corpus: A large-scale
multilingual dataset of misspellings and
grammatical errors. In Proceedings of the
12th Language Resources and Evaluation
Conference, pages 6761–6768.

Han, Na Rae, Martin Chodorow, and Claudia
Leacock. 2006. Detecting errors in English
article usage by non-native speakers.
Natural Language Engineering,
12(2):115–129. https://doi.org/10
.1017/S1351324906004190

Han, W. and H. Ng. 2021. Diversity-driven
combination for grammatical error
correction. In 2021 IEEE 33rd International
Conference on Tools with Artificial Intelligence
(ICTAI), pages 972–979.

Hanawa, Kazuaki, Ryo Nagata, and Kentaro
Inui. 2021. Exploring methods for
generating feedback comments for writing
learning. In Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing, pages 9719–9730.

Hanna, Michael and Ondřej Bojar. 2021. A
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Náplava, Jakub and Milan Straka. 2019.
Grammatical error correction in
low-resource scenarios. In Proceedings of the
5th Workshop on Noisy User-generated Text
(W-NUT 2019), pages 346–356.
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