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Abstract

We investigate and refine denoising methods
for NER task on data that potentially con-
tains extremely noisy labels from multi-sources.
In this paper, we first summarized all possi-
ble noise types and noise generation schemes,
based on which we built a thorough evaluation
system. We then pinpoint the bottleneck of cur-
rent state-of-art denoising methods using our
evaluation system. Correspondingly, we pro-
pose several refinements, including using a two-
stage framework to avoid error accumulation; a
novel confidence score utilizing minimal clean
supervision to increase predictive power; an
automatic cutoff fitting to save extensive hyper-
parameter tuning; a warm started weighted par-
tial CRF to better learn on the noisy tokens. Ad-
ditionally, we propose to use adaptive sampling
to further boost the performance in long-tailed
entity settings. Our method improves F1 score
by on average at least 5 ∼ 10% over current
state-of-art across extensive experiments.

1 Introduction

Named Entity Recognition (NER) aims to recog-
nize mentions of rigid designators from text belong-
ing to predefined semantic types such as a person,
location, organization, etc. NER not only acts as
a standalone tool for information extraction (IE),
but also plays an essential role in a variety of nat-
ural language processing (NLP) applications such
as text understanding, information retrieval, auto-
matic text summarization, question answering, ma-
chine translation, and knowledge base construction,
etc. Recent progress in deep learning has signifi-
cantly advanced NER performances (e.g. (Huang
et al., 2015; Lample et al., 2016; Li et al., 2020a)).
However, in the presence of noisy labels, training
DNNs is known to be vulnerable to noisy labels be-
cause the significant number of model parameters
allow DNNs easily overfit to even corrupted labels.
This problem first raised attention in computer vi-
sion (CV): (Zhang et al., 2021a) demonstrated that

DNNs can easily fit an entire training dataset with
any ratio of corrupted labels, which eventually re-
sulted in poor generalizability on a test dataset. Un-
fortunately, popular regularization techniques, such
as data augmentation, weight decay, dropout, and
batch normalization do not completely overcome
the overfitting issue caused by noisy labels.

Many endeavors have been put into handling
noisy labels. Note that this is a fundamentally
different problem than general feature-level noise
(Zhang and Zhou, 2023; Zheng et al., 2021; Chen
et al., 2023; Wang et al., 2021). Except for the spe-
cific techniques in certain science domains (Feng
et al., 2023), most of those methods are first de-
signed for computer vision or instance-level clas-
sification tasks in NLP like text classification. De-
noising methods in the NER domain are generally
under-explored and rendered harder: for NER, only
correct detection of both the entity boundary and
entity class are rendered as one correct prediction.
Therefore, the label noise in NER is more complex
than those in CV or text classification. For exam-
ple, human annotators could produce mis-specified
entity boundaries; other automatic labels genera-
tion like distant supervision (Liang et al., 2020)
from the dictionary or database often generate in-
complete annotations, meaning some entity words
are wrongly named as non-entity simply because
they are not recorded in the database; others like
transfer learning or domain adaptation (Lee et al.,
2017; Raghuram et al., 2022; Li and Metsis, 2022)
from one domain to another domain could cause
wrongly labeled classes for many entity words, as
same words could have different semantic types in
different domains.

Due to the lack of clean data resources, the ma-
jority of denoising literature is unwilling to use
any clean validation data or anchor points for de-
noising, regardless of the fact that most of them
often require massive computation cost or exten-
sive hyper-parameter tuning (Song et al., 2022).
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In fact, those supervision-free methods often suf-
fer from error propagation as the error incurred by
false correction/filtering will be accumulated due
to lack of supervision, especially when the number
of classes or the number of mislabeled examples is
large (Shu et al., 2019). To overcome those obsta-
cles, maintaining multiple DNNs or training a DNN
in multiple rounds is frequently used (e.g. (Wang
et al., 2019; Northcutt et al., 2021)), but these ap-
proaches significantly degrade the efficiency of the
learning pipeline (Song et al., 2022). In industry-
level applications, meta gold datasets (i.e. high-
quality/clean datasets) are commonly available, to
guarantee direct and reliable evaluation of methods
and therefore stable and supreme user experience;
also the amount of available data rapidly increases
in big companies. More attention should be paid
to how to best design and leverage the meta gold
dataset to do efficient, effective, and stable label
denoising.

Motivated by the above, in this paper, we study
the label denoising problem in NER, and we con-
tribute in the following three aspects:

• We build a thorough evaluation system via
summarizing all possible noise types and
noise generation schemes in NER domain,
which was before lacked in the domain.
Through this system we find out that the base-
line methods 1 are already agnostic to some
noise types; while for the other, the noise
rate influences the effectiveness of denoising
rather than noise type.

• We find out that the current state-of-art de-
noising method is only effective in very lim-
ited noise cases, and the time expensive self-
training is often unnecessary due to error prop-
agation. Through careful ablation study, we
pinpoint that the true bottleneck of its effec-
tiveness is reliable sample selection.

• We propose an effective and efficient method
that leverages minimal clean data to do sample
selection and apply weighted semi-supervised
learning with a warm start. Under our de-
signed fair comparison 2, our method sta-
bly outperforms other state-of-the-art methods

1We call methods designed for clean NER data set as base-
line methods, and particularly, we choose bert-CFR as our
main baseline model of consideration due to its SOTA perfor-
mance (Lample et al., 2016).

2We include the minimal clean data into the training set
for all the methods for a fair comparison.

across the broad types of simulated noises by
a large margin, as well as on realistic data aug-
mentation generated noise. We provide guide-
lines on further boosting the performance of
our method in different application scenarios.

In the following, we will introduce the related
work in more detail in Section 2 and provide a for-
mal problem and method description in Section 3.
We describe our experiment setting and correspond-
ing results in Section 4, where we also provide a
careful ablation study to narrow down the bottle-
neck of the current state-of-arts method. In the end,
we summarize our findings and contributions and
some possible future directions in Section 5.

2 Related work

Learning on noisy labels Most of the denois-
ing methods are designed for computer vision
(Song et al., 2022), that is, instance level classi-
fication. They can generally be categorized into
the following four categories: 1) noise model-
ing: adding a noise adaptation layer at the top
of an underlying DNN to learn the transition be-
tween clean and noisy labels, e.g.(Chen and Gupta,
2015; Sukhbaatar et al., 2015; Goldberger and Ben-
Reuven, 2017)); 2) regularization: enforcing a
DNN to overfit less to false-labeled examples ex-
plicitly or implicitly, e.g. (Pereyra et al., 2017;
Zhang et al., 2018; Menon et al., 2020; Xia et al.,
2021; Wei et al., 2021); 3) sample reweighting: ad-
justing the loss value according to the trust-level
of a given sample, e.g. (Wang et al., 2017; Chang
et al., 2017; Zhang et al., 2021b; Shu et al., 2019);
4) sample selection: identifying true-labeled exam-
ples from noisy training data via multi-network or
multi-round learning, e.g. (Han et al., 2018; Jiang
et al., 2018; Yu et al., 2019; Wang et al., 2018; Li
et al., 2020b; Zhou et al., 2020; Berthelot et al.,
2019). From prior work and our investigation, we
generally note that, noise modeling type of methods
often estimate the transition matrix with large error
when only noisy training data is used or when the
noise rate is high; regularization type of methods
often introduce sensitive model-dependent hyper-
parameters and therefore hard to stably work in
practice; sample reweighting is often more useful
for instance level classification, which is not the
case in NER problem domain where often a graph-
ical model is adopted for classification; sample se-
lection is well motivated and works well in general,
also its has more interpretability and light-weights.
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For industry-level application considerations: we
hope to seek solutions that are more lightweight,
stable, and easy to tune. Therefore we focus on the
line of methods using sample selection.

Semi-supervised learning for NER task An in-
herent limitation of sample selection is to discard
all the un-selected training examples, thus resulting
in a partial exploration of training data. To exploit
all the noisy examples, researchers have attempted
to combine sample selection with other orthogonal
ideas. The most prominent method in this direction
is combining a specific sample selection strategy
with a specific semi-supervised learning model (He
et al., 2023; Dong et al., 2021). For example, the
most promising method in this direction is com-
bining a specific sample selection strategy with a
specific semi-supervised learning model like Partial
CRF (Tsuboi et al., 2008).

3 Method: UseClean

Our method UseClean is built upon a well-known
NER modeling called Conditional Random Field
(CRF). Specifically, consider a sentence of words
u : [u1, . . . , us], and a corresponding sequence of
tags y : [y1, . . . , ys], where yi ∈ E := {1, . . . ,K},
CRF (Lample et al., 2016) models the conditional
probability of y given u as:

p(y|u) ∝
∑

1≤i≤s

(Tyi−1,yi +Ai,yi) ∈ R (1)

where A = Linear(h) ∈ Rs×K ; (2)

h = Encoder(u) ∈ Rs×m; (3)

T ∈ RK×K . (4)

Here h denotes the encoder hidden representation,
Linear(·) denotes a linear layer that converts h
into the network estimation for the possibility of
yi at word i given utterance u; and the transition
score Tij to model the transition from i-th label
to j-th for a pair of consecutive time steps, and it
is position independent. Dynamic programming
can be used efficiently to compute T and inference
optimal tag sequences (Sutton et al., 2012).

In the following, we will introduce our two-stage
method UseClean built upon this encoder-CRF
model. Figure 1 shows the whole working flow
of our UseClean method.

3.1 Clean anchor: a better confidence score
NLNCE (Liu et al., 2021) uses the so-called mem-
orization effect observed in computer vision (Arpit

et al., 2017; Zhang et al., 2021a). It observes that
neural networks usually take precedence over noisy
data to fit clean data, which indicates that noisy
data are more likely to have larger loss values in
the early training epochs. However, we observe
that this is not generally true (see the Figure 2 for
examples), which in turn leads to many wrong se-
lection and also error accumulation.

Therefore, we propose to use a two-stage frame-
work that uses a little clean supervision to re-
duce wrong selection and also error accumulation.
Specifically, given all the training data, we sample
a small portion (around 1-3%) and annotate it with
clean labels, then we train a BERT-CRF model on
this small gold data. We call this model the clean
anchor model.

Then we apply the clean anchor model on the
rest of the training data and compute two choices
of confidence scores for i-th token in utterance u.
The marginal probability based score called Map
from (Liu et al., 2021):

ri = panchor(yi|u) = αiβi/Z, (5)

which measures how likely the i-th token is la-
beled yi under the clean anchor model, where β is
the backward variable and can be computed with
the Backward algorithm; and the logit value differ-
ences based score Diff:

di = max
j∈[K]

{Ai,j} −Ai,yi , (6)

which measures the gap between the logit of the
observed label and the predicted label. We observe
no universal winner of those two scores in our ex-
tensive experiments, therefore we report the best
over them.

Adaptive Sampling. Under the existence of the
class imbalance 3, it is very likely that our random
sampled small clean dataset does not contain cer-
tain tail entity types, and therefore leading to bad
separation of clean and noisy tokens in them. To
mitigate this effect, we consider a constrained sam-
pling method that tries to sample more from the
tail entities: sampling only from utterance that con-
tains at least one tail entity (we define the entities
that constitute the tail 20% quantile as the tail enti-
ties). In this paper, if a dataset appears to have long

3Other popular methods for combating imbalance issue
includes the logit adjustment method (Menon et al., 2021), but
we did not find it was able to improve the downstream NER
performance in our setting.
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Figure 1: A demonstration of the working flow of UseClean model.

tail entity distribution4, we will adopt an adaptive
sampling scheme: consider both random sampling
and constrained sampling and report the best over
them.

3.2 FitMix: automatic sample selection

From Figure 2 we can see that, the confidence
score of clean and noisy seems to follow a Gamma-
Gaussian mixture distribution, where the noisy
component follows the Gaussian distribution and
the clean component follows the Gamma distribu-
tion. So we propose to model the confidence score
s as the following:

s ∼ wf + (1− w)g, where w ∈ [0, 1] (7)

f ∼ Γ(α, β), g ∼ N(µ, σ), , (8)

and fit all the parameters (w, µ, σ, α, β) using
Expectation-Maximization algorithm. Then with
the fitted parameters (ŵ, µ̂, σ̂, α̂, β̂), we can com-
pute the theoretical F1 given a cutoff C in closed
form:

F1(C) =
ŵ
(
1− Γα̂,β̂(C)

)
+ (1− ŵ)

(
2− Φµ̂,σ̂(C)

)
(1− ŵ)

(
1− Φµ̂,σ̂(C)

) .

We select C such that F1(C) is maximized and
treat all tokens that have s > C as non-trustworthy.

3.3 Warm weight: learning on noisy tokens

After we do the sample selection, we treat all non-
trustworthy tokens as unlabeled and use the idea of
semi-supervised learning. Liu et al. (2021) simply
sum over all the token sequences that are compat-
ible with the trusted annotations. Specifically, de-
noting the trusted annotation sequence as yp, from

4Long tail distribution means having many classes of small
sizes.

it we can derive a set of all possible complete label
sequences that are compatible with the incomplete
label sequence, and let us call this set C(yp), then
semi-supervised loss function can be written as

L(θ) = − log
∑

ỹ∈C(yp)

pθ(ỹ|u) (9)

Inspired by Jie et al. (2019) for better modeling of
NER with incomplete annotations, we instead use
a weighted version:

Lweight(θ) = − log
∑

ỹ∈C(yp)

qD(ỹ|u)pθ(ỹ|u),

(10)
where qD represents the true data distribution. We
estimate qD as qanchor, which is the distribution
computed using our trained clean anchor model.
As the clean anchor model is trained on clean data,
therefore we believe these weights represent some
level of prior information of the underlying true
label sequence distribution. By putting more prob-
ability mass on a path that is close to the true path,
we can guide the model to quickly learn the essen-
tial parameters that can correctly predict the true
path in the inference stage.

4 Experiments

4.1 Datasets
We consider three datasets for evaluation through-
out this paper: an Alexa dialog dataset called
Massive (FitzGerald et al., 2022), which contains
around 16K samples, and 55 entity types across 18
domains; a popular benchmark dataset CoNLL03
(Sang and De Meulder, 2003), which contains
around 20K samples, 4 entity types in News do-
main; and a Wikipedia dataset Wikigold (Bala-
suriya et al., 2009), which contains around 1.8K
samples over 4 entity types in Wikipedia domain.
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Figure 2: The distribution of confidence score for both simulated noise (“bias" type, detailed description in Section 4)
and realistic transfer learning generated noise (detailed description in Section 4), using NLNCE method and our
UseClean method. For NLNCE, we plot the distribution of confidence score at epoch 2, we can see that the clean
and noisy samples are highly overlapped, i.e. the “early learning" phenomena does not hold true. On the other hand,
our UseClean method has better separation of clean and noisy.

Synthetic noisy datesets Given a dataset with
labels of good quality, we can treat its original
labels as truth and manually perturb it to gener-
ate noise. In this paper, we consider randomly
selecting x% of utterance, and random select
max{1, 0.2#entities} entities (if there are any),
and perturb their labels by the different noise gener-
ation schemes showed in Table 1. We mainly focus
on the high noise rate regime: i.e. 70%, 100% ut-
terance level noise. We point out that even with the
same utterance level noise rate, the word level noise
rate can vary a lot for different noise types. For
example, shift and shrink noise types often have
much lower word level noise rates compared with
others, this is due to the fact that shift and shrink
can only happen on entities with multiple words,
while the others can happen on any entity. Due to
the size imbalance between entity and nonentity
words, we compute the word-level noise rate for
entity and nonentity separately. In the following,
we use the summation of the entity and nonentity
word-level noise rate as the total word-level noise
rate for simplicity.

Realistic noise We also consider more realistic
noisy label generation. In practice, many cheap
labels are generated either from distant supervision
or transfer learning.

• Distant supervision: We consider three
datasets including Massive (FitzGerald et al.,
2022), CoNLL03 (Sang and De Meulder,
2003), Wikigold (Balasuriya et al., 2009).
In this setting, the distantly supervised tags
for CoNLL03 and Wikigold are generated by
the dictionary following BOND (Liang et al.,
2020), while for massive, we provide distant
supervision simply using our own defined dic-

tionary.

• Transfer learning: We consider two datasets:
Massive (FitzGerald et al., 2022) and
CoNLL03 (Sang and De Meulder, 2003).
For CoNLL03, we consider transferring the
Wikigold dataset to it, as they share exactly
the same entity types. To do the transfer, we
directly learn a model on Wikigold and predict
it on CoNLL03. For Massive, we use data in
9 domains of massive data and transfer them
to the rest 9 domains. To make the most mean-
ingful transfer, we compute this domain by do-
main entity types overlapping matrix, where
each cell indicates how many entities types a
pair of two domains share. Then we intention-
ally split the domains into source and target
such that the domain pairs with high over-
laps are separated, and hence model learned
on source domains can have more knowledge
transferable to the target domains.

4.2 Methods for comparison

For Baseline, we follow the implementation of
the neural-CRF model proposed in (Lample et al.,
2016) without any denoising steps. Particularly, it
models the tag sequence as a linear-chain condi-
tional random field, where only subsequent tags
have an edge. Also, we consider the following
three NER denoising methods on top of the base-
line, which we believe are the most competitive
methods in the literature. CoReg (Zhou and Chen,
2021) propose a regularization based NER denois-
ing method called CoReg, where the regularization
term is based on model agreement. NLNCE (Liu
et al., 2021) utilize the early learning phenomena
and select the noisy tokens via gradually truncating
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noise type explanation
example:
"show me the meetings held last month"

truth - - [O, O, O, S-event_name, O, B-date, I-date]
miss label an entity word as nonentity [O, O, O, S-event_name, O, O, B-date]over/in-

complete over label a nonentity word as some random entity [O, S-person, O, S-event_name, O, B-date, I-date]

shift
for an entity contains multiple words,
shift its boundary to the left or right by one word.

[O, O, O, S-event_name, B-date, I-date, O]

extend
for an entity, extend its boundary to
the left or right by one word.

[O, O, O, B-event_name, I-even_name, B-date, I-date]
boundary
error

shrink
for an entity contains multiple words,
shrink its boundary from the left
or right by one word.

[O, O, O, S-event_name, O, S-date, O]

swap for an entity, change its class to some other random entity [O, O, O, S-event_name, O, B-person, I-person]
class error

bias
for an entity, change its class to some
particular entities according to a transition matrix

[O, O, O, S-event_name, O, B-time I-time]

Table 1: Summarized synthetic noise generation scheme.

the samples with a large loss, then it uses the uni-
form partial CRF to relearn the noisy tokens. As
for alternative automatic cutoff fitting methods, we
also consider replacing our FitMix with the method
from (Pleiss et al., 2020) (and call it CutFake),
which manually assigns several tokens with labels
of an additional “fake" class and uses the lower tail
of their confidence scores for sample selection.

Implementation details In this paper, we con-
sider using two types of encoders: one is the BiL-
STM encoder (Huang et al., 2015) and the other
one is the BERT encoder (Devlin et al., 2019). For
BiLSTM, we use hidden dimension 200, SGD op-
timizer with learning rate 0.01; for BERT, we use
the default hidden dimension 768, and the default
optimizer with learning rate 2e-5. We use batch
size 10 for both encoders and it works well. For
BiLSTM encoder, we train for 30 epochs, and for
BERT, we train for 20 epochs. We split the whole
dataset into train/dev/test subsets if such splitting
was not provided by the original dataset, and we
keep the sample size ratio of train/dev/test as 2:1:1.
We output the model with the best dev F1 score.

4.3 Main results

Noise Type v.s. Noise Rate Table 2 shows how
the sample selection based methods work in dif-
ferent synthetic problem settings. Specifically, we
show the results of different methods confronting
one specific type of noise respectively, to investi-
gate our initial questions about whether methods’
performances depend on noise type and noise rate.
For a more realistic mixed noise, we refer to Ta-
ble 3. To get a sense of upper bound performance,
we also consider an oracle method called only-
Clean, where we replace the sample selection step
in the original NLNCE method by directly telling

it which is truly clean and noisy. Here Table 2
summarizes F1 score of the baseline, and the dif-
ferences from it of denoising methods NLNCE,
UseClean and onlyClean. The significant positive
differences are marked as green, while the signifi-
cant negative ones are marked as red, and the rest
are marked as grey. We can see that, after doing
sample selection correctly, the current sample se-
lection based method can indeed improve a lot over
the baseline, even though it still has some gaps from
the fully clean supervised case in the high noise
rate regime. Overall, we can observe that sample
selection based methods perform differently under
different noise types and noise rates. Basically, for
over type of noise, the baseline’s performance is
not influenced much. We suspect that this is due
to the fact that the over type of noise is kind of
unnatural, as it randomly selects a nonentity word
and assigns a random entity to it. Such nonentity
words would often be meaningless words like ‘the’,
‘a’ etc, and the CRF model can autocorrect such
unnatural mistakes as it optimizes over a tag se-
quence as a whole. Another similar case is the
swap noise type: where we find out that baseline
can already perform relatively well compared to
other noise types of similar noise rates. For the
rest more natural noise types, we can observe that
the effectiveness of the sample selection based idea
depends more on the word-level noise rate, rather
than the noise type. Specifically, it is less effective
when the noise rate is low. From this reason, we
can see that for shift and shrink type of noises,
sample selection based methods generally do not
help as much as they do in the other noise types,
since shift and shrink tend to have lower word-
level noise rate comparing to other noise types. In
the rest of the paper, we will focus on the miss,
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utterance level
noise rate

0% 30% 100%

Noise Type / Methods Baseline NLNCE UseClean onlyClean
Word leve
noise rate

Baseline NLNCE UseClean onlyClean
Word leve
noise rate

Miss 76.62 +0.15 +1.03 +4.39 11% 35.26 +12.17 +21.47 +37.55 50%
Over 80.97 +0.60 -0.38 +0.43 17% 77.79 +0.45 +0.82 +3.41 41%
Shift 79.32 -0.01 +0.85 +0.93 6% 70.83 -0.40 +1.57 +8.78 20%

Extend 74.53 +0.13 +4.34 +6.84 18% 42.4 +5.56 +24.36 +35.35 52%
Shrink 77.38 -0.25 +0.66 +3.13 8% 60.49 -1.56 +2.29 +15.41 33%
Swap 78.74 +0.32 -0.51 +2.85 21% 56.33 +0.03 +0.95 +14.93 67%
Bias

80.85

75.15 -0.08 +2.05 +5.21 15% 38.75 +0.43 +20.1 +33.09 49%

Table 2: The performance of baseline, NLNCE, UseClean, onlyClean over different noise types and noise rates.
The significant positive differences are marked as green, meaning that the method improves over 1% over baseline,
while the significant negative ones are marked as red, meaning the method is even worse than baseline by over
1%; the rest are marked as grey. The extremely positive ones are marked in bold green. We use the BERT encoder
throughout all those experiments.

extend, bias type of noises under the high noise
rate regime (70%, 100% utterance level noise rate),
where we know sample selection kind of idea has
the potential to help much.

Broad synthetic and realistic noisy settings Ta-
ble 3 summarizes the results for a more complete
collection of denoising methods and more realistic
noisy datasets. For all the noisy datasets, we report
their summed word-level noise rate over nonenti-
ties and entities. We can see that, the word-level
noise rate on the realistic noisy dataset tends to
be pretty high, therefore suitable for applying our
sample selection based method. We can see that,
NLNCE and CoReg can improve over the baseline
a bit under very limited cases, while our method
UseClean can improve over the baseline by a large
margin over all those noisy datasets.

4.4 Ablation Study

miss extend bias
utterance level
noise rate

70% 100% 70% 100% 70% 100%

word level
noise rate

34% 50% 39% 52% 34% 49%

(oracle) 65.17 52.51 70.75 63.29 58.73 56.43
adapt (oracle) 65.17 54.44 72.15 66.40 63.03 56.43
warm (oracle) 67.58 54.21 71.63 64.92 61.14 58.35
weight (oracle) 67.31 55.08 69.52 65.15 59.12 58.28
UseClean (oracle) 67.56 56.73 73.02 66.77 65.05 58.85
UseClean (fitmix) 67.37 54.10 70.29 61.04 64.73 55.80

Table 4: Ablation Study for our method.

In Table 4 we show results for the ablation study, to
see how each component in our method contributes
to the final performance. Here the first line rep-
resents random sampling which is our base, and
adapt means only uses adaptive sampling; warm
means only uses warm start; weight means only
uses weighted semi-supervised learning. For fair

comparison without the confounding effect from
cutoff fitting, we simply use the oracle cutoff: we
fit a logistic regression of true clean/noisy labels
with the confidence score, and use the predicted
clean/noisy labels as sample selection decisions.
We can see that each of these three techniques im-
proves over the base in most cases, and a combi-
nation of them, which is adapt + warm + weight
improves over the base by about 2-4% over all
cases. Finally, our FitMix technique can achieve
performance close to the oracle cutoff.

4.5 Further analysis
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(a) CoNLL03 data
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Figure 3: The performance with and without the de-
noising step in UseClean versus different size of clean
supervision.

Amount of clean supervision required We
would like to explore how much clean data should
we require such that it is reasonable to ask. To be
more specific, we would like the effectiveness of
our method also comes from the denoising part,
rather than just the clean data pertaining part. In
Figure 3 we compare the F1 score for the clean
anchor model and our UseClean model with dif-
ferent proportion of clean dataset. To take account
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simulated noise realistic noise
miss extend bias distant supervision transfer learning

utterance level
noise rate

70% 100% 70% 100% 70% 100% Massive CoNLL03 Wikigold Massive CoNLL2003

word level
noise rate

34% 50% 39% 52% 34% 49% 66% 22% 48% 50% 61%

baseline 58.8 35.26 56.38 42.4 55.04 38.75 42.02 72.76 49.76 50.7 35.88
NLNCE 64.34 47.42 62.94 47.96 58.91 39.18 40.93 72.44 54.27 51.24 42.73
NLNCE* 65.28 49.13 65.56 46.40 58.91 39.81 42.87 74.58 57.62 51.99 44.78
CoReg 48.80 38.91 47.76 41.95 45.30 37.88 41.52 70.64 49.33 52.18 34.34
CutFake 53.85 54.47 61.18 58.01 56.14 55.79 53.51 79.27 55.48 60.60 51.77
UseClean 67.37 54.18 70.29 61.04 64.73 55.80 57.78 77.31 68.08 61.25 76.11

Table 3: The performance of our method and all the competitors over simulated noise and realistic noise.

of the influence from dataset, model architecture
and pretraining, we consider one simple dataset
CoNLL03 and one complex data set Massive; and
we consider three different backbone models: bert
(pretrained BERT model); bert_rand (randomly
initialized BERT model); bilstm (randomly ini-
tialized BiLSTM model). Due to the limitation of
space, here we only demonstrate the results of one
noisy type under the high noise rate regime: the
bias type of noise with utterance noise level 100%.

By just looking at the solid lines (i.e. clean
anchor model performance), we can see that all
lines tend to first rise rapidly and then slows-down,
this phenomenon is more evident on this simpler
data set CoNLL03 and large pertained encoder.
This indicates that large pretrained model is less
data-hungry, especially in the easy problem set-
ting. Also, we can see that, augmentation only
outperforms non-augmentation when clean data is
limited. Therefore, we argue that the reasonable
size of clean supervision we require should be less
than hundreds of examples. In all our examples, we
use 100-200 examples depending on the problem
difficulty.

Training dynamics In Figure 4, we plot the
sliced F1 score on clean tokens and noisy tokens
and also the total F1 score during the whole train-
ing process for baseline, NLNCE and UseClean.
We can see that, both NLNCE and UseClean can
indeed learn on the noisy tokens, while UseClean
tends to learn much better on the noisy case with-
out sacrificing too much on the clean cases. For
the case where UseClean is much better than NL-
NCE (i.e. Figure 4(a)), its generalization gap is the
smallest among the three methods. For the case
where UseClean is a bit better than NLNCE (i.e.
Figure 4(b)), we find out that the generalization
gap of both NLNCE and UseClean is nearly none,

meaning that now NLNCE also does not overfit to
noise too much. Still, UseClean learns better on
noisy cases. Finally, we also find out that, the sam-
ple selection type of denoising method improves
over baseline mainly by learning better on the noisy
cases, which often at the cost of a certain amount
of performance drop on clean cases. This might
also explain our findings about why the sample se-
lection type of idea only works in a high noise rate
regime.
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Figure 4: The sliced F1 score on clean tokens and noisy
tokens during the whole training process.

5 Conclusion and Discussion

In conclusion, we propose an effective and efficient
method called UseClean, which includes a simple
two-stage framework to avoid error accumulation,
a novel confidence score utilizing minimal clean
supervision to increase predictive power in sample
selection, an automatic cutoff fitting to save exten-
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sive hyper-parameter tuning and finally weighted
semi-supervised learning with warm start to learn
better on the noisy tokens. Additionally, we pro-
pose to use adaptive sampling to construct better
clean supervision for a further performance boost.
Despite simple, our method improves F1 score by
on average at least 5 ∼ 10% over current state-
of-art without extensive hyper-parameter tuning or
heavy computation, and is effective across a broad
type of noise types and noise levels.

We admit that most of the performance gain
comes from the minimal clean supervision in small
gold data. Without it, the SOTA method NLNCE
suffers from error accumulation and heavy compu-
tation. Still, we argue that the clean supervision we
need is very minimal, like just about 100 samples,
while the stable improvement and efficiency it can
bring is fairly large. In fact, we suspect that it is
often necessary to guarantee success in real applica-
tions, and how to best construct and leverage clean
supervision is nontrivial and important.

Limitations

We admit that the methods for comparison in this
paper are not a complete list of the literature,
though we arguably claim that they are strong rep-
resentatives. We omit some methods for now due
to their complexity and computation time. It would
make our paper a more convincing story if we had
also considered the rest established methods like
BOND(Liang et al., 2020). Also, currently we do
the sample selection and semi-supervised learning
in a one-pass way, while alternatively an iterative-
pass way like active learning (Kong et al., 2021)
might be even more effective. Still, one need to
be careful about the error propagation during the
iterative process.

Even though we point out the importance and
potential of designing and leveraging the meta gold
dataset, we have not provided a thorough discus-
sion of past endeavors. Particularly, FilDist (Onoe
and Durrett, 2019) also utilize clean supervision
like us, though they also require corresponding
noisy labels to fit a binary classifier for sample se-
lection. It would be interesting to see how those
methods compare to ours.
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