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Abstract

Generative artificial intelligence (AI) is a
promising direction for augmenting clinical
diagnostic decision support and reducing di-
agnostic errors, a leading contributor to med-
ical errors. To further the development of
clinical AI systems, the Diagnostic Reasoning
Benchmark (DR.BENCH) was introduced as a
comprehensive generative AI framework, com-
prised of six tasks representing key components
in clinical reasoning. We present a compara-
tive analysis of in-domain versus out-of-domain
language models as well as multi-task versus
single task training with a focus on the prob-
lem summarization task in DR.BENCH (Gao
et al., 2023). We demonstrate that a multi-
task, clinically-trained language model out-
performs its general domain counterpart by
a large margin, establishing a new state-of-the-
art performance, with a ROUGE-L score of
28.55. This research underscores the value of
domain-specific training for optimizing clinical
diagnostic reasoning tasks.

1 Introduction

The electronic health record (EHR) contains daily
progress notes authored by healthcare providers
to represent the daily changes in care plans for
their patients, including an updated list of active
diagnoses. The daily progress note is one of the
most important note types in the EHR and con-
tains the daily subjective and objective details in
the patient’s care, which is summarized into an as-
sessment of the overall leading diagnoses with a
treatment plan section (Gao et al., 2022b). How-
ever, note bloat is a common phenomenon in medi-
cal documentation intermixed with billing require-
ments, non-diagnostic information, and copy and
paste from prior notes (Rule et al., 2021). These
additional documentation practices contribute to
provider burnout and cognitive overload (Gardner
et al., 2018). Problem-based charting is important

Figure 1: Training T5 with multi-task setup with six
tasks from DR.BENCH (Gao et al., 2023)

to improve care throughput and help reduce diag-
nostic errors (Wright et al., 2012).

The medical reasoning process is complex and
incorporates medical knowledge representation
with analytical and experiential knowledge (Bowen,
2006). Patel and Groen developed a theory from the
AI literature that experts use "forward-reasoning"
from data to diagnosis 1986. The recently released
benchmark DR.BENCH (Diagnostic Reasoning
Benchmark) is intended to assess the ability of AI
models to perform such reasoning, with multiple
component tasks including diagnostic reasoning
with EHR data for experiential knowledge, medical
exams for knowledge representation, progress note
structure prediction, and problem summarization
tasks that included both extractive and abstractive
medical diagnoses (Gao et al., 2023).

In this work, we focus primarily on the problem
summarization task from the DR.BENCH suite,
but with the hypothesis that using all tasks in
DR.BENCH would improve the problem summa-
rization task over the problem summarization task
being fine-tuned alone. We make use of the T5 fam-
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ily of sequence-to-sequence language models, (Raf-
fel et al., 2020), which are first pretrained on a
large unlabeled dataset and then finetuned on spe-
cific multiple downstream tasks. The text-to-text
approach in our experiment makes it possible to
perform multi-task training. Hence, the T5 mod-
els were ideal for experimenting with single and
multi-task techniques.

Further, we experimented with a recently
developed clinically-trained T5 model to
quantify the value of in-domain pretrain-
ing data (Lehman and Johnson, 2023). We
make our software publically available at
https://git.doit.wisc.edu/smph-public/dom/uw-icu-
data-science-lab-public/drbench.

2 Related Work

In the clinical domain, biomedical text summa-
rization is a growing field. Common approaches
to text summarization include feature-based meth-
ods (Patel et al., 2019), fine-tuning large language
models (Lewis et al., 2020), and domain adapta-
tion with fine-tuning methods (Xie et al., 2023).
Researchers developed clinical methods for sum-
marization from progress notes but these methods
were restricted to specific diseases such as diabetes
and hypertension (Liang et al., 2019). Moreover,
these methods for summarization were more ex-
tractive than abstractive, using a combination of
heuristics rules and deep learning techniques, and
did not use large language models (Liang et al.,
2019). In another work, an extractive-abstractive
approach was used where meaningful sentences
were extracted from the clinical notes first; these
sentences were then fed into the transformer model
for abstractive summarization (Pilault et al., 2020).
Unfortunately, the transformer model frequently
produced hallucinated outputs, and was not coher-
ent when compared to the ground truth (Pilault
et al., 2020). In a similar extractive-abstractive
approach, researchers used a pointer generator net-
work to generate a note summary cluster and a
language model such as T5 to generate an abstrac-
tive summary (Krishna et al., 2021). None of these
approaches used multi-task training or focused on
clinically trained encoder-decoder since clinical T5

1PubMed is a large open source biomedical and lifescience
database consists of 35 million citation and abstract, and PMC
(PubMed Central) consists of full articles. MIMIC-III and
MIMIC-IV (Medical Information Mart for Intensive Care) are
databases consisting of de-identified datasets from Beth Israel
Deaconess Medical Center

was only recently introduced. Prior work has not
addressed the challenge of abstractive reasoning,
or they used a two-step process to create abstrac-
tions. Recently, researchers used domain adaptive
T5 model trained on the biomedical dataset but did
not experiment with multi-task settings (Gao et al.,
2023).

3 Methods

3.1 Dataset

In our experiments, we used DR.BENCH (Gao
et al., 2023), a recently introduced benchmark de-
signed to evaluate diagnostic reasoning capabilities
of generative language models. DR.BENCH con-
sists of three categories of tasks (two tasks per
category), as shown in Figure 1. From top to the
bottom, the categories and six tasks are: Medical
Knowledge Representation: (1) Medical Natural
Language Inference (MedNLI) task that consid-
ered sentence pairs with the objective to determine
whether the hypothesis sentence could be inferred
from the premise sentence (Shivade, 2019) (14,049
sentence pairs total); (2) Assessment and Plan Rea-
soning (A/P) task whose objective was to label
relations between the assessment and treatment
plan sections (5,897 samples). Clinical Evidence
Understanding and Integration: (1) Electronic
Medical Records Question Answering (emrQA)
whose objective was to answer questions based
on discharge summaries (53,199 questions total)
(Pampari et al., 2018); (2) Progress Note Section
Labeling task whose objective was to labels SOAP
sections in progress notes (134,089 samples) (Gao
et al., 2022a). Diagnosis Generation and Sum-
marization: (1) Medical Board Exam Question
Answering (MedQA) task that consisted of med-
ical board exam question-answer pairs (12,725
pairs) (Jin et al., 2021); (2) Problem Summariza-
tion (ProbSumm) task whose goal was to produce
the list of relevant problems and diagnoses based
on the input that consisted of the SOAP sections of
progress notes (2,783 samples).

In this work, we focused primarily on the prob-
lem summarization task, which was the most diffi-
cult but also believed to be the most impactful of
the six DR.BENCH tasks for downstream clinical
application.

3.2 Experimental Setup

In our experiments, we used six generative lan-
guage models, all based on the Text-To-Text Trans-

79

https://git.doit.wisc.edu/smph-public/dom/uw-icu-data-science-lab-public/drbench
https://git.doit.wisc.edu/smph-public/dom/uw-icu-data-science-lab-public/drbench


Model Training Corpus Initialization Citation

T5 220M
Colossal Clean Crawled Corpus (C4)

Random
(Raffel et al., 2020)

T5 770M Random

SCIFIVE 220M
C4 + PubMed (abstracts) + PMC

T5 220M
(Phan et al., 2021)

SCIFIVE 770M T5 770M

CLINICAL-T5 220M
MIMIC-III + MIMIC-IV

T5 220M
(Lehman and Johnson, 2023)

CLINICAL-T5 770M Random

Table 1: T5 pretrained models used in the experiments. 1

fer Transformer (T5) model (Raffel et al., 2020).
The text-to-text paradigm utilized by T5 was a nat-
ural choice for our stated goal of exploring multi-
task learning: transforming T5 into a multi-task
learner simply involved prefixing individual task
instances with a task-specific prompt after which
the model could be trained using the standard cross-
entropy loss.

Table 1 provides details about the models. We
compared a multi-task scenario in which T5 vari-
ants were fine-tuned on all DR.BENCH tasks and a
single-task scenario in which T5 was fine-tuned on
the problem summarization task only. We trained
T5 models as follows:

Single-task training: In single-task training for
problem summarization, we used the text of the
assessment, subjective and objective sections of the
progress notes as input and trained T5 to generate
the list of problems and diagnoses.

Multi-task training: In multi-task training,
we combined all DR.BENCH tasks into a single
dataset and trained T5 to generate task-specific out-
put given task-specific input. Training examples of
each task were prefixed with a task-specific prompt.
The open-book setting only was used for MedQA.
The rest of preprocessing follows (Gao et al., 2023).

To enable comparison with existing work (Gao
et al., 2023) we used ROUGE-L score (Lin, 2004)
as our evaluation metric. ROUGE-L uses the
longest common subsequence statistics to com-
pare model outputs. A resampling technique with
1000 bootstrap samples was used to estimate the
95% confidence intervals (CI) (DiCiccio and Efron,
1996).

Note that the Clinical-T5 model used in our ex-
periment was pretrained on the same data (MIMIC-
III) that was annotated by some DR.BENCH tasks
(e.g. problem summarization and EmrQA). This
setting is known as transductive learning. Truns-
ductive learning is a very realistic scenario for the

clinical domain where due to privacy issues, lan-
guage models are likely be pretrained on the data
from the same institution as the data to which they
would be applied. Obviously, it would also be in-
teresting to investigate the performance of a T5
variant that was trained on a clinical corpus that
was different from which the evaluation data were
sourced. Unfortunately, this was not possible due
to the fact that MIMIC was the only publicly avail-
able corpus of clinical notes and it was used for
training clinical language models.

The training data consisted of one progress note
per unique patient. A separate cohort of unique
patients was selected for the test set, ensuring no
overlap between the train and test splits. All exper-
iments used Adam optimizer with a learning rate
of 1e-5, batch size of 8, beam size of 5, and 100
epochs with early stopping. The learning rate and
batch size were picked based on the best hyper-
parameters found from the prior work (Gao et al.,
2023). All experiments were completed on a sin-
gle A100 GPU with 40 GB memory. The models
were reviewed for error analysis by a critical care
physician on the full test set of 86 progress notes
and common observations were highlighted with
examples in the error analysis.

4 Results and Discussion

The results of our experiments are summarized
in Table 2. The full set of results including the
confidence intervals is available in the Appendix
(Table 4).

Clinical-T5 770M trained in the multi-task set-
ting demonstrated the best performance (28.55) for
the Summarization task, establishing a new state-
of-the art for this task. The single-task setting for
the same T5 variant was a close second (28.28).

T5 variants trained on in-domain data (SciFive
and Clinical-T5) performed better than their gen-
eral domain counterpart T5 models of the same size.
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All models, except Clinical-T5 experienced a drop
in performance when trained in a multi-task ap-
proach. We hypothesize that the models pretrained
on non-clinical data were overwhelmed with out-
of-domain (i.e. clinical) data when trained in a
multi-task way and failed to generalize as a result.
Predictably, larger models performed at least as
well as the smaller models and outperformed the
smaller models in most scenarios.

Admittedly, our work leaves open the question of
whether the state-of-the-art performance obtained
by Clinical-T5 770M has to do with the fact that it
was pretrained on MIMIC notes, which were also
annotated in the problem summarization task. At
the same time, the performance of other T5 vari-
ants, such as SciFive 770M, was close, without it
pretraining on MIMIC. This suggests that another
T5 variant trained on a corpus of clinical notes that
was different from MIMIC would perform at least
as well or better depending on the size of the pre-
training corpus. It should be noted that the model of
this size, 770M parameters, can very likely absorb
significantly larger amounts of clinical notes than
what was available in MIMIC (Hoffmann et al.,
2022). We leave verifying this hypothesis for fu-
ture work.

Model Training Summarization

Gao et al., 2023 Single task 7.60 (5.31 - 9.89)

T5 220M Single task 26.35 (22.18 - 30.52)

Multi-task 24.84 (20.28 - 29.40)

T5 770M Single task 26.90 (22.58 - 31.23)

Multi-task 23.99 (19.86 - 28.13)

SCIFIVE 220M Single task 25.31 (21.45 - 29.17)

Multi-task 24.38 (19.99 - 28.78)

SCIFIVE 770M Single task 27.31 (23.09 - 31.53)

Multi-task 25.31 (21.45 - 29.17)

CLINICAL-T5 Single task 25.35 (21.19 - 29.51)

220M Multi-task 26.21 (21.92 - 30.49)

CLINICAL-T5 Single task 28.28 (24.17 - 32.38)

770M Multi-task 28.55 (24.29 - 32.80)

Table 2: Performance of fine-tuned T5 models on the
summarization task. 95% confidence intervals are in-
cluded. The first row is a baseline representing the
best performance on this task to date. Please see the
Appendix for the full set of results.

Error Analysis: Although both clinical mod-
els produced similar ROUGE-L scores, the model

trained in a single-task setting appeared to achieve
better abstraction during error analysis. For the
example in Table 5, the assessment described sep-
sis but does not mention the source of the sepsis
infection in multi-task Clinical-T5 770M. The data
from the subjective and objective sections of the
progress note described an abdominal source and
lab results were consistent with a clostridium diffi-
cile infection. The multi-task prediction was able
to generate sepsis but further generated text that the
source was unclear. The single task performed bet-
ter abstraction and generated clostridium difficile as
the source for the infection, which was more accu-
rate during expert review. In another diagnosis, the
ground truth label was “EtOH Withdrawal" (alco-
hol withdrawal). The multitask extracted “altered
mental status, hypertensive, tachycardia," (symp-
toms of withdrawal) whereas the single task was
able to abstract “DTs EtOH w d," (delirium tremens
alcohol withdrawal - a type of severe alcohol with-
drawal in critically ill patients). Again, the sin-
gle task achieved greater accuracy with abstraction
from symptoms of alcohol withdrawal presented in
the earlier sections of the note.

Resource Utilization: The experiments were
conducted on the Google Cloud Platform using one
A100 40 GB NVIDIA GPU on a Linux base sys-
tem. For all experiments, the total training time
was approximately 250 hours for both single-task
and multi-task approaches. The carbon emission
footprint was 35.5 kilograms (kg) of CO2. How-
ever, the total carbon emission was only 4.5 kg
of CO2 for the single-task experiments. (Lacoste
et al., 2019)

5 Conclusion

In this work we experiment with the
DR.BENCH suite of tasks and established a
new state-of-the-art result on the problem list
generation task, a task critical for AI-assisted diag-
nostic reasoning. Our other contribution indicates
that multi-task learning does not work well, unless
in-domain data was used for pretraining and that
included (unlabeled) task data during pretraining (a
scenario known as transductive learning) leads to
the best performance. Finally, our work provides
evidence that generative models benefit from
pretraining on in-domain data. In future work, we
plan to explore the utility of decoder-only LLMs
for clinical diagnostic reasoning.
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6 Limitations

The limitation of this work was the use of
ROUGE-L as the evaluation metric. Given the
many acronyms and synonyms in medical writ-
ing, ROUGE-L, based on the longest common se-
quence, does not capture the many nuances in its
score. Researchers have shown concerns for the
ROUGE score and have developed metrics for sum-
marization that are more semantically aware of the
ground truth (Akter et al., 2022), but their usability
is yet to be validated.

Training large language models from scratch
uses a considerable amount of carbon footprint.
(Patterson et al., 2021) Fine-tuning large language
models for downstream tasks is one way to reduce
carbon footprint but still needs to be cost-effective.
As the AI community progresses in this field, de-
veloping a cost-effective and carbon-friendly solu-
tion is needed. The NLP field is moving towards
prompt-based methods with larger LLMs (Lester
et al., 2021), so the next step for this research is
to experiment with soft prompting approaches to
address low resource settings and leverage prompt
tuning in LLMs for the problem summarization
task.

7 Ethics Statement

This research utilized a deidentified dataset that
does not include any protected health informa-
tion. This dataset operates in compliance with the
PhysioNet Credential Health Data Use Agreement
(v1.5.0). All experiments conducted adhered to the
guidelines outlined in the PhysioNet Credentialed
Health Data License Agreement. Additionally, this
study has been deemed exempt from human sub-
jects research.
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Model Training Summarization SOAP A/P

Gao et al., 2023 Single task 7.60 (5.31 - 9.89) 60.12 (59.33 - 60.90) 80.09 (79.32 - 83.23)

T5 220M Single task 26.35 (22.18 - 30.52) 60.12 (59.33 - 60.90)* 73.31 (71.34 - 77.65)*

Multi-task 24.84 (20.28 - 29.40) 56.63 (55.83 - 57.42) 43.25 (41.35 - 66.59)

T5 770M Single task 26.90 (22.58 - 31.23) 55.57 (54.78 - 56.35)* 77.96 (75.38 - 81.60)*

Multi-task 23.99 (19.86 - 28.13) 51.10 (50.32 - 51.91) 75.15 (71.93 - 78.19)

SCIFIVE 220M Single task 25.31 (21.45, 29.17) 57.74 (56.95 - 58.53)* 76.76 (74.81 - 80.92)*

Multi-task 24.38 (19.99 - 28.78) 54.86 (54.06 - 55.65) 68.87 (65.50 - 72.12)

SCIFIVE 770M Single task 27.31 (23.09 - 31.53) 47.65 (46.85 - 48.47)* 75.11 (73.10,79.42)*

Multi-task 25.31 (21.45 - 29.17) 44.51 (43.72- 45.29) 77.50 (74.45 - 80.37)

CLINICAL-T5 220M Single task 25.35 (21.19 - 29.51) 55.30 (54.51 - 56.11) 80.44 (77.47 - 83.35)

Multi-task 26.21 (21.92 - 30.49) 52.41 (51.62 - 53.20) 65.49 (62.08 - 68.76)

CLINICAL-T5 770M Single task 28.28 (24.17 - 32.38) 52.82 (52.03 - 53.61) 78.79 (75.76 - 81.66)

Multi-task 28.55 (24.29 - 32.80) 54.00 (53.21 - 54.80) 80.58 (77.57 - 83.38)

Table 3: Finetuned T5 models on various clinical task with 95% confidence interval calculated using the bootstrap-
ping method. A/P represents assessment and plan relational labeling task. Summarization use ROUGE L, A/P use
F1-macro and SOAP use accuracy score for the evaluation metrics. The first row in the table represents best scores
reported in the DR.BENCH paper and * in the other rows represent scores for the respective task in DR.BENCH
paper (Gao et al., 2023)

Model Training EmrQA MedNLI MedQA

Gao et al., 2023 Single task 39.20 (34.63 - 43.78) 84.88 (82.98 - 86.64) 24.59 (22.31 - 27.02)

T5 220M Single task 33.40 (29.27 - 37.61)* 79.75 (78.62 - 82.70)* 22.55 (20.01 - 25.69)*

Multi-task 38.48 (37.24 - 39.79) 72.57 (70.18 - 74.82) 21.75 (19.48 - 24.12)

T5 770M Single task 38.05 (33.56 - 42.58)* 84.04 (82.14 - 85.86)* 20.97 (18.77 - 23.25)*

Multi-task 41.42 (40.16, 42.72) 83.19 (81.22, 85.09) 23.25 (20.97, 25.61)

SCIFIVE 220M Single task 37.28 (32.84 - 42.11)* 82.84 (80.87 - 84.74)* 22.78 (20.50 - 25.14)*

Multi-task 40.08 (38.82 - 41.39) 78.83 (76.72 - 80.94) 21.52 (19.32 - 23.80)

SCIFIVE 770M Single task 41.21 (39.93 - 42.49) 83.89 (82.00 - 85.79) 23.09 (20.82 - 25.37)

Multitask 41.26 (39.98 - 42.56) 84.35 (82.49 - 86.22) 23.72 (21.37 - 26.08)

CLINICAL-T5 220M Single task 41.35 (40.07 - 42.65) 84.32 (82.42 - 86.15) 21.92 (19.64 - 24.19)

Multi-task 40.30 (39.02 - 41.62) 71.23 (68.92 - 73.56) 22.46 (20.19 - 24.74)

CLINICAL-T5 770M Single task 42.69 (41.39 - 43.95) 85.86 (85.02 - 88.47) 24.27 (21.92 - 26.63)

Multi-task 42.61 (41.34 - 43.92) 86.14 (84.32 - 87.90) 25.84 (23.41 - 28.28)

Table 4: Finetuned T5 models on various clinical task with 95% confidence interval calculate using the bootstrapping
method. All the evaluation metrics here are the accuracy score. The first row in the table represents best scores
reported in the DR.BENCH paper and * in the other rows represent scores for the respective task in DR.BENCH
paper (Gao et al., 2023)

84



Input Ground Truth
Diagnoses/
Problems

T5 770M
Single task

Clinical-T5
770M
Single task

Clinical-T5
770M
Multi-task

SUMMARIZE: <ASSESSMENT> 48 y/o M
with HIV 47M s/p elective spinal surgery
(anterior and posterior LIFs), intubated - - - -
<SUBJECTIVE> Agitated, diaphoretic,
altered, hypertensive and tachy this AM - - - -
<OBJECTIVE> Last dose of Antibiotics:
Infusions: Other ICU medications: Heparin
Sodium (Prophylaxis) - - - -

EtOH
withdrawal
Spinal surgery

Altered MS
s p elective
spinal surgery

DTs EtOH w d
pain h o chronic
pain

Altered mental
status
Hypertension
Tachycardia
Acute renal
failure s p spinal
surgery

SUMMARIZE: <ASSESSMENT> SEPSIS
WITHOUT ORGAN DYSFUNCTION Ms.
[**Known lastname 10381**] is a 76F with
multiple medical problems, who is - - - - - - -
<SUBJECTIVE> FEVER - 101.7 F - [**2129-
9-3**] 12:33 PM -received boluses overnight
for low SBP - - - - <OBJECTIVE> Last dose
of Antibiotics: Cefipime - [**2129-9-3**]
04:05 PM Metronidazole - [**2129-9-4**]
04:00 AM - - - -

Sepsis Patient
has re developed
fevers on 9 2 on
a regimen of
vancomycin
ceftriaxone
Possible sources
include 1 Intra
abdominal
source

Sepsis Thrombo-
cytopenia

Sepsis Likely
source is
clostridium
difficile colitis
Acute renal
failure

Hypotension
Likely
secondary to
sepsis though
source unclear at
this time Acute
renal failure

Table 5: The table represents a snippet of the input and output sections of problem summarization. The input data
contains an added prefix that denotes the task for T5, "SUMMARIZE" in this case, and <prefix> that defines the
note section. Finally, "- - - -" is the continuation of the section, which was excluded here due to the space constraint.
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