Computational Linguistics, Volume 49, Issue 4 - December 2023


Anthology ID:
2023.cl-4
Month:
December
Year:
2023
Address:
Cambridge, MA
Venue:
CL
SIG:
Publisher:
MIT Press
URL:
https://aclanthology.org/2023.cl-4
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
My Tenure as the Editor-in-Chief of Computational Linguistics
Hwee Tou Ng

Times flies and it has been close to five and a half years since I became the editor-in-chief of Computational Linguistics on 15 July 2018. In this editorial, I will describe the changes that I have introduced at the journal, and highlight the achievements and challenges of the journal.

pdf bib
Measuring Attribution in Natural Language Generation Models
Hannah Rashkin | Vitaly Nikolaev | Matthew Lamm | Lora Aroyo | Michael Collins | Dipanjan Das | Slav Petrov | Gaurav Singh Tomar | Iulia Turc | David Reitter

Large neural models have brought a new challenge to natural language generation (NLG): It has become imperative to ensure the safety and reliability of the output of models that generate freely. To this end, we present an evaluation framework, Attributable to Identified Sources (AIS), stipulating that NLG output pertaining to the external world is to be verified against an independent, provided source. We define AIS and a two-stage annotation pipeline for allowing annotators to evaluate model output according to annotation guidelines. We successfully validate this approach on generation datasets spanning three tasks (two conversational QA datasets, a summarization dataset, and a table-to-text dataset). We provide full annotation guidelines in the appendices and publicly release the annotated data at https://github.com/google-research-datasets/AIS.

pdf bib
Generation and Polynomial Parsing of Graph Languages with Non-Structural Reentrancies
Johanna Björklund | Frank Drewes | Anna Jonsson

Graph-based semantic representations are popular in natural language processing, where it is often convenient to model linguistic concepts as nodes and relations as edges between them. Several attempts have been made to find a generative device that is sufficiently powerful to describe languages of semantic graphs, while at the same allowing efficient parsing. We contribute to this line of work by introducing graph extension grammar, a variant of the contextual hyperedge replacement grammars proposed by Hoffmann et al. Contextual hyperedge replacement can generate graphs with non-structural reentrancies, a type of node-sharing that is very common in formalisms such as abstract meaning representation, but that context-free types of graph grammars cannot model. To provide our formalism with a way to place reentrancies in a linguistically meaningful way, we endow rules with logical formulas in counting monadic second-order logic. We then present a parsing algorithm and show as our main result that this algorithm runs in polynomial time on graph languages generated by a subclass of our grammars, the so-called local graph extension grammars.

pdf bib
Capturing Fine-Grained Regional Differences in Language Use through Voting Precinct Embeddings
Alex Rosenfeld | Lars Hinrichs

Linguistic variation across a region of interest can be captured by partitioning the region into areas and using social media data to train embeddings that represent language use in those areas. Recent work has focused on larger areas, such as cities or counties, to ensure that enough social media data is available in each area, but larger areas have a limited ability to find fine-grained distinctions, such as intracity differences in language use. We demonstrate that it is possible to embed smaller areas, which can provide higher resolution analyses of language variation. We embed voting precincts, which are tiny, evenly sized political divisions for the administration of elections. The issue with modeling language use in small areas is that the data becomes incredibly sparse, with many areas having scant social media data. We propose a novel embedding approach that alternates training with smoothing, which mitigates these sparsity issues. We focus on linguistic variation across Texas as it is relatively understudied. We develop two novel quantitative evaluations that measure how well the embeddings can be used to capture linguistic variation. The first evaluation measures how well a model can map a dialect given terms specific to that dialect. The second evaluation measures how well a model can map preference of lexical variants. These evaluations show how embedding models could be used directly by sociolinguists and measure how much sociolinguistic information is contained within the embeddings. We complement this second evaluation with a methodology for using embeddings as a kind of genetic code where we identify “genes” that correspond to a sociological variable and connect those “genes” to a linguistic phenomenon thereby connecting sociological phenomena to linguistic ones. Finally, we explore approaches for inferring isoglosses using embeddings.

pdf bib
Languages Through the Looking Glass of BPE Compression
Ximena Gutierrez-Vasques | Christian Bentz | Tanja Samardžić

Byte-pair encoding (BPE) is widely used in NLP for performing subword tokenization. It uncovers redundant patterns for compressing the data, and hence alleviates the sparsity problem in downstream applications. Subwords discovered during the first merge operations tend to have the most substantial impact on the compression of texts. However, the structural underpinnings of this effect have not been analyzed cross-linguistically. We conduct in-depth analyses across 47 typologically diverse languages and three parallel corpora, and thereby show that the types of recurrent patterns that have the strongest impact on compression are an indicator of morphological typology. For languages with richer inflectional morphology there is a preference for highly productive subwords on the early merges, while for languages with less inflectional morphology, idiosyncratic subwords are more prominent. Both types of patterns contribute to efficient compression. Counter to the common perception that BPE subwords are not linguistically relevant, we find patterns across languages that resemble those described in traditional typology. We thus propose a novel way to characterize languages according to their BPE subword properties, inspired by the notion of morphological productivity in linguistics. This allows us to have language vectors that encode typological knowledge induced from raw text. Our approach is easily applicable to a wider range of languages and texts, as it does not require annotated data or any external linguistic knowledge. We discuss its potential contributions to quantitative typology and multilingual NLP.

pdf bib
Language Embeddings Sometimes Contain Typological Generalizations
Robert Östling | Murathan Kurfalı

To what extent can neural network models learn generalizations about language structure, and how do we find out what they have learned? We explore these questions by training neural models for a range of natural language processing tasks on a massively multilingual dataset of Bible translations in 1,295 languages. The learned language representations are then compared to existing typological databases as well as to a novel set of quantitative syntactic and morphological features obtained through annotation projection. We conclude that some generalizations are surprisingly close to traditional features from linguistic typology, but that most of our models, as well as those of previous work, do not appear to have made linguistically meaningful generalizations. Careful attention to details in the evaluation turns out to be essential to avoid false positives. Furthermore, to encourage continued work in this field, we release several resources covering most or all of the languages in our data: (1) multiple sets of language representations, (2) multilingual word embeddings, (3) projected and predicted syntactic and morphological features, (4) software to provide linguistically sound evaluations of language representations.