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Abstract

Student mobility reflects academic transfer
from one postsecondary institution to another
and facilitates students’ educational goals of
obtaining multiple credentials and/or advanced
training in their field. This process often re-
lies on transfer credit assessment, based on the
similarity between learning outcomes, to de-
termine what knowledge and skills were ob-
tained at the sending institution as well as what
knowledge and skills need to still be acquired at
the receiving institution. As human evaluation
can be both a challenging and time-consuming
process, algorithms based on natural language
processing can be a reliable tool for assess-
ing transfer credit. In this article, we propose
two novel datasets in the fields of Anatomy
and Computer Science. Our aim is to probe
the similarity between learning outcomes util-
ising pre-trained embedding models and com-
pare their performance to human-annotated re-
sults. We found that ALBERT, MPNeT and
DistilRoBERTa demonstrated the best ability
to predict the similarity between pairs of learn-
ing outcomes. However, Davinci - a GPT-3
model which is expected to predict better re-
sults - is only able to provide a good qualita-
tive explanation and not an accurate similarity
score. The codes and datasets are available
at https://github.com/JAkriti/New-Dataset-and-
Performance-of-Embedding-Models.

1 Introduction

Student mobility refers to the movement - or, “trans-
fer” – of students from one post-secondary institu-
tion (i.e., college or university) to another. Students
might choose to transfer for any number of reasons;
common motivating factors include the opportu-
nity to obtain both advanced training and multiple
credentials in order to increase the number of fu-
ture employment options. Additionally, students
whose high school grades do not allow them to
enter their program or institution of choice might
instead enroll first in an institution with less strin-

gent admission requirements. Obtainment of the
initial post-secondary credential (e.g., diploma) can
then facilitate transfer into the desired credential
(e.g., degree) (Lang and Lopes, 2014), particularly
when both are within related fields (e.g., Computer
Programming diploma and Computer Science de-
gree).

Transferring within similar fields of study often
means that there is overlap in topics and/or courses
required for both credentials; therefore, in order to
effectively recognize students’ previous learning,
receiving institutions are often required to assess
“transfer credit.” Although numerous factors might
influence this assessment, learning outcomes are
considered a particularly valuable tool in the pro-
cess (Arnold et al., 2020a). Learning outcomes are
the measurable objectives defined at the end of an
assignment, class, course, or program (Davis, 2009)
and indicate the skill or knowledge level that can
be expected from a student who has successfully
completed the task in question. When a student
transfers between institutions, the receiving insti-
tution typically reviews course learning outcomes
from the previous institution to determine whether
they align with the learning outcomes of compa-
rable courses offered at the receiving institution.
Generally, program coordinators or other domain
experts (e.g., teaching faculty) are the trusted au-
thority designated to determine whether credit is
warranted; however, human evaluation can be a
complex and challenging task (Fallon, 2015).

The process of assessing transfer credit can be
facilitated through the use of Natural Language
Processing (NLP) based semantic similarity algo-
rithms. NLP has wide applicability, with the main
challenge of measuring textual semantic similar-
ity (Chandrasekaran and Mago, 2021b; Majumder
et al., 2016). In the past few decades, there has
been rich advancement in defining various mea-
sures for similarity between words, short texts, and
sentences (Corley and Mihalcea, 2005; Ramage

https://github.com/JAkriti/New-Dataset-and-Performance-of-Embedding-Models
https://github.com/JAkriti/New-Dataset-and-Performance-of-Embedding-Models
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et al., 2009). Word-embeddings have emerged as
a well-known technique that represents text in the
form of a real-valued vector that reasonably cap-
tures the syntactic and semantic resemblance be-
tween them (Turian et al., 2010; Mikolov et al.,
2013). Transformer-based pre-trained language
models trained on large text corpora have success-
fully emerged to be paradigmatic models for build-
ing vector-based representations of texts (Vaswani
et al., 2017). These models have applications in
numerous fields such as text summarization (Mo-
hamed and Oussalah, 2019), question/answering
(Bordes et al., 2014; Lopez-Gazpio et al., 2017),
sentiment analysis (Zhao et al., 2016), and sentence
prediction, among others.

In this direction, this paper aims to propose
two novel datasets consisting of course learning
outcomes in postsecondary education. We deter-
mined the complexity of the outcomes (sentences)
through readability analysis. We also implemented
various embedding models to scrutinize the sim-
ilarity between pairs of sentences and compared
the models’ performance with human-annotated re-
sults. Among different models, we found that AL-
BERT, MPNET and DistilRoBERTa demonstrated
the best ability to predict the similarity between
pairs of learning outcomes. However, Davinci - a
GPT-3 model which is expected to predict better
results - is only able to provide a good qualitative
explanation and not an accurate similarity score.

2 Context and Motivation

2.1 Learning Outcomes in Postsecondary
Education

Learning outcomes are “clearly defined and mea-
surable statements of learning that reflect the scope
and depth of performance; what a learner is ex-
pected to know, understand and be able to demon-
strate after completion of a process of learning”
(Lennon et al., 2014, p. 47). Within postsecondary
education, outcomes are foundational for both de-
veloping curriculum and demonstrating quality
assurance (Arnold et al., 2020a; Lennon, 2015).
Transfer credit assessment increasingly relies on
learning outcomes as a means of evaluating simi-
larity between courses and credentials offered by
different postsecondary institutions (Arnold et al.,
2020a; Fallon, 2015), with outcomes sometimes
being viewed as a “currency” that students can
exchange between institutions in order to avoid
repeating previous learning (Young et al., 2017).

Effectively assessing transfer credit is an impor-
tant process when considering that the amount of
credit received can correspond to increase in aca-
demic performance as well as influence academic
workload and time to completion for obtaining a
postsecondary credential (Gerhardt and Masakure,
2016).

2.2 The Challenge of Assessing Learning
Outcomes

Learning outcomes have the potential to establish
a common language for communicating student
learning and achievement across contexts (Arnold
et al., 2020b); however, the overall process of as-
sessing transfer credit tends to be both resource-
and time-intensive (Arnold et al., 2020a). Addition-
ally, course comparisons can differ substantially
across institutions, and might (or might not) in-
corporate numerous other considerations related
to content, evaluation, and grading (Arnold et al.,
2020a). This subjectivity can be detrimental for
students and institutions alike (Tortola et al., 2020),
with the lack of consistency in standards and pro-
cesses presenting a notable barrier. A recommenda-
tion to address this concern is the implementation
of policies and practices that facilitate consistent
decision-making, for example by documenting pre-
vious assessments (Wheelahan et al., 2016). An
additional consideration is the presence of com-
mon assumptions regarding the nature and quality
of education offered at different types of institu-
tions (e.g., colleges and universities) (Arnold et al.,
2020b), which could influence transfer credit de-
cisions. Again, establishing some means of con-
sistency that eliminates such potential bias could
facilitate a more accurate and effective assessment
process.

3 Methodology

3.1 New Dataset Development

We developed two novel datasets consisting of
learning outcomes related to two content areas,
namely (1) human anatomy and (2) operating sys-
tems. To create each dataset, we first accessed
relevant course outlines from postsecondary insti-
tutions in Ontario, Canada. All of the outlines were
publicly available and could be accessed via the
institutions’ websites without log-in credentials or
other permissions. Next, we extracted the learning
outcomes from each course outline and organized
them by field (i.e., human anatomy and operating
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systems), institution (e.g., Institution A, Institu-
tion B, etc.), course (e.g., ANAT 101, BIOL 102,
etc.), and topic (e.g., Digestive System, Muscular
System, etc.). In some instances, we modified the
general sentence structure of a learning outcome
to either reduce“wordiness”, delete redundant in-
formation, and/or separate information pertaining
to multiple topics. For example, an outcome that
included two topic areas, such as “Explain the struc-
ture and function of the muscular and skeletal sys-
tems,” would become two separate outcomes (e.g.,
“Explain the structure and function of the muscu-
lar system; Explain the structure and function of
the skeletal system”). The resulting datasets con-
sisted of 28 (anatomy) and 59 (operating systems)
unique learning outcomes (sentences) representing
the knowledge and skills that would be expected of
students who successfully completed the respective
courses.

To create sentence pairs for analysis, learn-
ing outcomes from each dataset were paired to-
gether so that (1) both similar and dissimilar
pairs were represented uniformly (i.e., by cre-
ating both inter- and intra-topic pairings) and
(2) no learning outcomes were repeated more
than twice. A total of 28 and 45 sentence
pairs were analyzed for the anatomy and operat-
ing systems datasets, respectively. The datasets
are available at https://github.com/JAkriti/New-
Dataset-and-Performance-of-Embedding-Models.

3.2 Complex Sentence Dataset
(Chandrasekaran and Mago, 2021a)

Recently, a dataset comprising 52 sentence pairs
related to definitions of Computer Science ter-
minology was developed and analyzed. The au-
thors conduct readability analysis anticipating that
their dataset exhibits a low readability index. This
claims that their dataset is more complex in compar-
ison to two benchmark datasets (Sentences Involv-
ing Compositional Knowledge “SICK”(Marelli
et al., 2014) and Semantic Text Similarity “STS”
(Shao, 2017)). Their main objective is to show how
the increase in complexity of sentences leads to a
significant decrease in the performance of embed-
ding models.

3.3 Readability Analysis
The readability score is a metric defined to mea-
sure the complexity of a sentence and deliberate
the grade level of education required for a person
to understand the piece of text. Depending on the

complexity of learning outcomes, it is important to
comprehend how reasonably the embedding mod-
els perform to evaluate the similarity scores be-
tween them. The indices used to determine the
readability scores of the sentences in the proposed
datasets are – a) Flesch-Kincaid Grade Level (Cole-
man and Liau, 1975), b) Coleman-Liau Index (Kin-
caid et al., 1975), c) Automated readability Index
(Kincaid et al., 1975), d) Linsear Write and e) Gun-
ning fog index (Gunning et al., 1952).

The readability scores of learning outcomes from
each institute (e.g., Institute A, Institute B, etc.) are
evaluated using the above indices. The aggregate
of all these indices provides an overall readability
score of each institute as highlighted in Figure 1
(for each dataset). For example, an average score
of 11.74 shows that a reader needs a qualification
of grade 11 to understand the text. Therefore, fol-
lowing this notation we observe that a reader re-
quires education of collegiate level and above to
understand the Anatomy sentences, and knowledge
of grade 12 and above for Computer Science sen-
tences.

3.4 Annotation
To develop a basis for comparing the performance
of embedding models, the proposed datasets are
each manually evaluated by three human respon-
dents with relevant contextual expertise. The
Anatomy dataset is evaluated by two graduated
scholars and one graduate student in Kinesiology.
The Computer Science dataset is evaluated by three
thesis-based Master’s students. The annotators
have been made aware of the applicability of this
work. Each sentence pair is annotated on a scale of
0 to 9, where 0 (9) represents completely dissimi-
lar (similar) sentences. To affirm the competency
of these human ratings, we computed inter-rater
agreement using Krippendorff’s alpha coefficient
represented as α, where data with a coefficient
value between 0.667 < α < 0.8 is considered reli-
able (Krippendorff, 2011; Hayes and Krippendorff,
2007). For the Anatomy dataset, α = 0.71, and
for the Computer Science dataset, α = 0.68 which
indicates that the annotation is reliable.

3.5 Web Interface
To ensure that the implementation of pre-tarined
embedding models is successful in assisting trans-
fer credit assessment, a web interface is developed
to streamline the process. This begins by prompt-
ing users to upload new programs to the website

https://github.com/JAkriti/New-Dataset-and-Performance-of-Embedding-Models
https://github.com/JAkriti/New-Dataset-and-Performance-of-Embedding-Models
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Figure 1: Readability analysis of learning outcomes from different institutes (denoted as InsA, InsB, and so on) for
(a) Anatomy (b) Computer Science dataset using five different indices (values indicated in black). The aggregate
scores are highlighted in red on each of the stacked bar graph.

Figure 2: An example of the web interface where learn-
ing outcome comparisons can be observed

that contain information about the courses and their
expected learning outcomes. Once an institute iden-
tifies a program they would like to transfer credit
to, a comparative analysis is performed where a
natural language processing algorithm is used to
determine the semantic similarity between each
course.

From these results, members of the receiving
institute are able to access the screen shown in Fig-
ure 2 where they can observe suggestions from the
algorithm for each learning outcome comparison
before making their own decisions. After each user
has provided input, the owner of the analysis can
then observe the overall consensus before making

a final recommendation on the transfer credit and
generating a report to show the outcome.

Model Version

BERTbase (Devlin et al., 2018) bert-base-nli-mean-tokens
BERTLarge (Devlin et al., 2018) bert-large-nli-mean-tokens
RoBERTabase (Liu et al., 2019) roberta-base-nli-mean-tokens
RoBERTaLarge (Liu et al., 2019) nli-roberta-large
ALBERT (Lan et al., 2019) paraphrase-albert-small-v2
DistilRoBERTa (Sanh et al., 2019) all-distilroberta-v1
DistilRoBERTa (Sanh et al., 2019) nli-distilroberta-base-v2
MPNeT (Song et al., 2020) all-mpnet-base-v2
GPT-3 (Brown et al., 2020) Davinci OpenAI

Table 1: Pre-trained embedding models used to generate
sentence embeddings.

3.6 NLP Algorithm

Transformer is a neural network architecture that
emerged as a breakthrough in NLP (Vaswani et al.,
2017). Along with the encoder-decoder structure,
self-attention mechanism is the key characteristic
of transformers for the algorithms to learn the long-
range relationship between words in a sequence.
This architecture has surpassed the performance
of various traditional networks like convolutional
and recurrent neural networks known for language
understanding (Mikolov et al., 2011). Furthermore,
Sentence transformer is a transformer-based model
designed to generate a fixed-size dense vector for
a sentence of any length (Reimers and Gurevych,
2019). A brief outline of transformer-based models
along with their sentence transformer version used
in this paper is given in Table 1. The resulting sen-
tence embeddings are then compared using cosine
similarity.

https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens 
https://huggingface.co/sentence-transformers/bert-large-nli-mean-tokens
https://huggingface.co/sentence-transformers/roberta-base-nli-mean-tokens
https://huggingface.co/sentence-transformers/nli-roberta-large
https://huggingface.co/sentence-transformers/paraphrase-albert-small-v2
https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://huggingface.co/sentence-transformers/nli-distilroberta-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://beta.openai.com/
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Figure 3: Pearson’s and Spearman’s correlation coefficient to analyse relationship between similarity values of
human annotators and embedding models (Section 3.6) for Anatomy dataset.

S1: Discuss the structural organization and function of the respiratory system and its major organs.
S2: List the parts of the respiratory system and identify their functions.

ALBERT BERTbase BERTLarge Davinci DistilRoBERTa-v1 DistilRoBERTa-v2 MPNeT RoBERTabase RoBERTaLarge Human
0.8288 0.8197 0.9002 0.9098 0.7738 0.7967 0.7706 0.8901 0.8622 0.7407

Table 2: Similarity scores of a sentence pair from Anatomy dataset, evaluated using versions of pre-trained
embedding models discussed in Section 3.6. Human ratings are normalized between 0 and 1.

4 Results

This section provides an extensive comparative
analysis of various embedding techniques (dis-
cussed in Section 3.6) implemented for evaluat-
ing the similarity scores of learning outcomes in
proposed datasets. To evaluate the relationship be-
tween the similarity scores of human annotators
and embedding models we employ Pearson’s and
Spearman’s rank coefficients for the Anatomy and
Computer Science datasets (including the dataset
proposed by (Chandrasekaran and Mago, 2021a)
and the dataset proposed in this paper).

4.1 New Proposed datasets
4.1.1 Human Anatomy dataset
The results presented in Figure 3 demonstrate Pear-
son’s and Spearman’s correlation coefficients for
the proposed Anatomy dataset of learning out-
comes. While comparing different pre-trained em-
bedding models we found that MPNeT achieves
the best performance with 0.87 Pearson’s value and
0.88 Spearman’s value. This shows that the scores
of MPNeT are very highly correlated to the human
annotator’s ratings. Moreover, DistilRoBERTa-v1
and ALBERT models show good performance with
nearly 0.81 for both Pearson’s and Spearman’s cor-
relation predicting that the ratings are highly corre-

lated. However, every other model fails to predict a
better similarity score. An example of sentence pair
specifying how similar the sentences are accord-
ing to embedding models is highlighted in Table 2,
where we clearly observe that MPNeT is closest to
human rating.

Example 1- ChatGPT

S1: Apply the basic planes of motion and
fundamental movements associated with hu-
man movement using proper anatomical ter-
minology.
S2: Describe the structure and function of
bones and bony prominence.

There is not a strong similarity between the
two sentences. S1 is about applying knowl-
edge of human movement and anatomy,
while S2 is about describing the structure
and function of bones. They both involve
anatomy, but they are not closely related in
terms of content.

Davinci: 0.8201 Human score: 0.6667

On the other hand, where Davinci model is antic-
ipated to provide better results, we observed that
though this model is not able to predict a reliable
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similarity score, it provides a piece of genuine qual-
itative information as shown above. This sentence
pair is expected not to be similar as they are re-
lated to two different aspects of human anatomy.
However, Davinci provides a high similarity score
0.8201 which is far away from the human similar-
ity score, although it reflects a good explanation
when explored on ChatGPT.

4.1.2 Computer Science dataset

For the Computer Science dataset proposed in this
paper, the performance of embedding models is dis-
played in Figure 4. Also, an example of sentence
pair with similarity values between them from dif-
ferent models is given in Table 3. Clearly, among
the various embedding models, DistilRoBERTa-v2
shows the highest value for Pearson’s and Spear-
man’s coefficient displaying a very good correla-
tion between the two ratings. However, we ob-
served that the annotated values for this dataset fail
to follow the normal distribution. Therefore, it is
not reasonable to certainly rely on Pearson’s test
to judge the correlation between human evaluation
and embedding models. Furthermore, Davinci- the
most capable GPT-3 model fails to determine a
good correlation. However, this model provides a
justifiable interpretation of the similarity between
the two sentences as shown in the example below.

Example 2- ChatGPT

S1- Design and install operating system to
experience its functioning.
S2- Configure Package repositories and
package management.

There is some similarity between the two
sentences. Both S1 and S2 involve work-
ing with operating systems and installing
or configuring different components or fea-
tures. However, the specific tasks described
in the sentences are not closely related. S1
involves designing and installing an op-
erating system to experience its function-
ing, while S2 involves configuring package
repositories and package management.

Davinci: 0.8192 Human score: 0.0222

Here the explanation is true and acceptable, even
though the Davinci similarity score is very high i.e.
0.8192 in comparison to human rating.

4.2 Complex Sentence
dataset(Chandrasekaran and Mago,
2021a)

In this paper, the authors show how the embedding
models do not perform well to predict the similar-
ity values of complex sentence dataset proposed by
them. We try to analyze these sentence pairs using
the versions of models highlighted in Section 3.6.
Notably, we found that ALBERT model executes
best performance with 0.83 Pearson’s coefficient
and 0.77 Spearman’s value as shown in Figure 5.
Furthermore, DistilRoBERTa-v2, DistilRoBERTa-
v1, and MPNeT have high Pearson’s (Spearman’s)
value of 0.81(0.78), 0.81(0.78), and 0.79(0.77) re-
spectively which outperforms the results of the
models presented in (Chandrasekaran and Mago,
2021a). Table 4 shows the results of embedding
models for a particular sentence pair from the
dataset where ALBERT performs the best in com-
parison to human ratings. However, the Davinci
model which is expected to predict better results
is only able to provide a good explanation and not
a valid score. For example, the subjective descrip-
tion of the similarity between a chosen sentence
pair from the dataset is very well elaborated by
ChatGPT, as shown below. Whereas, this model
predicts a high similarity score of 0.7639 which
shows the sentences have a good similarity which
is not actually true as observed from the human
score.

Example 3- ChatGPT

S1: A procedure for solving a mathematical
problem in a finite number of steps that fre-
quently involves repetition of an operation.
S2: Various methods or formats for organiz-
ing data in a computer

There is not a strong similarity between the
two sentences. S1 is describing an algo-
rithm, which is a specific type of procedure
used to solve a mathematical problem. S2
is describing ways of organizing data in
a computer. While both sentences involve
some type of procedure or method, they are
not closely related in terms of content.

Davinci: 0.7639 Human score: 0.1200

https://beta.openai.com/
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Figure 4: Pearson’s and Spearman’s correlation coefficient to analyse relationship between similarity values of
human annotators and embedding models (Section 3.6) for proposed Computer Science dataset.

S1- Manage securely remote systems.
S2- Maintain a Unix workstation and set it up as a network client.

ALBERT BERTbase BERTLarge Davinci DistilRoBERTa-v1 DistilRoBERTa-v2 MPNeT RoBERTabase RoBERTaLarge Human
0.2695 0.5247 0.5274 0.8145 0.4241 0.5708 0.4246 0.4882 0.4653 0.6667

Table 3: Similarity scores of a sentence pair from proposed Computer Science dataset, evaluated using versions of
pre-trained embedding models discussed in Section 3.6. Human ratings are normalized between 0 and 1.
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Figure 5: Pearson’s and Spearman’s correlation coefficient to analyse relationship between similarity values of
human annotators and embedding models (Section 3.6) for complex sentence dataset.

S1- A procedure for solving a mathematical problem in a finite number of steps that frequently involves repetition of an operation.
S2- Various methods or formats for organizing data in a computer.

ALBERT BERTbase BERTLarge Davinci DistilRoBERTa-v1 DistilRoBERTa-v2 MPNeT RoBERTabase RoBERTaLarge Human
0.1300 0.4967 0.5656 0.7639 0.1623 0.3924 0.2001 0.6812 0.4069 0.0667

Table 4: Similarity scores of a sentence pair from Complex sentence dataset, evaluated using versions of pre-trained
embedding models discussed in Section 3.6. Human ratings are normalized between 0 and 1.

5 Conclusion

Transfer credit assessment usually consists of
course comparisons via the evaluation of learning

outcomes, which represent an important tool for as-
sessment but are also subject to potential inconsis-
tencies and bias. Therefore, an automated system
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to assess transfer credit based on learning outcomes
across institutes can facilitate the process by provid-
ing a reliable and consistent measure of similarity.
Over the years there has been a rich advancement
in the era of large language models to measure
semantic similarity between texts. Various pre-
trained embedding models have been developed
to represent text for algorithms to understand and
compare semantic similarity. In this paper, we aim
to propose two novel datasets of learning outcomes
for courses in Human Anatomy and Computer Sci-
ence operating systems and perform an analysis
using embedding models to assist in transfer credit
assessment. We found that versions of ALBERT,
MPNeT and DistilRoBERTa outperform Davinci
(a GPT-3 model) that only provides a good qualita-
tive interpretation of the similarity between pairs
of sentences. Application of these models within
the context of transfer credit assessment can con-
tribute to greater efficiency and consistency when
determining learning outcome similarity.

6 Limitations

Due to the complexity measures (readability anal-
ysis) requiring a minimum of 100 words, some of
the smaller learning outcome sets require padding.
To try and minimize the effect this will have on the
results, we append the word “a” until the set can be
measured. Furthermore, the datasets involve learn-
ing outcomes from the same courses being offered
at different years of class. Therefore, while con-
ducting human annotation, the comparison among
learning outcomes is not consistent, which leads to
a low inter-rater agreement among human values
for both datasets. While utilizing the pre-trained
embedding models, due to fewer number of sen-
tences in the dataset we were not able to pre-train
the models. This reflects a need to further enhance
the dataset.
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