
Proceedings of the 2023 CLASP Conference on Learning with Small Data, pages 131–140
September 11–12, 2023. ©2023 Association for Computational Linguistics

131

Benchmarking Neural Network Generalization for Grammar Induction

Nur Lan1,2, Emmanuel Chemla1, Roni Katzir2

1Ecole Normale Supérieure
2Tel Aviv University

{nur.lan,emmanuel.chemla}@ens.psl.eu
rkatzir@tauex.tau.ac.il

Abstract

How well do neural networks generalize? Even
for grammar induction tasks, where the target
generalization is fully known, previous works
have left the question open, testing very lim-
ited ranges beyond the training set and using
different success criteria. We provide a mea-
sure of neural network generalization based
on fully specified formal languages. Given a
model and a formal grammar, the method as-
signs a generalization score representing how
well a model generalizes to unseen samples in
inverse relation to the amount of data it was
trained on. The benchmark includes languages
such as anbn, anbncn, anbmcn+m, and Dyck-
1 and 2. We evaluate selected architectures
using the benchmark and find that networks
trained with a Minimum Description Length
objective (MDL) generalize better and using
less data than networks trained using standard
loss functions. The benchmark is available at
https://github.com/taucompling/bliss.

1 Introduction

The extent to which artificial neural networks
(ANNs) generalize beyond their training data is an
open research question. In this work we approach
this question from the perspective of grammar in-
duction, that is, the learning of a formal grammar
from a finite (often small) sample from the (typi-
cally infinite) language of that grammar. In order to
succeed in this task, a model must strike a balance
between fitting the training data and generalizing to
a potentially infinite set of unseen strings. Humans
tested on such tasks show systematic generaliza-
tion from small sets of examples (Fitch and Hauser,
2004, Malassis et al., 2020).

While a range of ANN architectures have been
shown to reach approximations for formal lan-
guages, the quality of this approximation remains
an open matter, as we show below. Here we build
on previous probes of ANN generalization for
grammar induction and introduce a unified and

general way to assess this capability, for a given
pair of a learning model and a corpus drawn from
a formal language. Our main contributions are:

1. A benchmark for formal language learn-
ing. The benchmark relies on a method for
quantifying ANN generalization for formal
languages, including probabilistic languages.
The method assigns an index score represent-
ing a model’s generalization performance in
inverse relation to the size of the training data.
We introduce the method and provide concrete
datasets for well-studied formal languages.

2. An evaluation of selected architectures. We
test recurrent neural networks (RNNs) of
the Long-Short Term Memory type (LSTM;
Hochreiter and Schmidhuber, 1997); Memory-
augmented RNNs (MARNN; Suzgun et al.,
2019b;) and an RNN variant which replaces
the traditional gradient-based training regime
with an objective that optimizes the model’s
Minimum Description Length (MDLRNN;
Lan et al., 2022).

We find that equipping ANNs with memory
devices such as differentiable stacks helps gen-
eralization, but generalization remains partial
and slow. At the same time, training with
MDL leads in some of the test cases that we
examined to potentially perfect generalization
with significantly less data. In other cases,
training with MDL did not result in successful
generalization, possibly because the optimiza-
tion procedure we used for the architecture
search failed to find the global optimum under
the MDL objective function.

2 Background

Learning formal languages has long been used to
probe various aspects of ANN performance. These
most often include inquiries about: (i) ANNs’ abil-
ity to generalize beyond their training data, and

https://github.com/taucompling/bliss

132

Language Paper Model Metric Training size Max train n Max test n

anbn

GS’01 LSTM Mcat′ 16,000 30 1,000
JM’15 Stack-RNN Mdet 20† 19 60
WGY’18 LSTM Bin 100† 100 256
LGCK’22 MDLRNN Mdet 500 22 ∞

anbncn

GS’01 LSTM Mcat′ 51,000 40 500
JM’15 Stack-RNN Mdet 20† 19 60
WGY’18 LSTM Bin 50† 50 100
LGCK’22 MDLRNN Mdet 500 22 ∞

Dyck-1

SGBS’19a LSTM Mcat′ 10,000 50 100
SGBS’19b MARNN Mcat′ 5,000 50 100
EMW’22 ReLU-RNN Mcat′ 10,000 50 1,000
LGCK’22 MDLRNN Mcat 500 16 ∞

Table 1: ANN performance in selected probes of formal language learning. Metrics (see Section 3.5): Mdet =
deterministic accuracy; Mcat = categorical accuracy; Mcat′ = a non-probabilistic version of Mcat; Bin = binary
classification from hidden state to accept/reject labels, based on positive and negative samples. Training size: † =
the paper did not explicitly specify the training set size, the value here is derived by assuming the training set was
an exhaustive list of all strings up to ‘max train n‘. ‘Max test n’: the largest n for which the criterion was reached.
For Dyck-1, n represents overall sequence length. ‘∞’ = the paper provides evidence that the network is correct for
any n. When a paper reports several experiments as in GS’01, we take the best result based on the smallest training
set. Papers: GS’01 = Gers and Schmidhuber (2001); JM’15 = Joulin and Mikolov (2015); WGY’18 = Weiss et al.
(2018); SGBS’19a = Suzgun et al. (2019a); SGBS’19b = Suzgun et al. (2019b); EMW’22 = El-Naggar et al. (2022);
LGCK’22 = Lan et al. (2022).

(ii) ANNs’ expressive power; i.e., whether they
can represent the relevant target grammars (often
probed with reference to the Chomsky hierarchy
of formal languages, as in Delétang et al., 2022).
Here we will focus on the generalization question.
We will show how it might be related to another
under-exploited line of inquiry regarding the train-
ing objective of ANNs.

A long line of theoretical work has probed the
computational power of ANNs. Siegelmann and
Sontag (1992) originally showed that RNNs with
a sigmoid activation can emulate multiple-stack
Turing machines under certain permissive condi-
tions (infinite activation precision and unbounded
running time). Since these conditions cannot be
met in practice, another line of work probed the
computational power of RNNs under practical con-
ditions (finite precision and input-bound running
time). Weiss et al. (2018) have shown that under
these conditions LSTMs are able to hold weight
configurations that perform unbounded counting,
and so they should be able to recognize counter lan-
guages (CL), a family of formal languages that can
be recognized using one or more counting devices
(following some formal restrictions, Merrill, 2021).
Recently, El-Naggar et al. (2023a) and El-Naggar
et al. (2023b) have shown that two simpler RNN ar-

chitectures, with linear- and ReLU-based cells, are
also able to hold counting weight configurations,
with similar consequences for recognizing CL.

Empirically, another line of work provided
promising results regarding the capability of ANNs
to learn formal languages. This was most of-
ten done by training networks on strings up to
a certain length and then showing good perfor-
mance on longer ones (Bodén and Wiles, 2000,
Gers and Schmidhuber, 2001; see Table 1). Gers
and Schmidhuber (2001) have shown that LSTMs
trained on languages such as anbn and anbncn with
n values in the low dozens perform well on n’s in
the high hundreds. Suzgun et al. (2019a) found
that LSTMs trained on Dyck-1 sequences (strings
of well-balanced pairs of brackets) up to length 50
performed well on lengths up to 100. Suzgun et al.
(2019b) proposed RNN variants that are equipped
with external differentiable memory devices and
showed that they yield improved performance on
non-regular languages.

However, other empirical results show that in
practice ANNs generalize only to very restricted
ranges. Weiss et al. (2018) found that while LSTMs
are theoretically able to hold counting solutions,
these are not found through training: LSTMs
trained on anbn and anbncn with max n 100 and

133

50, respectively, start accepting illicit strings with n
values as low as 256 and 100. As mentioned above,
Suzgun et al. (2019a) tested LSTMs on Dyck-1 se-
quences but only up to length 100, and concluded
that this language was learned by LSTMs. El-
Naggar et al. (2022) extended this work to longer
sequences, and found that LSTMs fail to gener-
alize in practice, outputting incorrect predictions
at lengths under 1,000. This, despite Dyck-1 be-
ing a CL and so theoretically learnable by LSTMs
(Weiss et al., 2018).

Apart from LSTMs, recent probes by El-Naggar
et al. (2023a) and El-Naggar et al. (2023b) have
shown that linear and ReLU RNNs, theoretically
capable of counting, fail to find the counting weight
configurations in practice when trained using back-
propagation and standard loss functions; El-Naggar
et al. (2023b) went further with determining the
source of this discrepancy, showing that the count-
ing weight configuration is not an optimum of these
loss functions.

Moreover, even in works that report successful
generalization to some degree beyond the training
set, the fact that networks stop generalizing at an
arbitrary point is often left unexplained (Gers and
Schmidhuber, 2001, Suzgun et al., 2019a, 2019b,
Delétang et al., 2022, a.o.).1

The literature on the generalization abilities of
ANNs has made use of a range of measures of
success, making results difficult to compare. Dif-
ferent probes of the same model often use different
success criteria, and generate training and test sets
using different sampling methods and of different
orders of magnitude. Table 1 summarizes selected
probes of ANN generalization and highlights the
fragmented nature of this literature. In the fol-
lowing sections we propose a unified method to
consolidate these efforts and better understand the
generalization capabilities of ANNs.

3 The BLISS index

We present the Benchmark for Language Induction
from Small Sets (BLISS). We provide a formal
description of the method, followed by a concrete
application to specific tasks.

1Technical limitations such as finite activation precision
can be ruled out as explanations for generalization failures, at
least for counter languages and models where network states
serve as memory: as shown in works mentioned above, ANNs
often start outputting wrong predictions for n values in the low
hundreds. Even restricted representations such as 16-bit floats
can hold much larger values, and modern implementations
such as PyTorch use 32-bit floats by default.

The current release consists of three parts: (i) A
specification for the generalization index B, calcu-
lated for a given pair of formal language and ANN;
(ii) A dataset containing a set of formal languages
for benchmarking; (iii) An evaluation of different
ANN architectures using this dataset.

3.1 General setting: models and tasks
For a given model A, e.g., an LSTM, a task is
composed of the following components:

• G – a grammar, e.g., a probabilistic context-
free grammar (PCFG).

• S – a sampling method from L(G), the lan-
guage generated by G.

• C = S(G) – a training corpus, may contain
repetitions.

• T ⊆ L(G) \ C – a test corpus.

• M – a task-specific accuracy metric with ad-
justable error margin

ε ∈ [0, 1]. It uses predictions A(s) on
strings s ∈ T to calculate an accuracy score
M(A, T , ε) ∈ [0, 1].

• N – a task-specific constant for setting the
order of magnitude of dataset sizes. For ex-
ample, N = 3 sets the order of magnitude at
103. Training and test sizes are then derived as
described below. Selecting N is done empiri-
cally based on properties of the task, e.g., lan-
guages with large vocabularies require larger
amounts of training data, hence a larger N .

3.2 From task to generalization index
For a given task, the generalization index of order
N for a model A is then defined as:

BL
N (A) = max

{
b

∣∣∣∣ |T | = 10N × b,
|C| = 10N/ b,

M(A, T , ε) = 1.0

}
(1)

Intuitively, the index compares a model’s perfor-
mance on a test size |T | to the inverse of its training
data size |C|.

The index is expressed as the maximal b factor
which scales the training set and the corresponding
test set in opposite directions: The accuracy con-
dition at the bottom of (1) means that the model
should be ε-close to perfect generalization on the
test set. A model’s generalization index B thus
represents the performance that can be maximally
‘squeezed out’ of an inversely small amount of data.

134

0 200 400 600 800 1000 1200
Training set size | |

0

2000

4000

6000

8000

10000

M
as

te
re

d
te

st
 s

et
 s

iz
e

||

3 = 1
3 = 2

3 = 4

3 = 8

Model performance and corresponding 3 index
3-frontier

Figure 1: Example generalization index scores B3, i.e.,
for a baseline training size of 103. Each dashed line
represents the performance profile of some hypothetical
model, as a function of the size of the training set. The
intersection with the B3-frontier indicates its B3 index.

Figure 1 exemplifies selected B values calcu-
lated based on (1). For illustration, for anbn, using
the order of magnitude N = 3, a model that was
trained on |C| = 103/2 = 500 samples and was
100% accurate on a test set of size 103×2 = 2, 000
will have an index score Banbn

3 ≥ 2. A model for
the same language that was trained on 250 samples
only and generalized to a subsequent set of 4,000
samples will reach Banbn

3 ≥ 4.
For practical reasons, one cannot exhaust all val-

ues of b to find B. However, training and evaluating
a model using a few b values is enough to reveal its
generalization dynamics, as shown in experiments
in Section 5. The following sections describe the
specific choices made for the different benchmark
components in these experiments.

3.3 Learning setup

Previous work surveyed here differed in their learn-
ing setup. Gers and Schmidhuber (2001) and Suz-
gun et al. (2019a, 2019b) trained networks in a
non-probabilistic, supervised setup by exposing the
model to all possible next symbols and minimizing
the mean-squared error (MSE) – i.e., the model is
given explicit information about the distribution of
possible symbols. Joulin and Mikolov (2015) and
Lan et al. (2022) used a setup that we adopt below,
in which model outputs are probabilistic, and train-
ing is self-supervised language modeling (i.e., the
model is exposed to the next symbol only) with a
cross-entropy loss. Weiss et al. (2018) trained a
binary classifier with accept/reject labels based on
positive and negative examples.

Since our focus is grammar induction, here we

adopt the more demanding setup of learning from
positive examples alone. All tasks are thus de-
signed as self-supervised language modeling. At
each time step, a model assigns a probability distri-
bution to the next symbols in the string.

The benchmark is agnostic as to the internals of
the model and its training, as long as its outputs
represent a probability distribution over symbols.
In practice, then, the method can be applied to any
language model, not necessarily an ANN.

3.4 Sampling

To construct the training and test sets C and T we
use the following as method S:

• To construct C, we sample strings according
to the distribution defined by G, with repeti-
tions. For example, if G is a PCFG, it can be
sampled by applying derivation rules chosen
proportionally to their expansion probabilities.
Repetitions are allowed so that C follows a
similar surface distribution to L(G) and so
that the model can pick up on the underlying
probabilities in G.

• To construct T , we take the |T | subsequent
strings starting right after the longest string in
T , sorted by length.2 For example, for the lan-
guage anbn, if the longest string in the training
set C was a17b17, and the model needs to be
tested on a set of 2000 strings, T will be com-
posed of the strings a18b18, ..., a2017b2017.

The sampling method S can be either probabilis-
tic as described here, or exhaustive, training on
all strings in L up to a certain length. We opt for
probabilistic sampling because of the nature of the
task at hand: the models under discussion here are
trained to assign probabilities to the next symbol
in a string, most often minimizing a cross-entropy
loss. In practice, then, they always learn distri-
butions over strings. Thus if C follows a similar
surface distribution to L (given a large enough sam-
ple size), the model should eventually learn this
distribution in order to minimize its loss.

Probabilistic sampling thus makes it possible to
probe both a model’s knowledge about the surface
forms of L (by treating model outputs as categori-
cal classes), and about their distribution. The mod-
ularity of the index makes it possible to choose

2Test strings may need to be sorted further according to
specific properties of a language, see Section 4.1.

135

either option by varying the accuracy metric M , as
we show in the next section.

3.5 Accuracy metrics

Ultimately we are interested in knowing whether a
model accepts all strings in L and rejects all others.
In classical formal language theory, where discrete
automata are used, acceptance is clear cut and taken
as going into an accepting state. ANNs on the
other hand use continuous representations with no
standard acceptance criterion.

Different acceptance criteria have been used in
previous works to measure success for ANNs: Gers
and Schmidhuber (2001) and Suzgun et al. (2019b)
defined acceptance of a string as a model assign-
ing output values above a certain threshold to valid
symbols only; Joulin and Mikolov (2015) measure
accuracy at parts of strings that are completely pre-
dictable; and Weiss et al. (2018) turn a network into
a recognizer by training a binary classifier from
network states to accept/reject labels. Below we
provide general versions of these accuracy metrics
(omitting Weiss et al., 2018 who rely on negative
examples).

Choosing which metric to use is based on
the properties of the language at hand. Well-
performing models might still deviate slightly from
perfect accuracy due to practical limitations, such
as a softmax function preventing a model from
expressing categorical decisions. Thus for each

Input: # (() ())
↓ ↓ ↓ ↓ ↓ ↓ ↓

Target: #/((/) (/) (/) (/) (/) #/(

Input: # a a a b b b
↓ ↓ ↓ ↓ ↓ ↓ ↓

Target: #/a a/b a/b a/b bbb bbb ###︸ ︷︷ ︸
Deterministic

Figure 2: Inputs and valid next symbols at each step of
a Dyck-1 string (top) and anbn (bottom), including the
start/end-of-sequence symbol ‘#’. For anbn, accuracy
is measured at deterministic steps, after the first ‘b’. For
Dyck-1, accuracy is the fraction of time steps where a
model predicts only valid next symbols: ‘#’ should be
predicted only when brackets are well balanced.

accuracy metric we add an adjustable error margin
ε. Acceptance of a string is defined as reaching
100% accuracy (minus ε) on the string. Success on
the test set is then defined as accepting all strings
in the set (third condition in (1)).

1. Deterministic accuracy (Mdet). Some lan-
guages contain strings with deterministic
phases, where the next symbol is fully pre-
dictable. For example, strings in the language
anbn have two phases, the a phase and the b
phase. As long as only a’s are seen, the next
symbol remains unpredictable as the sequence
can continue with another a or switch to the b
phase. The string becomes deterministic once
the first b appears. Mdet is defined as the frac-
tion of deterministic time steps in which the
model assigns the majority probability to the
correct next symbol. This metric is used in
Joulin and Mikolov (2015).

A string is considered accepted if the model is
1−ε accurate over all deterministic time steps.
Note however that even a very small ε might
benefit models that do not recognize strings
well. For example, for the language anbn, the
deterministic steps in a string are the b’s and
the final end-of-sequence symbol. A degener-
ate model that predicts only b’s will get only
the end-of-sequence symbol wrong out of all
deterministic steps, and will reach a very high
accuracy score. For any large enough test set
these errors will be hidden within the ε margin
and the model will be deemed successful. ε
should therefore be chosen with care per task.

Mdet is used below for the following lan-
guages that have deterministic phases: anbn,
anbncn, anbncndn, and anbmcn+m.

2. Categorical accuracy (Mcat). Some language
strings do not have any predictable phases.
This is the case in the Dyck family of lan-
guages. At each time step in a Dyck string,
one may open a new bracket (see Figure 2).
Mcat is therefore defined as the fraction of
steps in which a network assigns probability
p > ε to each possible next symbol, and p ≤ ε
to irrelevant symbols. Non-probabilistic ver-
sions of Mcat are used in Gers and Schmidhu-
ber (2001) and Suzgun et al. (2019a, 2019b)
who do not treat network outputs as probabil-
ity distributions. Mcat is used below for Dyck
languages.

136

As specified in Section 3.1, the index B is calcu-
lated based on the largest test set for which a model
reaches an ε-perfect accuracy score.

Beyond accuracy, one might be interested in in-
specting a model’s knowledge of the distribution
of strings in L induced by a probabilistic G. This
can be done by using the probabilistic sampling
method described in Section 3.4 and accompany-
ing it with a probabilistic accuracy measure – for
example, one based on an optimal cross-entropy
score, which is known from G’s expansion proba-
bilities (as done in Lan et al., 2022). Feeding loss
values into an accuracy metric will require normal-
izing them across tasks. We leave this extension
for future work.

3.6 String structure

Following Gers and Schmidhuber (2001), each se-
quence starts and ends with a start/end-of-sequence
symbol ‘#’. This turns the task into a strict ac-
ceptance/rejection task – predicting the end-of-
sequence symbol is taken as going into an accept
state. The start- and end-of-sequence symbols are
added to the task-specific vocabulary and are as-
signed probabilities by the model at each step. Fig-
ure 2 illustrates input and target sequences for anbn

and Dyck-1.

3.7 Limitations

One shortcoming of the proposed index score is
that it does not reflect perfect generalization, i.e., it
is an empirical index that cannot point out a model
that outputs correct predictions for any string in
L(G). For most models, this will not be a prob-
lem, and B will simply represent the model’s best
training vs. test size ratio. In the case of a model
that reaches perfect generalization on any input, the
index score will represent the critical training size
that brings the model to this performance.

Assigning a generalization score to infinitely cor-
rect models will remain a problem for any empiri-
cal metric that assigns scores to models based on
finite test values. An alternative to such empirical
probes would be to analytically show that a model
is correct (as done in Lan et al., 2022).

4 Datasets

We provide training and test datasets for a pre-
liminary set of formal languages for evaluation
using the B index. The dataset includes the
languages anbn, anbncn, anbncndn, anbmcn+m,

Dyck-1, and Dyck-2. The source code, datasets,
and specifications for the benchmark are available
at https://github.com/taucompling/bliss.

4.1 Training and test sets
Training sets for context-free languages are sam-
pled from PCFGs as described in Section 3.4. The
PCFGs are given in Appendix B. Training sets for
context-sensitive languages are generated by sam-
pling values for n from a geometric distribution.

Test sets are generated using the method de-
scribed in Section 3.4: All test sets consist of an
exhaustive list of strings ordered by length starting
right after the longest string seen during training.
Test sets for anbmcn+m consist of the list of strings
starting after the last seen pair of n,m, sorted by
n+m values to test all possible combinations.

5 Experiments

5.1 Models
We test the following models: LSTM RNNs
(Hochreiter and Schmidhuber, 1997); Memory-
augmented RNNs (MARNN; Suzgun et al., 2019a);
and Minimum Description Length RNNs (MDL-
RNN; Lan et al., 2022).

LSTM architectures were developed with the
task of keeping items in memory over long dis-
tances in mind. As mentioned above, Weiss et al.
(2018) have shown that LSTMs are theoretically
capable of recognizing CL.

MARNNs (Suzgun et al., 2019b) are RNNs
equipped with external memory devices, and were
shown to yield better performance when learning
languages that require stack-like devices and be-
yond. Here we use Stack-LSTM, an LSTM aug-
mented with a pushdown automaton; and Baby
Neural Turing Machines (Baby-NTM; itself a vari-
ant of NTMs, Graves et al., 2014), an RNN with a
more freely manipulable memory.3

MDLRNNs are RNNs trained to optimize the
Minimum Description Length objective (MDL;
Rissanen, 1978), a computable approximation of
Kolmogorov complexity, the algorithmic complex-
ity of a model. The intuition behind the objective
is equating compression with finding regularities
in the data: a model that compresses the data well
will generalize better and avoid overfitting. In prac-
tice, optimization is done by minimizing the sum of

3We modify Suzgun et al. (2019a)’s models to output
probability distributions, replacing the final sigmoids with
a softmax layer and the MSE loss with cross-entropy. See
Section 3.3.

https://github.com/taucompling/bliss

137

the architecture encoding length and the standard
cross-entropy loss, both measured in bits based on
a specific encoding scheme.

MDL is a stricter regularizer than standard reg-
ularization techniques such as L1/L2: the latter
penalize large weight values but cannot prevent
models from overfitting using a solution that uses
many small, but informative, weights. MDL pe-
nalizes the actual information content of the net-
work, forcing it to be general and avoid overfitting.
MDLRNNs were shown to learn some of the lan-
guages discussed here in full generality using small
architectures of only 1 or 2 hidden units and to
outperform L1/L2 (Lan et al., 2022).

MDL is a non-differentiable objective, which
requires that MDLRNN be optimized using a non-
gradient based search method, such as an evolu-
tionary algorithm that searches the network archi-
tecture space. Since this method is not based on
gradient descent, Lan et al. (2022) were able to use
non-standard, non-differentiable activations such
as step functions. Here we restrict the architecture
space to only standard activations: the linear func-
tion, ReLU, and tanh. This serves both to compare
MDLRNN with standard networks and to limit the
architecture search space. We publish the result-
ing nets as part of the MDLRNN-Torch release at
https://github.com/0xnurl/mdlrnn-torch.

Appendix A lists the hyper-params for all runs.

5.2 Training sets

We used training sizes |C| = 100, 250, 500, 1000.
We stopped at the smallest size 100 because in
our setup this size results in test strings of lengths
> 10,000, leading to very long running times.

5.3 Index parameters

We calculate the B index for all trained networks
using the following index parameters:

Magnitude parameter N = 3, i.e., training and
test sizes are derived from a baseline size 103. This
order of magnitude was selected based on the train-
ing set sizes used in previous works for the lan-
guages inspected here (Table 1).
Mdet ε = 0.005, i.e., a model needs to correctly

predict the next symbol for at least 99.5% of all
deterministic steps. Since even this high threshold
allows a degenerate model to reach good scores
as described in Section 3.5, we also calculate the
index score using ε = 0, i.e. a model must predict
all deterministic symbols correctly.

Language Model B-index
ε = 0.005 ε = 0

anbn
LSTM 10 <1
Stack-LSTM 10 <1
Baby-NTM 10 1
MDLRNN 10 10

anbncn
LSTM <1 <1
Stack-LSTM 2 <1
Baby-NTM 10 <1
MDLRNN <1 <1

anbncndn
LSTM <1 <1
Stack-LSTM 1 <1
Baby-NTM 4 <1
MDLRNN <1 <1

anbmcn+m
LSTM <1 <1
Stack-LSTM 10 <1
Baby-NTM 4 <1
MDLRNN 4 4

Dyck-1
LSTM <1 <1
Stack-LSTM <1 <1
Baby-NTM <1 <1
MDLRNN 2 2

Dyck-2
LSTM <1 <1
Stack-LSTM <1 <1
Baby-NTM <1 <1
MDLRNN <1 <1

Table 2: Generalization scores B. The index represents
how well a model generalizes in relation to its training
size. A score B = 4 indicates that a model trained
on 250 samples reached the accuracy criterion on the
consecutive 4,000 unseen test samples. B < 1 indicates
that the model did not reach the accuracy criterion when
the test size was greater than the training size, but might
reach it for larger training and smaller test sets.

Mcat ε = 0.005, i.e., for Dyck, a model needs
to assign p ≤ 0.005 to each irrelevant symbol and
p > 0.005 to possible ones. Here as well we report
results for ε = 0, i.e., a model must assign non-zero
probabilities to valid symbols only.

6 Results

6.1 Non-perfect accuracy

The generalization index obtained by each model
for each language is presented in Table 2.

We start by inspecting the indexes calculated
using the more lenient accuracy margin ε = 0.005.

For anbn, under this accuracy margin, all models
are assigned index B = 10, i.e., reaching the suc-
cess criterion for the next unseen 10,000 samples

https://github.com/0xnurl/mdlrnn-torch

138

1 4 16 64 256 1024 4096
Training size (logarithmic scale)

0

200

400

600

800

1000
M

ax
 c

or
re

ct
 n

anbn max correct n
MDLRNN
LSTM
Baby-NTM
Stack-LSTM
Max training n

Figure 3: Generalization performance of the models
tested here. Models were trained on strings drawn from
anbn and tested on acceptance of strings up to n =
1,000. X’s mark the maximum n seen during training.

after being trained on 100 samples. For the specific
combination of random seed and sampling prior
in these experiments, this means that the models
were trained on strings up to a20b20 and general-
ized to all strings up to at least a10020b10020 with
deterministic accuracy Mdet ≥ 99.5%.

For anbncn, MARNNs reach B = 10 and 2,
while LSTM and MDLRNNs do not reach the suc-
cess criterion, resulting in B < 1. For anbncndn

only MARNNs reach a specified index, with a
Baby-NTM reaching B = 4, indicating that it gen-
eralized to strings as long as a4020b4020c4020d4020

with Mdet ≥ 99.5%.
For the addition language anbmcn+m, Stack-

LSTM and MDLRNN reached index scores B =
10 and 4 respectively. For the specific combination
of random seed and the sampling prior used here,
this means that the winning Stack-LSTM saw max-
imum values of n = 18,m = 20 during training,
and generalized to all strings up to a120b120c240

with Mdet ≥ 99.5%.

6.2 Perfect accuracy

We report the generalization scores using a strict
ε = 0 as well, i.e., when a model is required to
predict all deterministic steps correctly or assign
non-zero probability to valid symbols only. For
languages with deterministic steps such as anbn,
this means that the model needs to always predict
the end-of-sequence symbol correctly, thus mak-
ing a distinction between accepting a string and
approximating its surface structure.

Here, only MDLRNNs remain at the same
scores, indicating that they predicted all time steps
correctly. Baby-NTM reaches B = 1 for anbn, a

inputa

inputb

input#

ReLU 3

-1

1

1
TANH P(#)

0.5

-0.5

-3

TANH P(b)

RELU P(a)
3

Figure 4: RNN cell architecture of the best-performing
MDLRNN for anbn, which trained on 100 samples and
reached B3 = 10. The network uses only one hidden
unit and standard activation functions, and generalizes
up to at least a35000b35000. Dashed arrows are recurrent
connections across time steps. The loop from the hidden
ReLU unit to itself is a counter mechanism evolved by
the evolutionary algorithm to count and compare the
number of a’s and b’s.

drop from 10. The rest of the networks drop to
B < 1, revealing that their good scores in the pre-
vious comparison calculated with a non-zero ε was
due to them approximating the target languages,
even at low n values.

MDLRNN performance here is in line with re-
sults from Lan et al. (2022), who provided evi-
dence that MDLRNNs for these languages do not
only perform empirically well on large test val-
ues, but are also provably correct for any input.
However, here we limited activations to standard,
non-discrete functions (Section 5.1), potentially
limiting the network’s ability to generalize well
in the limit. While we do not provide correct-
ness proofs for the networks found here, the index
scores indicate that MDLRNNs generalize well to
large values using only standard activations. Fig-
ure 4 presents the MDLRNN found for anbn. We
checked whether this network also accepts n val-
ues beyond those needed to reach the score B = 10
(n = 10,020). The network reached 100% Mdet

for all values up to n = 35,000, at which point we
stopped the test due to long feeding times.

Beyond the benchmark scores, Figure 3 plots
the largest n value for anbn strings predicted by
the models tested here with 100% Mdet accuracy
(ε = 0), as a function of training set size. Both
MDLRNNs and Baby-NTMs reach perfect accu-
racy up to the tested maximum of n = 1,000.
MDLRNNs however require two orders of mag-
nitude less data to reach this performance (and
the benchmark scores in Table 2 show that in fact
MDLRNNs generalized up to at least n = 10,000,
while Baby-NTMs remained at 1,000). LSTMs

139

and Stack-RNNs did not generalize well beyond
the training samples. This is in line with previous
works showing that these models may need sub-
stantially more training data in order to learn these
languages (Table 1).

7 Discussion

We provided a simple index for how well a model
generalizes: how much it can learn from how little
data. We illustrated the usefulness of this index in a
comparison of several current models over several
formal languages. Beyond showing which current
models generalize better than others, the bench-
mark also highlights which aspects of artificial neu-
ral networks work well for grammar induction, and
what is still missing.

Among languages that were learned with perfect
accuracy (anbn, anbmcn+m, Dyck-1), MDLRNNs
generalized best, but still failed on others (anbncn,
anbncndn, and Dyck-2). Previous work has shown
that this model’s search procedure, an evolutionary
algorithm, fails to find networks that are manually
shown to have better MDL scores (Lan et al., 2022).
We take this to show that the optimization proce-
dure limits the model and prevents it from taking
full advantage of the MDL objective. The benefit
of the MDL objective is nevertheless evident in the
generalization performance for several languages.

MARNNs clearly benefit from their memory de-
vices and reach good generalization scores, but
testing for perfect accuracy (ε = 0) reveals that
their learning outcome is mostly approximate, and
that they fail to maintain perfect accuracy for long
stretches beyond their training data. This could
be the result of an inadequate objective function
(cross-entropy), limitations of the search (backprop-
agation/gradient descent), or both. We do not cur-
rently have results that help decide this matter, but
recent results for other architectures (El-Naggar
et al., 2023b) hint that the problem lies at least in
part in the objective function.

8 Acknowledgements

This work was granted access to the HPC resources
of IDRIS under the allocation 2023-AD011013783
made by GENCI.

References
Mikael Bodén and Janet Wiles. 2000. Context-free

and context-sensitive dynamics in recurrent neural
networks. Connection Science, 12(3-4):197–210.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim
Genewein, Li Kevin Wenliang, Elliot Catt, Chris
Cundy, Marcus Hutter, Shane Legg, Joel Veness, and
Pedro A. Ortega. 2022. Neural Networks and the
Chomsky Hierarchy.

Nadine El-Naggar, Pranava Madhyastha, and Tillman
Weyde. 2022. Exploring the Long-Term Generaliza-
tion of Counting Behavior in RNNs.

Nadine El-Naggar, Pranava Madhyastha, and Tillman
Weyde. 2023a. Theoretical Conditions and Empirical
Failure of Bracket Counting on Long Sequences with
Linear Recurrent Networks.

Nadine El-Naggar, Andrew Ryzhikov, Laure Daviaud,
Pranava Madhyastha, and Tillman Weyde. 2023b.
Formal and empirical studies of counting behaviour
in ReLU RNNs. In Proceedings of 16th Edition of the
International Conference on Grammatical Inference,
volume 217 of Proceedings of Machine Learning
Research, pages 199–222. PMLR.

W. Tecumseh Fitch and Marc D. Hauser. 2004. Com-
putational constraints on syntactic processing in a
nonhuman primate. Science, 303(5656):377–380.

Felix Gers and Jürgen Schmidhuber. 2001. LSTM recur-
rent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural
Networks, 12(6):1333–1340.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural Turing Machines. arXiv:1410.5401 [cs].

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav
Goldberg. 2023. Stop Uploading Test Data in Plain
Text: Practical Strategies for Mitigating Data Con-
tamination by Evaluation Benchmarks.

Armand Joulin and Tomas Mikolov. 2015. Inferring Al-
gorithmic Patterns with Stack-Augmented Recurrent
Nets. In Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
Method for Stochastic Optimization.

Nur Lan, Michal Geyer, Emmanuel Chemla, and Roni
Katzir. 2022. Minimum Description Length Recur-
rent Neural Networks. Transactions of the Associa-
tion for Computational Linguistics, 10:785–799.

Raphaëlle Malassis, Stanislas Dehaene, and Joël Fagot.
2020. Baboons (Papio papio) Process a Context-Free
but Not a Context-Sensitive Grammar. Scientific
Reports, 10(1):7381.

William Merrill. 2021. On the Linguistic Capacity of
Real-Time Counter Automata.

J. Rissanen. 1978. Modeling by shortest data descrip-
tion. Automatica, 14(5):465–471.

http://arxiv.org/abs/2207.02098
http://arxiv.org/abs/2207.02098
https://doi.org/10.48550/arXiv.2211.16429
https://doi.org/10.48550/arXiv.2211.16429
https://doi.org/10.48550/arXiv.2304.03639
https://doi.org/10.48550/arXiv.2304.03639
https://doi.org/10.48550/arXiv.2304.03639
https://doi.org/10.1109/72.963769
https://doi.org/10.1109/72.963769
https://doi.org/10.1109/72.963769
http://arxiv.org/abs/1410.5401
https://doi.org/10.48550/arXiv.2305.10160
https://doi.org/10.48550/arXiv.2305.10160
https://doi.org/10.48550/arXiv.2305.10160
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1162/tacl_a_00489
https://doi.org/10.1162/tacl_a_00489
https://doi.org/10.1038/s41598-020-64244-5
https://doi.org/10.1038/s41598-020-64244-5
https://doi.org/10.48550/arXiv.2004.06866
https://doi.org/10.48550/arXiv.2004.06866
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1016/0005-1098(78)90005-5

140

Hava T. Siegelmann and Eduardo D. Sontag. 1992. On
the computational power of neural nets. In Proceed-
ings of the Fifth Annual Workshop on Computational
Learning Theory, COLT ’92, pages 440–449, New
York, NY, USA. Association for Computing Machin-
ery.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and
Sebastian Gehrmann. 2019a. LSTM Networks Can
Perform Dynamic Counting. In Proceedings of the
Workshop on Deep Learning and Formal Languages:
Building Bridges, pages 44–54, Florence. Associa-
tion for Computational Linguistics.

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov,
and Stuart M. Shieber. 2019b. Memory-Augmented
Recurrent Neural Networks Can Learn Generalized
Dyck Languages. arXiv:1911.03329 [cs].

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the Practical Computational Power of Finite Preci-
sion RNNs for Language Recognition. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 740–745.

A Appendix: Hyper-parameters

A.1 Training corpora
All training sets were generated using the
same random seed 100 and prior probability
p = 0.3. The datasets are available at
https://github.com/taucompling/bliss. Following
Jacovi et al. (2023), the datasets are zipped and
password-protected to prevent test data contamina-
tion of large language models through crawling.

Each of the LSTM and MARNN hyper-param
configurations below was run 3 times using dif-
ferent random seeds (100, 101, 102). MDLRNNs
were run once per configuration because of their
longer running time.

A.2 LSTM
LSTMs were trained based on the following hyper-
params grid: hidden state size (2/32/128), regular-
ization technique (L1/L2/none), and the regulariza-
tion constant in case regularization was applied (λ
= 1.0/0.1/0.01). Networks were trained using the
Adam optimizer (Kingma and Ba, 2017) with learn-
ing rate 0.001, β1 = 0.9, and β2 = 0.999. The
networks were trained by feeding the full batch of
training data for 1,000 epochs.

A.3 MARNN
MARNNs were trained by varying the architec-
ture type (Softmax Stack-LSTM/Softmax Baby-
NTM) and stack/memory size (50/100 for Stack-
LSTM, 2050 for Baby-NTM). For Stack-LSTM,

stack sizes were selected so they were always
larger than the largest values seen during training:
n + m = 22 + 24 for anbmcn+m and n = 24
for all other languages. During testing the stack
size was enlarged to 2050, beyond the maximum
needed to reach scores B = 1 and 2. Baby-NTM
memory was set to 2050 already during training be-
cause this model’s memory size affects the weight
dimensions and cannot be changed after training.

The rest of the hyper-parameters were set to the
default values from Suzgun et al. (2019b). Stack-
LSTM: hidden size 8; 1 layer; memory dimension
5; epochs 3/50; learning rate 0.01; Baby-NTM: hid-
den size 8; 1 layer; memory dimension 5; epochs
3/50; learning rate 0.01.

The original MARNN setup was modified here
so that the network outputs represent probability
distributions and not multi-label outputs. This was
done by replacing the sigmoid outputs with a soft-
max layer and the MSE loss with cross-entropy.

A.4 MDLRNN
MDLRNNs were trained using the evolutionary al-
gorithm and the same hyper-params reported in Lan
et al. (2022): population size 500; islands size 250;
25,000 generations; tournament size 2; early stop
after 2 hours of no improvement; elite ratio 0.001;
migration interval 1,000 generations/30 minutes.

B Appendix: PCFGs

B.1 anbn

S →

{
aSb 1− p
ε p

B.2 anbmcn+m

S →

{
aSc 1− p
X p

X →

{
bXc 1− p
ε p

B.3 Dyck-1

S →

{
(S) S p
ε 1− p

B.4 Dyck-2

S →

{ (S) S p/2
[S] S p/2
ε 1− p

https://doi.org/10.1145/130385.130432
https://doi.org/10.1145/130385.130432
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/W19-3905
http://arxiv.org/abs/1911.03329
http://arxiv.org/abs/1911.03329
http://arxiv.org/abs/1911.03329
https://github.com/taucompling/bliss

	Introduction
	Background
	The bliss index
	General setting: models and tasks
	From task to generalization index
	Learning setup
	Sampling
	Accuracy metrics
	String structure
	Limitations

	Datasets
	Training and test sets

	Experiments
	Models
	Training sets
	Index parameters

	Results
	Non-perfect accuracy
	Perfect accuracy

	Discussion
	Acknowledgements
	Appendix: Hyper-parameters
	Training corpora
	LSTM
	MARNN
	MDLRNN

	Appendix: PCFGs
	anbn
	anbmcn+m
	Dyck-1
	Dyck-2

