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Abstract

Bidirectional masked Transformers have be-
come the core theme in the current NLP land-
scape. Despite their impressive benchmarks,
a recurring theme in recent research has been
to question such models’ capacity for syntactic
generalization. In this work, we seek to address
this question by adding a supervised, token-
level supertagging objective to standard unsu-
pervised pretraining, enabling the explicit incor-
poration of syntactic biases into the network’s
training dynamics. Our approach is straightfor-
ward to implement, induces a marginal com-
putational overhead and is general enough to
adapt to a variety of settings. We apply our
methodology on Lassy Large, an automatically
annotated corpus of written Dutch. Our exper-
iments suggest that our syntax-aware model
performs on par with established baselines, de-
spite Lassy Large being one order of magnitude
smaller than commonly used corpora.

1 Introduction

In recent years, the advent of Transform-
ers (Vaswani et al., 2017) has paved the way for
high-performing neural language models, with
BERT (Devlin et al., 2019) and its many variants
being the main exemplar (Liu et al., 2019; Sanh
et al., 2019; Lan et al., 2020). BERT-like models
achieve state-of-the-art scores in most major NLP
benchmarks via a two-step process. First, they are
trained on massive-scale, minimally processed raw
text corpora by employing the so-called masked
language modeling (MLM) objective. Task-specific
refinements are then obtained by fine-tuning the
pretrained model on labeled corpora, usually or-
ders of magnitude smaller in size.

This pipeline, despite its attested performance,
suffers from two key limitations. On the one hand,
training a BERT-like model from scratch requires
an often prohibitive amount of data and computa-
tional resources, barring entry to research projects
that lack access to either. On the other hand, a

naturally emerging question is whether such mod-
els develop an internal notion of syntax. Discov-
ery of structural biases is hindered by their dis-
tributed, opaque representations, requiring manu-
ally designed probing tasks to extract evidence of
syntactic awareness (Hewitt and Manning, 2019;
Tenney et al., 2019; Kim et al., 2020; Clark et al.,
2019a; Goldberg, 2019; Hu et al., 2020). Alter-
natively, when syntactic evaluation becomes the
focal point, it is usually deferred to downstream
tasks (Kitaev et al., 2019; Zhang et al., 2020a), ow-
ing both to the lack of sufficiently large labeled
corpora as well as the computational bottleneck
imposed by hard-to-parallelize operations.

In this work, we seek to alleviate both points
by considering them in tandem. Contrary to prior
work, we consider the case of introducing explicit
syntactic supervision during the pretraining pro-
cess and investigate whether it can allow for a
reduction in the data needs of a BERT-like lan-
guage model. To facilitate this, we couple the stan-
dard unsupervised MLM task with a supervised
task, mapping each distinct word to a supertag, an
abstract syntactic descriptor of its functional role
within the context of its surrounding phrase. In
essence, this amounts to simple token-level classifi-
cation, akin to traditional supertagging (Bangalore
and Joshi, 1999), except for parts of the input now
being masked. In employing both objectives, we
ensure that our model is syntax-aware by construc-
tion, while incurring only a negligible computa-
tional overhead. We evaluate the trained model’s
performance in a variety of downstream tasks and
find that it performs on par with established mod-
els, despite being trained on a significantly smaller
corpus. Our preliminary experiments suggest an
improvement to pretraining robustness and offer a
promising direction for cheaper and faster training
of structure-enhanced language models. Reflecting
on the added objective, we call our model tagBERT.
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2 Background

Embedding structural biases in neural language
models has been a key theme in recent research.
Most syntax-oriented models rely on computation-
ally intensive, hard-to-parallelize operations that
constrain their integrability with the state of the
art in unsupervised language modeling (Tai et al.,
2015; Dyer et al., 2016; Kim et al., 2019). This
can be ameliorated by either asynchronous pretrain-
ing, relying on accurate but slow oracles (Kuncoro
et al., 2019), or multi-task training, where the sys-
tem is exposed to a syntactic task for only part
of its training routine (Clark et al., 2018, 2019b).
In the BERT setting, there have been attempts at
modifying the architecture by either overlaying syn-
tactic structure directly on the attention layers of
the network (Wang et al., 2019b) or imposing shal-
low syntactic cues and/or semantic information in
a multi-task setting (Zhang et al., 2020b; Zhou
et al., 2020). While such a setup allows for efficient
parallel pretraining, the rudimentary nature of the
utilized annotations typically forfeits fine aspects
of sentential structure, such as function-argument
relations.

In this paper, we adopt lexicalism in the catego-
rial grammar tradition (Ajdukiewicz, 1935; Lam-
bek, 1958; Buszkowski et al., 1988; Steedman,
1993; Moortgat, 1997), according to which (most
of) the grammatical structure of a language is en-
coded in its lexicon via an algebra of types that
governs the process of phrasal composition. Under
such a regime, the parse tree underlying a sentence
can be partially (or even fully, in the case of an ad-
equately “strict” grammar) recovered from its con-
stituent words and their respective types alone. In
applied terms, the lexical nature of categorial gram-
mars provides us with the opportunity of capturing
syntax in a fully-parallel fashion that is straight-
forward to incorporate with the masked language
modeling objective of BERT-like architectures, a
fact so far generally overlooked by machine learn-
ing practitioners. This perspective is in line with
recent insights arguing for the necessity of explicit
supervision for syntactic acquisition (Bailly and
Gábor, 2020).

The only prerequisite for our methodology is
an adequately sized, categorially annotated cor-
pus. Even though gold standard corpora exist for
a variety of languages and grammars (Chen and
Shanker, 2004; Hockenmaier, 2006; Hockenmaier
and Steedman, 2007; Tse and Curran, 2010; Am-

bati et al., 2018; Kogkalidis et al., 2020b), their size
is generally insufficient for training a parameter-
rich neural language model. This limiting factor
can be counteracted by either lexicalizing existing
silver-standard corpora of a larger size, or by using
an off-the-shelf, high-performance supertagger to
annotate the source data prior to pretraining. In
both cases the trained system is likely to inherit
common errors of the data-generating teacher; the
question is whether the added structural biases fa-
cilitate faster training of more general language
models, despite potential tagging inaccuracies.

3 Methodology

3.1 Data

To facilitate both the data needs of the neural lan-
guage model and the added supertagging objective
we employ Lassy Large (van Noord et al., 2013),
a corpus of written Dutch, automatically parsed
using the Alpino parser (Bouma et al., 2001). The
dataset is comprised of a selection of smaller cor-
pora from varying sources, ranging from excerpts
from conventional and modern media to spoken
transcripts, enumerating a total of almost 800 mil-
lion words. Lassy’s syntactic analyses take the
form of directed acyclic graphs, with nodes cor-
responding to words or phrases marked with their
part-of-speech as well as syntactic category labels
and edges denoting dependency relations. To make
the analyses applicable for our setup, we lexicalize
them using the type extraction algorithm of Kogka-
lidis et al. (2020b). The algorithm traverses a parse
graph and encodes its structure in a linear logic
proof, under the general paradigm of categorial
type logics (Moortgat, 1997), simultaneously cap-
turing function-argument and dependency structure.
Words, i.e. fringe nodes in the graph, are assigned
types, abstract syntactic signs that encode a consid-
erable portion of the full structure.

Applying the extraction algorithm, we obtain a
collection of around 66 million sentences, repre-
sented as sequences of word-type pairs. We drop
about 20 million of these in a sanitation step, due
to either being duplicates or overlapping with any
of the evaluation tasks. We tokenize words using
a preconstructed WordPiece (Schuster and Naka-
jima, 2012) vocabulary of 30 000 tokens based on
a larger collection of written Dutch corpora (Vries
et al., 2019). Further, we keep the 2 883 most fre-
quent types, which suffice to cover 95% of the type
occurrences in the dataset, and replace the filtered
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out types with an UNK token. We finally discard
sentences lying in the 5%-tail of the length distribu-
tion, and train with 45 million sentences spanning
less than 100 sub-word tokens.

3.2 Model
Our model is a faithful replica of BERTBASE, ex-
cept for having a hidden size of 1 536 instead of
3 072 for the intermediate fully-connected layers,
reducing our total parameters from 110 to 79 mil-
lion. We further employ a linear projection from
the model’s dimensionality to the number of types
in our vocabulary, which we attach to the output of
a prespecified encoder block. The projection can
be separably applied on the encoder’s intermediate
representations, allowing us to optionally query the
model for a class weighting over types for each
input token.

This addition accounts to a mere 2.5% of the
model’s total parameter count and only incurs a
negligible computational overhead if explicitly en-
abled, as it does not interfere with the forward
pass when the system is run solely as a contextu-
alization model. If the type classification layer is
enabled during pretraining, it introduces a clear
error signal that updates all network weights up
to the connected encoder block, bolstering the cor-
rect acquisition of syntax in the bottom part of the
encoding pipeline.

3.3 Pretraining
To train our model, we feed it partially masked
sentences following the methodology of Liu et al.
(2019); we dynamically mask continuous spans of
tokens belonging to the same word and drop the
next sentence prediction task, training on single
sentences instead. Attaching the type classification
layer at the fourth encoder block, we end up with
two output streams.1 One is a prediction over the
subword vocabulary for each masked token, as in
vanilla BERT, whereas the other comes from the
type classifier, yielding a prediction over the type
vocabulary for every token, masked or otherwise.2

We obtain a loss function by summing the cross-
entropy between predictions and truths for each
output stream.

1The choice of depth for the type classifier is due to pre-
liminary experiments where we let a trainable layer weighter
freely select from the range of encoder blocks. In the vast
majority of runs, most of the importance was interestingly
assigned to the fourth layer.

2Masking entire words for the supertagging task can be
seen as a severe form of regularization, à la channel dropout.

To deal with the misalignment between subword
units and types, we associate every type with the
first token of its corresponding word, and mask
out predictions spanning subsequent tokens when
performing the loss computation. Similarly, we do
not penalize predictions over types discarded by
the occurrence count filtering (UNK types). For reg-
ularization purposes, we randomly replace output
types 1% of the time (Wu et al., 2019).

Following standard practices, we optimize us-
ing AdamW (Loshchilov and Hutter, 2019) with a
batch size of 256, shuffling and iterating the dataset
8 times. The learning rate is gradually increased
to 10−4 over 10 000 steps and then decayed to zero
using a linear warm-up and decay schedule.

4 Evaluation

To evaluate the trained model, we measure its per-
formance on the below selection of downstream
tasks, after fine-tuning. We keep our fine-tuning set-
up as barebones as possible, using Adam (Kingma
and Ba, 2014) with a batch size of 32 and a learning
rate of 3× 10−5. We apply model selection based
on the validation-set performance and report test-
set results (averaged over three runs) against the
available baselines of each task in Table 1. In order
to provide fair comparisons, we replicate the evalu-
ation of other models using the same experimental
setup.

Lassy Small is a gold-standard syntactically an-
notated corpus for written Dutch (van Noord et al.,
2013). We fine-tune a POS tagger on the subset
of the corpus that has been converted to Universal
Dependency format (Bouma and van Noord, 2017).

SoNaR-1 is a curated subset of Lassy Small that
includes several layers of manually added annota-
tions (Delaere et al., 2009). We employ the named
entity recognition (NER), part-of-speech (POS), se-
mantic role labeling (SRL) and spatio-temporal re-
lation tags (STR) that come packed with the corpus
and treat their classification as downstream tasks.
NER contains approximately 60 000 samples and 6
class labels encoded in the IOB scheme. POS tag-
ging contains about 16 000 samples and comes in
two varieties: coarse (12 classes) and fine-grained
(241 classes, out of which only 223 appear in the
training data, many just once). SRL comes also
in two varieties: a) predicate-argument structures,
encoded with IOB scheme, and b) modifiers, en-
hanced with modified phrase labels, for a total of
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SoNaR-1 Lassy UD CoNLL Æthel
POS-coarse POS-fine NER POS NER Supertags Parse

BERTje (Vries et al., 2019) 98.8 97.5 87.4 96.4 90.6 85.5 56.9

RobBERT (Delobelle et al., 2020) 98.5 97.2 84.8 96.2 85.9 86.3 56.8

tagBERT (ours) 98.8 97.4 87.0 96.7 89.9 86.6 58.3

Table 1: Comparative performance for a selection of downstream tasks. We report test set accuracy (%) on all tasks
except NER, where we report F1 scores (%) as produced by the CoNLL evaluation script (Tjong Kim Sang, 2002).
For a fair comparison, we replicate the fine-tuning process on all pretrained baselines, including truncation of the
maximum token length to 100.

SoNaR-1 Europarl DBRD
SRL-pred SRL-mod STR die/dat sentiment

BERTje (Vries et al., 2019) 85.3 67.2 57.3 95.0 93.0

RobBERT (Delobelle et al., 2020) − − − 98.7 95.1

tagBERT (ours) 86.5 67.8 68.0 99.1 93.8

Table 2: Comparative performance on higher-level downstreak tasks. Scores are F1 (%) for SRL/STR, and test set
accuracy (%) for die/dat disambiguation and sentiment analysis. −: no results available.

30 000 samples. STR contains a total of 58 000
spatio-temporal tags, including geolocations and
use of past verbe tense.

CoNLL-2002 is a named entity recognition
dataset from the corresponding shared task (Tjong
Kim Sang, 2002). The dataset contains 4 class la-
bels, also encoded in the IOB scheme, with a total
size of approximately 24 000 samples.

Æthel is a typelogical derivation dataset, gener-
ated by applying the type extraction algorithm to
Lassy Small (Kogkalidis et al., 2020b). We repli-
cate the experiments of Kogkalidis et al. (2020a) to
train a typelogical grammar parser, but instantiate
the encoder part with the baselines of Table 1, and
report token-level supertagging accuracy as well
as full sentential parsing accuracy in the greedy
setting. We note that even though our model is
exposed to types during pretraining, their repre-
sentation format is vastly different during the fine-
tuning process; rather than being classification out-
puts for each word, they are broken down to their
primitive symbols and transduced from the input
sequence with auto-regressive seq2seq decoding.
In that sense, this task helps us assess the generality
of the learned representations.

Dutch Europarl is a sanitized subset of
transcripts of the European Parliament in
Dutch (Koehn, 2005), used for zero-shot evalua-

tion of the task of relative pronoun disambiguation.
The task revolves around picking the most likely
between the Dutch relative pronouns die and dat.
While the two agree in their syntactic function
(and grammatical category), the former selects
exclusively for gendered nouns, whereas the latter
selects for neuter ones. As such, the task measures
our model’s capacity to resolve morphosyntactic
constraints in the presence of grammatical category
invariants. This corpus enumerates a total of
1.56M sentences, 90.7% of which contain at least
one relative pronoun.

110k Dutch Book Reviews Dataset. The Dutch
Book Reviews Dataset (DBRD) is a sentiment
analysis bechnmark which comprises around 110k
Dutch book reviews taken from hebban.nl, out of
which 22 252 are manually labeled as either posi-
tive or negative (Van der Burgh and Verberne, 2019)
and segmented into 90% training and 10% testing
splits. Unlike previous tasks, sentiment analysis
is done on the sentential, rather than token level,
serving as a measure of the model’s semantic un-
derstanding.

5 Discussion

Our model performs on par across all tasks consid-
ered, indicating pretraining robustness comparable
to the heavy weight baselines of BERT- (Devlin
et al., 2019) and RoBERTa-based (Liu et al., 2019)

https://www.hebban.nl/
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models.3 Considering the non-ideal nature of the
silver-standard tags, the significantly smaller size
of our corpus compared to competing models, and
the ca. 30% reduced parameter count (79M against
119M for BERTje and 117M for RobBERT), our
results can be seen as strong evidence in favor of
explicitly encoding structural biases in the pretrain-
ing process of neural language models. Opting
for a lexicalized representation of structure allows
for a seamless and cost-efficient integration with
BERT’s core architecture, essentially removing the
computational bottleneck of alternating between
tensor optimization and structure manipulation.

6 Conclusion

We introduced tagBERT, a variation of BERT that
is biased towards syntax through coupling the stan-
dard MLM loss with a supertagging objective.
We trained tagBERT on a modestly sized, silver-
standard corpus of written Dutch – after first lexi-
calizing its annotations – and evaluated the trained
model on a number of downstream NLP tasks af-
ter fine-tuning. Despite a reduced parameter count
and the corpus’ modest size, our method is achiev-
ing performance comparable to established state-
of-the art models. This result is contrary to the
ongoing trend of utilizing increasingly more data
and augmenting model capacity, instead suggesting
potential benefits from incorporating richer anno-
tations in convenient representation formats. Our
work aims towards a syntactically-transparent, cost-
efficient language model that combines both the
rigor of formal linguistic theories and the represen-
tational power of large-scale unsupervised learning.

Retroactive Placement The current work is sit-
uated in the historical landscape where probing
for syntactic awareness and the possibility of in-
jecting syntactic structures in the network were
still novel enterprises. Alongside and following
our original endeavour, many more studies have
investigated the role of syntax and ways to incor-
porate it within large language models, with the
end-goal of either jointly acquiring the two, or of
using explicit syntactic guidelines to constrain lan-
guage generation (Zanzotto et al., 2020; Sartran
et al., 2022; Li et al., 2021; Bai et al., 2021; Song
et al., 2022; Xie et al., 2021; Li et al., 2023). Other
than technical differences on the neural front, our

3Implementation code is available at https://github.
com/gtziafas/type-enhanced-language-modeling.

work diverges in opting for a linearized representa-
tion of syntax through categorial grammars. This
choice stands out for its elegance and formal co-
herence, setting it apart from more widely used
alternatives like constituency trees and dependency
arcs. Indeed, categorial grammars (regardless of
the particular flavor adopted) offer the means for an
expressive, yet fully lexicalized, modeling of syn-
tax and compositional meaning. Their integration
into the modern NLP toolkit is facilitated by this in-
herent flexibility, offering the potential for intricate
interplay between structure and form – a potential
that still remains, for the most part, untapped.

Future work Given the embedding of this paper
within the landscape concerning syntactic aware-
ness and large language models, future work would
be based on recent developments in neurosymbolic
approaches to lexicalized grammar formalisms. For
instance, recent developments in neural supertag-
ging could be exploited, for instance by updating
the supertagging from the discriminative setting to
a constructive one (Prange et al., 2021; Kogkalidis
et al., 2023).

Besides developments relevant to model archi-
tecture, several novel evaluation tasks for Dutch
have been developed that may shed light on the dis-
tinction between vanilla Transformer-based models
and syntactically informed ones. For example, the
two-sentence classification task of Natural Lan-
guage Inference (NLI) is a typical task that tests for
lexical, syntactic, and sentence-level understand-
ing, for which two Dutch benchmarks exist (Wi-
jnholds and Moortgat, 2021; Wijnholds, 2023). A
comparison between a vanilla model, the syntac-
tically informed tagBERT, and the neurosymbolic
approach of Abzianidze and Kogkalidis (2021) is
in place to put the relationship of syntax and NLI
in perspective. Further on the Dutch front, we
would be keen to test the model’s ability to under-
stand discontinuous verb-subject dependencies as
in Kogkalidis and Wijnholds (2022), or to disam-
biguate relative clauses as in Wijnholds and Moort-
gat (2023).

Finally, we invite and look forward to different
research directions, such as experimentation with
different languages and grammar formalisms, in-
tegration with existing pre-trained models in an
intermediate-training fashion (Wang et al., 2019a)
and exploring architectural adjustments that would
allow a two-way dependence or a stronger interfac-
ing between the lexical and syntactic modalities.

https://github.com/gtziafas/type-enhanced-language-modeling
https://github.com/gtziafas/type-enhanced-language-modeling
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