@inproceedings{jindal-etal-2023-facilitating,
title = "Facilitating learning outcome assessment{--} development of new datasets and analysis of pre-trained language models",
author = "Jindal, Akriti and
Kainulainen, Kaylin and
Fisher, Andrew and
Mago, Vijay",
editor = "Breitholtz, Ellen and
Lappin, Shalom and
Loaiciga, Sharid and
Ilinykh, Nikolai and
Dobnik, Simon",
booktitle = "Proceedings of the 2023 CLASP Conference on Learning with Small Data (LSD)",
month = sep,
year = "2023",
address = "Gothenburg, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.clasp-1.4",
pages = "38--47",
abstract = "Student mobility reflects academic transfer from one postsecondary institution to another and facilitates students{'} educational goals of obtaining multiple credentials and/or advanced training in their field. This process often relies on transfer credit assessment, based on the similarity between learning outcomes, to determine what knowledge and skills were obtained at the sending institution as well as what knowledge and skills need to still be acquired at the receiving institution. As human evaluation can be both a challenging and time-consuming process, algorithms based on natural language processing can be a reliable tool for assessing transfer credit. In this article, we propose two novel datasets in the fields of Anatomy and Computer Science. Our aim is to probe the similarity between learning outcomes utilising pre-trained embedding models and compare their performance to human-annotated results. We found that ALBERT, MPNeT and DistilRoBERTa demonstrated the best ability to predict the similarity between pairs of learning outcomes. However, Davinci - a GPT-3 model which is expected to predict better results - is only able to provide a good qualitative explanation and not an accurate similarity score. The codes and datasets are available at \url{https://github.com/JAkriti/New-Dataset-and-Performance-of-Embedding-Models}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jindal-etal-2023-facilitating">
<titleInfo>
<title>Facilitating learning outcome assessment– development of new datasets and analysis of pre-trained language models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Akriti</namePart>
<namePart type="family">Jindal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaylin</namePart>
<namePart type="family">Kainulainen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Fisher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vijay</namePart>
<namePart type="family">Mago</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 CLASP Conference on Learning with Small Data (LSD)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Breitholtz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shalom</namePart>
<namePart type="family">Lappin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharid</namePart>
<namePart type="family">Loaiciga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolai</namePart>
<namePart type="family">Ilinykh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gothenburg, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Student mobility reflects academic transfer from one postsecondary institution to another and facilitates students’ educational goals of obtaining multiple credentials and/or advanced training in their field. This process often relies on transfer credit assessment, based on the similarity between learning outcomes, to determine what knowledge and skills were obtained at the sending institution as well as what knowledge and skills need to still be acquired at the receiving institution. As human evaluation can be both a challenging and time-consuming process, algorithms based on natural language processing can be a reliable tool for assessing transfer credit. In this article, we propose two novel datasets in the fields of Anatomy and Computer Science. Our aim is to probe the similarity between learning outcomes utilising pre-trained embedding models and compare their performance to human-annotated results. We found that ALBERT, MPNeT and DistilRoBERTa demonstrated the best ability to predict the similarity between pairs of learning outcomes. However, Davinci - a GPT-3 model which is expected to predict better results - is only able to provide a good qualitative explanation and not an accurate similarity score. The codes and datasets are available at https://github.com/JAkriti/New-Dataset-and-Performance-of-Embedding-Models.</abstract>
<identifier type="citekey">jindal-etal-2023-facilitating</identifier>
<location>
<url>https://aclanthology.org/2023.clasp-1.4</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>38</start>
<end>47</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Facilitating learning outcome assessment– development of new datasets and analysis of pre-trained language models
%A Jindal, Akriti
%A Kainulainen, Kaylin
%A Fisher, Andrew
%A Mago, Vijay
%Y Breitholtz, Ellen
%Y Lappin, Shalom
%Y Loaiciga, Sharid
%Y Ilinykh, Nikolai
%Y Dobnik, Simon
%S Proceedings of the 2023 CLASP Conference on Learning with Small Data (LSD)
%D 2023
%8 September
%I Association for Computational Linguistics
%C Gothenburg, Sweden
%F jindal-etal-2023-facilitating
%X Student mobility reflects academic transfer from one postsecondary institution to another and facilitates students’ educational goals of obtaining multiple credentials and/or advanced training in their field. This process often relies on transfer credit assessment, based on the similarity between learning outcomes, to determine what knowledge and skills were obtained at the sending institution as well as what knowledge and skills need to still be acquired at the receiving institution. As human evaluation can be both a challenging and time-consuming process, algorithms based on natural language processing can be a reliable tool for assessing transfer credit. In this article, we propose two novel datasets in the fields of Anatomy and Computer Science. Our aim is to probe the similarity between learning outcomes utilising pre-trained embedding models and compare their performance to human-annotated results. We found that ALBERT, MPNeT and DistilRoBERTa demonstrated the best ability to predict the similarity between pairs of learning outcomes. However, Davinci - a GPT-3 model which is expected to predict better results - is only able to provide a good qualitative explanation and not an accurate similarity score. The codes and datasets are available at https://github.com/JAkriti/New-Dataset-and-Performance-of-Embedding-Models.
%U https://aclanthology.org/2023.clasp-1.4
%P 38-47
Markdown (Informal)
[Facilitating learning outcome assessment– development of new datasets and analysis of pre-trained language models](https://aclanthology.org/2023.clasp-1.4) (Jindal et al., CLASP 2023)
ACL