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Abstract

Accurately capturing medication history is cru-
cial in delivering high-quality medical care.
The extraction of medication events from un-
structured clinical notes, however, is challeng-
ing because the information is presented in
complex narratives. We address this challenge
by leveraging the newly released Contextual-
ized Medication Event Dataset (CMED) as part
of our participation in the 2022 National NLP
Clinical Challenges (n2c2) shared task. Our
study evaluates the performance of various pre-
trained language models in this task. Further,
we find that data augmentation coupled with
domain-specific training provides notable im-
provements. With experiments, we also under-
score the importance of careful data preprocess-
ing in medical event detection.

1 Introduction

Ensuring the accuracy of a patient’s treatment his-
tory is essential for delivering high-quality medical
care. This allows healthcare professionals to as-
sess the effectiveness of existing treatments, detect
possible medication-related problems, and suggest
appropriate future treatment options (FitzGerald,
2009). Various forms of treatment changes, how-
ever, are often absent from structured electronic
data sources, being recorded only in clinical narra-
tives (Turchin et al., 2009). An accurate extraction
of medication event information from unstructured
data in patients’ medical records is thus crucial for
a complete understanding of their treatments.

When extracting medication changes from clin-
ical text, it is necessary to take into account var-
ious forms of contextual information, due to the
narrative and longitudinal nature of clinical docu-
mentation. Clinical text often documents events
over a patient’s medical history, and providers may
also record the reasoning behind their medical de-
cisions. These factors result in complex events that
cannot be properly captured by extracting medi-

cation changes alone, without considering the sur-
rounding clinical context. This is especially true
when developing a medication change extraction
system to support real-world applications, such
as medication timeline generation (Plaisant et al.,
2003; Belden et al., 2019) or medication reconcili-
ation (Poon et al., 2006; Cadwallader et al., 2013).
Indeed, as Wang et al. (2018) have argued, the
use of sophisticated natural language processing
(NLP) information extraction (IE) become a ne-
cessity when the automatic extraction of relevant
medical information is required by large-scale or
real-time applications further downstream, such as
clinical research and decision support.

This study investigates how to extract informa-
tion about changes to patient medications from
clinical text using the Contextualized Medication
Event Dataset (CMED) developed by Mahajan et al.
(2021) and subsequently released to the commu-
nity as a shared task in 2022 National NLP Clin-
ical Challenges (n2c2)1. This consists of three
tasks: (i) medication extraction, to extract all medi-
cation mentions in clinical notes, (ii) event classi-
fication, to identify whether a medication change
is discussed in an event,and (iii) context classifi-
cation, to classify the contextual information of a
medication change event along five orthogonal di-
mensions, with each dimension further classified
into multiple attributes of the event.

For the first medical named entity recognition
task, we note that Lee et al. (2020) demonstrate
significant improvements with the use of BioBERT,
a domain-specific model initialized with BERT and
then pretrained on PubMed abstracts and PubMed
Central full text articles. Thus, we proceed to use
BioBERT as well, providing comparisons against
popular general purpose language models like
BERT (Devlin et al., 2019). Additionally, we
also utilize Bio+Clinial BERT (Alsentzer et al.,
2019), another domain-specific model initialized

1n2c2.dbmi.hms.harvard.edu/2022-track-1
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with BioBERT and further pretrained on notes from
the MIMIC-III dataset (Johnson et al., 2016).

We evaluate the performance of several pre-
trained language models for the second and third
tasks. Specifically, we examine three popular gen-
eral purpose models – BERT, RoBERTa (Liu et al.,
2019b), and XLNet (Yang et al., 2019) – and one
domain-specific pretrained model, Bio+Clinical
BERT.

While many downstream natural language un-
derstanding tasks are readily successful when a
large pretrained language model is tuned for the
task in hand, we observe that the accuracy of clin-
ical event detection crucially depends on careful
data preprocessing. In particular, identifying the
proper linguistic context from surrounding text is
of utmost importance. To that end, we develop and
employ a sentence detection method tailored to this
task, leading to a better performance by all models.
We also find that augmenting the data with the DDI
(drug-drug interaction) Corpus (Herrero-Zazo et al.,
2013) leads to overall improvements in medication
change detection and its context classification.

2 Related Work

The first task in contextualized medication event
extraction is to extract the mention of medications –
clearly, a medical named entity recognition (NER)
task. Medical NER, in general, includes identify-
ing other types of entities such as diseases, symp-
toms, proteins, or patient information (see Pagad
and Pradeep (2022) for an overview). To identify
medication names in particular, many approaches
have been proposed. Early methods relied explic-
itly on domain ontology or dictionaries (Sanchez-
Cisneros et al., 2013), rules (Segura-Bedmar et al.,
2008), and subsequently, contextual rules and auto-
matically learned rules (Hamon and Grabar, 2010;
Coden et al., 2012). A comprehensive survey of
this literature has been conducted by Liu et al.
(2015). More recent approaches are hybrid, com-
bining LSTM and its variants with conditional ran-
dom fields (CRF) or other graphical models (Al-
fattni et al., 2021; Jouffroy et al., 2021). Even
more recent, however, are techniques that utilize
Transformer models (e.g., BERT). There is some
work to further indicate that combining BERT with
BiLSTM-CRF improves medical NER (Yu et al.,
2019), while others demonstrate the improvements
in using domain-specific pretraining with BERT
initialization (Lee et al., 2020).

Identifying medication change events and clas-
sifying their attributes, however, is a significantly
less explored problem. This is due largely to the
scarcity of annotated resources, but to a lesser ex-
tent, also to the complexity of the language used in
clinical narratives to describe such events. Initially,
research heavily relied on annotated datasets like
the 2009 i2b2 and the 2013 DDI datasets (Uzuner
et al., 2011; Herrero-Zazo et al., 2013). Some
early work focused on very specific events of clin-
ical relevance, such as Liu et al. (2019a), who in-
spect medication discontinuation, or Sohn et al.
(2010), who focus on whether medication was
started, stopped, increased, or decreased. In an-
other approach, Pakhomov et al. (2002) introduced
temporal information into their labels. In spite
of the success on individual datasets, these ap-
proaches employ rule-based decisions and classical
supervised learning algorithms like support vector
machines (SVMs) or maximum entropy modeling,
which are unlikely to generalize across multiple
datasets with linguistic variation without extensive
supervision for each dataset.

For a detailed understanding of treatments, such
as extracting the dosage, frequency, or mode of
drug administration, or in determining its relation
to other phenomena like adverse drug effects, gen-
eralizable success in this task carries immense
significance. It is thus worth noting that recent
methods leveraging neural architectures and mod-
els have shown promise in medical event extraction
and classification tasks (Narayanan et al., 2022).
Lerner et al. (2020) use a neural top-down transi-
tion based parser and achieve results comparable
to BiLSTM models for medical entity and event
detection. Perhaps the closest to our study is the
approach of Lybarger et al. (2021), who tune BERT
on COVID-19 data to identify various events of
clinical significance, such as symptoms, severity,
and assertion. This body of work is distinct from
ours, however, since it does not delve into classifica-
tion of event attributes involving complex temporal
or conditional expressions.

Several studies (Uzuner et al., 2011; Chapman
et al., 2001; Szarvas et al., 2008; Morante, 2010;
Albright et al., 2013) have examined the detection
of negated medical concepts in clinical text. How-
ever, none of them specifically focus on identifying
medication change events. Moreover, they have not
looked at the combined identification of negation
and the actor responsible for that negation. Early
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Figure 1: Distribution of labels in CMED (training set).

work on negation detection in clinical texts was
based on negation lexicons, and rule-based algo-
rithms using them. Most notable among them is
NegEx (Chapman et al., 2001). Although these
have been superceded by others who combine lexi-
cons with dependency structures or other linguistic
features (Mehrabi et al., 2015), we use an imple-
mentation of NegEx built into the popular spaCy2

library, called negspaCy. Our results (Sec. 6) show
that in spite of its simplicity, this approach suffices.

With the Contextual Medication Event Dataset,
CMED, Mahajan et al. (2021) provide annotated
data capturing five orthogonal dimensions of con-
textual information related to medication change
events. Further, they demonstrate the viability of
SVMs and Transformer-based models in detect-
ing and classifying these events. Very recently,
Ramachandran et al. (2023) have explored an av-
enue similar to ours, with domain-specific language
models based on BERT. In these, it has been noted
that sentences that mention multiple drugs are par-
ticularly difficult to detect and classify. By contrast,
our work investigates data augmentation and task-
specific preprocessing in conjunction with the user
of domain-specific language models. In particular,
we develop and use a custom sentence extraction
module in our pipeline, which improves the accu-
racy of these models on the given tasks.

3 The CMED Dataset

The CMED dataset comprises annotated clinical
notes, where each medication mention is assigned

2spacy.io/

one or more event labels from the three categories:
(1) Disposition, indicating the mention of a med-

ication change, e.g., “prescribed albuterol for
shortness of breath”,

(2) NoDisposition, indicating that the mediction
is mentioned with no indication of change, e.g.,
“patient continues to take aspirin”, and

(3) Undetermined, indicating a lack of clarity or
evidence regarding medication change, e.g.,
“Plan: Lasix”.

For each event identified as Disposition, the clini-
cal context is provided along five orthogonal dimen-
sions, viz., action, actor, negation, certainty,
and temporality. We describe these next.
(1) action refers to the type of change is being

made. Its attributes are start, stop, increase,
decrease, unique dose, other change, and un-
known.

(2) actor specifies who initiated the action, physi-
cian, patient, or unknown.

(3) negation indicates whether the action is
negated or not.

(4) temporality specifies whether the action
takes place in the past, present, or future.

(5) certainty characterizes the likelihood of the
action taking place as certain, hypothetical,
conditional, or unknown.

The distribution of the event and attribute labels in
the training set of this dataset is shown in Fig. 1.

4 Data Preprocessing

We observe that in CMED, most medication men-
tions are labeled with one event and a set of cor-
responding attributes. There is, however, a small
fraction (< 90 instances in the training set), where
the drug mention is labeled with two events and two
separate sets of attributes, as noted by Ramachan-
dran et al. (2023) as well. Further, we underscore
the frequent presence of sentences containing mul-
tiple drug mentions (approx. 78%), with a substan-
tial fraction (over 50%) of such sentences mention-
ing four or more drugs simultaneously. This aspect
of the dataset significantly increases the complexity
of detecting and classifying contextual information
from clinical sentences. Finally, we note that some
events cannot be accurately labeled based solely on
the sentence in which they appear, and additional
context from neighboring sentences becomes nec-
essary to determine the correct attributes. Table 1
presents examples from CMED showcasing illus-
trative examples of these phenomena.
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(a) “The patient’s daily dose of furosemide was increased
from 40mg to 80mg.
and then reduced to 60mg daily.”
LABELS: increase, decrease

(b) “The healthcare provider started the patient on a new regi-
men of metformin and discontinued the use of pioglitazone.”
LABELS: start, stop

(c) “The healthcare provider instructed the patient to take
acetaminophen
if their fever rises above 100 degrees.”
LABELS: conditional

Table 1: Examples from clinical notes where (a) one
drug mention indicates two events with opposite action
labels, and (b) two drug mentions, each with their own
action labels. Also, (a) and (c) have grammatically valid
sentences up until the line break, but the sentence con-
tinues. Stopping at the line break will miss the language
responsible for the decrease and conditional labels.

The first step in the medication information ex-
traction task is to prepare the dataset by extracting
the sentences containing medication information.
However, due to the unstructured and lengthy na-
ture of medical notes, accurately identifying the
start and end of a sentence containing a medication
mention is challenging. Accordingly, relying solely
on tools like, say, spaCy, for their inbuilt sentence
parser for this task does not produce satisfactory
results. Therefore, we develop a customized ap-
proach to accurately identify the sentences that
contained medication names, which served as a
crucial first step towards performing accurate medi-
cation event extraction. Next, we describe the steps
of this process.

(i) Abbreviation resolution. Abbreviations such
as “Continue” and “Discontinue” are converted to
their full forms to facilitate accurate identification
of medication mentions in the text. One of the most
frequent and important abbreviations is “Discon-
tinue,” which is observed in different forms with
various spacing (e.g., “d/c’ed,” “d/c’d,” “d/ c’d,” “d/
c,” “D /c,” etc.). Similarly, “Continue” is abbrevi-
ated as “c’d” or “Cont.” Having the full form of
these words is important because sentence/token
chunkers trained on general purpose language are
sensitive to punctuation, and non-standard punctu-
ation as described above may mislead them. For
example, if chunking happens in the text “d/ c’d
glucophage” as (“d/”, “c’d”, “glucophage”), the
model might conceive this text as a continuation
rather than discontinuation.

(ii) Coreference resolution. This is an essential
step in our text preparation, as it not only improves
the clarity of the text but also contributes to more
accurate classification of actor attributes. For ex-
ample, consider a sentence like “The patient was
given medication X by their doctor, who also ad-
vised them to increase their water intake.” Here,
coreference resolution helps to identify that “the
patient” and “them” are referring to the same en-
tity, and that “their doctor” and “who” are refer-
ring to the same entity. This information is crucial
for accurate actor classification, which can inform
downstream tasks such as adverse event detection
and pharmacovigilance. Therefore, we utilize Al-
lenNLP’s3 coreference resolution model as part
of our text preprocessing pipeline to replace the
repeated mentions of entities with their correspond-
ing coreferents.

(iii) Sentence Extraction based on syntactic de-
pendencies. Each sentence is split into its con-
stituent phrases. We then use the spaCy library to
parse each phrase into a tree of syntactic dependen-
cies, and identify coordinated conjunction phrases
(e.g., “and” or “or” phrases) in the tree. Following
that, we construct a list of the longest continuous
sequences of words that are dependent on these
conjunctions, and remove any conjunctions from
the beginning or end of each sequence. This is
done by traversing the tree and collecting all con-
juncts connected to the root of the tree. Finally, a
list of strings representing each identified phrase
is combined to form a single string. This string is
taken as the sentence that contains the medication
mention and its surrounding context. Algorithm 2
is responsible for finding the coordinated conjunc-
tion phrases from the parse tree, and Algorithm 1 is
responsible for extracting the phrase chunks from
a sentence with the aid of dependency parsing.

(iv) Sentence separation. Here, the objective is
to break sentences with multiple medication names
and their corresponding multiple event types. This
allows us to accurately identify the events associ-
ated with each drug name. We split these sentences
into different clausal components. For example,
consider the sentence “Started lisinopril 10 mg p.o.
daily, substituted for diltiazem.”. Clearly, the verb
“started” is associated with the medication “lisino-
pril 10 mg p.o. daily”, and the verb “substituted”
is associated with “diltiazem”. While dependency

3allenai.org/allennlp
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Algorithm 1 get_conjunction(head)
1: acc← [], list_heads← [head]
2: while list_heads ̸= [] do
3: new_heads← []
4: for h in list_heads do
5: children ← children of h with dependency tags

"conj" or "ccomp"
6: if children ̸= [] then
7: append children to new_heads and acc
8: end if
9: end for

10: list_heads← new_heads
11: end while
12: return acc

parsing is capable of distilling these relations, we
observe that sentences in the CMED dataset can
usually be split into separate clauses where each
clause exhibits only one medication change event.
In our example, this approach leads to two such
simpler expressions, “started lisinopril 10 mg p.o.
daily” and “substituted for diltiazem”.

5 Approach

In this section, we explain our technical approach
to the tasks of medication mention extraction, med-
ical event identification, and medication event at-
tribute classification. Further, we devote a separate
description of the steps we take to detect negation.

5.1 Medication mention extraction
The task of medication mention extraction involves
identifying multi-word medication phrases within
free-text. As such, it is similar to medical named
entity recognition (NER). Following the vast body
of work that treats NER as a sequence tagging task,
we utilize the beginning-inside-outside (BIO) la-
bel prefixes. Typically, medication phrases within
CMED are brief, consisting of three or fewer tokens
in most cases. Our approach to identifying medi-
cation mentions involves the use of BERT-based
models, specifically those pretrained on domain-
specific data, such as BioBERT and Bio+Clinical
BERT. By adding a linear output layer and fine-
tuning these models, we improve our ability to pre-
dict the specific location of medication references.

To enhance our medication mention extraction
model, we experiment with incorporating the DDI
(drug-drug interaction) Extraction 2013 corpus
(Herrero-Zazo et al., 2013) into our training data.
This is a widely recognized corpus comprising sen-
tences from biomedical literature discussing drug-
drug interactions, with each sentence annotated
to indicate the medications involved in the inter-

Algorithm 2 get_chunks(sentence)
1: doc← parse sentence using spaCy, chunks← []
2: for sent in doc do
3: conj_phrases ← get coordinated conjunction

phrases from sent’s root using get_conjunction(head)
4: for head in conj_phrases do
5: append head’s subtree to chunks
6: end for
7: end for
8: sort chunks in ascending order of length
9: seen← empty set, trimmed_chunks← []

10: for chunk in chunks do
11: c2← list of unconsumed tokens in chunk
12: update seen set with indices of tokens in c2
13: c3← longest continuous sequence of tokens in c2
14: append longest sequence in c3 to trimmed_chunks
15: end for
16: output← []
17: for phrase in trimmed_chunks do
18: remove any conjunctions at the beginning or end of

phrase
19: join the tokens in phrase to form a string
20: remove any leading or trailing commas from the string

21: append the string to output
22: end for
23: sort output in the original order of phrases in sentence
24: return output

action and the type of their interaction. Employ-
ing this corpus allows us to expand the number of
medication mentions in our training set, leading to
improved performance. The results subsequently
obtained, by training only on CMED and then by
training on data augmented by the DDI corpus, are
shown for comparison in Table 2.

5.2 Identifying negation

Even though prior work on clinical event identifi-
cation has largely avoided complex negation detec-
tion, the task is nevertheless subsumed by research
directed at understanding medication changes in
clinical notes. In CMED, however, we find nega-
tion to be present in a very small proportion of
the samples (2%). To correctly handle these in-
stances, we employ negspaCy4, a Python library
that provides pretrained models and tools for de-
tecting negation and other linguistic phenomena
in text data. It is specifically designed to identify
negated concepts, such as negated medical condi-
tions or treatments, which are commonly encoun-
tered in clinical narratives. The library uses a com-
bination of rule-based and statistical methods to
identify negation, including the use of dependency
parsing, word embeddings, and machine learning
algorithms. In our study, we use Med7 (Kormil-

4pypi.org/project/negspacy
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Table 2: Medication mentions extraction performance
on the CMED test set. DDI+CMED is the combined
training set of the DDI corpus and the CMED.

Dataset Model Strict Lenient

P R F1 P R F1

CMED
BERT 0.90 0.90 0.90 0.92 0.92 0.92
BioBERT 0.95 0.95 0.95 0.96 0.95 0.95
Bio+Clinical BERT 0.93 0.95 0.94 0.95 0.95 0.95

DDI+CMED
BERT 0.90 0.90 0.90 0.92 0.92 0.92
BioBERT 0.96 0.96 0.96 0.96 0.96 0.96
Bio+Clinical BERT 0.93 0.94 0.93 0.95 0.96 0.94

itzin et al., 2021), a model designed to extract
medication-related information from clinical notes,
and integrate it with negspaCy. This integration
allows us to detect instances where a drug is men-
tioned in the text but not prescribed.

5.3 Event and attribute classification

As described earlier in Sec 3, a medication
mention must be classified as Disposition,
NoDisposition, or Undetermined. For those
identified as disposition, i.e., indicating a change
in medication, the next stage of the pipeline re-
quires identifying the dimensions action, actor,
negation, certainty, and temporality of the
event, along with the correct attribute values for
each dimension.

For the event and the rest of the attributes, we
train a classification model based on transformer-
based language models. The event and attribute
classification systems assume gold standard medi-
cation mentions for model training and comparison.
We conduct our experiment using Bidirectional En-
coder Representations from Transformer (BERT)
models pretrained on general purpose and clinical
datasets. Specifically, we use BERT, RoBERTa,
Bio+Clinical BERT, and XLNet. The last model,
XLNet, is slightly different from the others in that
it is an autoregressive Transformer model. We in-
clude it with the hope of leveraging the advantages
of autoregressive language modeling as well as au-
toencoding.

Our goal is to classify the medication events us-
ing the sentence containing the detected medication
mention as context. We use a pretrained Trans-
former to create a distributed representation, add
0.2 dropout, and use a fully connected layer of size
5 with softmax activation for classification. For
fine-tuning with the training and development sets
of CMED, we use the Hugging Face transformers
package (Wolf et al., 2020). This is a multi-class

classification approach, producing predictions at
the sentence level for the event as well as its asso-
ciated dimensional attributes.

This approach does not rely on any explicit
knowledge or indication of where the medication is
located. During our data preprocessing technique,
we ensure that two distinct medications with vary-
ing event types are separated into their respective
clauses (see Sec 4). This prevents distinct medica-
tion mentions from linguistically sharing the same
events and event properties. Event classification
and the attribute classification are, however, treated
as separate tasks. Moreover, each attribution clas-
sifier is also trained separately. Thus, if a model
is trained to predict the event type of a sentence,
it will only be exposed to that specific type of la-
bel and will not be able to incorporate information
from other label types.

6 Evaluation

To evaluate the accuracy of medication mention
extraction systems, we employ two criteria: strict
and lenient match. The strict criteria demands an
exact match between the predicted and true medi-
cation mention spans. The lenient match criteria,
on the other hand, considers a predicted medication
mention to be correct if at least one token in the
predicted mention overlaps with a token in the true
mention. While strict criteria may provide a more
conservative performance estimate, lenient criteria
can identify more correct predictions, but at the
expense of higher false positive rates. To evaluate
the event and attribute classification systems, we
employ precision, recall, and F1 scores, reporting
both macro- and micro-averages.

6.1 Medication mention extraction

The performance of BERT, BioBERT, and
Bio+Clinical BERT on this task are shown in Ta-
ble 2. BioBERT achieves the highest F1 score in
strict (0.95) as well as lenient (0.96) evaluation
criteria. Bio+Clinical BERT, on the other hand,
achieves the highest precision scores (0.95 in both
strict and lenient criteria). The slightly lower score
of BERT is unsurprising, given its lack of pretrain-
ing on domain-specific data. We also note that
upon augmenting the training data with the DDI
corpus, a slight improvement can be seen in the
F1 score achieved by BioBERT. For Bio+Clinical
BERT, however, the results are mixed. The pur-
ported advantage of this model is its pretraining on
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Task BERT RoBERTa XLNet Bio+Clinical BERT

P R F1 P R F1 P R F1 P R F1

Event Micro 0.91 0.91 0.91 0.92 0.92 0.92 0.91 0.91 0.91 0.93 0.93 0.93
Macro 0.85 0.76 0.80 0.84 0.80 0.82 0.85 0.79 0.81 0.90 0.82 0.85

Action Micro 0.78 0.76 0.77 0.82 0.80 0.81 0.79 0.78 0.79 0.83 0.83 0.83
Macro 0.77 0.75 0.76 0.82 0.80 0.81 0.79 0.77 0.78 0.83 0.68 0.72

Temporality Micro 0.75 0.75 0.74 0.69 0.79 0.81 0.78 0.70 0.74 0.78 0.70 0.74
Macro 0.72 0.62 0.68 0.63 0.59 0.61 0.65 0.72 0.68 0.75 0.70 0.70

Certainty Micro 0.85 0.83 0.84 0.86 0.84 0.85 0.87 0.85 0.86 0.80 0.64 0.71
Macro 0.83 0.82 0.81 0.84 0.74 0.83 0.83 0.75 0.85 0.78 0.70 0.70

Actor Micro 0.92 0.91 0.92 0.91 0.89 0.90 0.94 0.92 0.93 0.93 0.93 0.93
Macro 0.71 0.85 0.73 0.84 0.83 0.83 0.76 0.88 0.66 0.84 0.59 0.61

Table 3: Event and attribute classification results (with gold standard medication mentions) on the CMED test set.

biomedical literature as well as clinical notes. We
conjecture that the lack of significant improvements
is due to the augmentation not by clinical language,
but by language from biomedical research literature
(MedLine abstracts) and the DrugBank database,
which form the DDI corpus.

6.2 Identifying negation

We evaluate the performance of our negation at-
tribute classification, i.e., label medication change
events as negated or not negated, using Med7 and
negspaCy integration. Despite the extremely small
support (2% of CMED training set), our method
achieves a near-perfect accuracy of 0.98. We also
achieve precision, recall, and F1 (macro average)
of 0.82, 0.88, and 0.85, respectively.

6.3 Event and attribute classification

We report the results of event and attribute classifi-
cation in Table 3, which shows the performance
of the four language models BERT, RoBERTa,
XLNet, and Bio+Clinical BERT, on the withheld
CMED test set. Since this test set contains the
gold-standard labels for medication mentions, our
evaluations are conducted using the gold standard
medication mentions as well.

Similar to results obtained by Ramachandran
et al. (2023), all BERT-based language models per-
form well on these tasks. For event classification,
the micro F1 scores range from 0.91 to 0.93, while
for attribution classification, they range from 0.77
to 0.86. In most cases, Bio+Clinical BERT out-
performs the other models, achieving the highest
F1 score of 0.93 for event classification and 0.86
for certainty classification, as well as the highest
precision of 0.94 for actor classification. We do
report some unexpected success with RoBERTa

and XLNet as well, which achieve the highest F1

in action (0.83) and temporality (0.81) classifi-
cation, respectively.

Further, we observe that the macro F1 scores are
generally lower than the micro F1 scores, indicat-
ing that the models struggled with some classes.
Specifically, temporality and actor classifica-
tion showed lower performance across all models.

6.4 Discussion

When using pretrained language models to extract
medication changes from clinical narratives, multi-
ple event annotations for medication mentions can
be a significant challenge, leading to prediction
errors. For example, the sentence “Lovenox (will
clarify timing of surgery and hold accordingly)”
has two labels for the event (undetermined and
disposition) for the medication Lovenox, poten-
tially confusing the model. One solution to this
issue is to modify the task from a sentence clas-
sification task to a multi-label classification task.
However, there may be cases where a sentence fol-
lows a multi-label scheme, but only one type of
annotation is provided. For instance, “DM2: Con-
tinue home meds (metformin + insulin), hold when
on diet without substantial calories (clears, NPO)”
only has the action label start for the metformin,
whereas there is a need for the second attribute
label stop as well.

During our analysis, we observed instances of
incorrect or ambiguous labeling in the annotation,
including the actor and temporality dimensions.
For example, in “SL TNG prescribed but not used,”
there are two actor labels (patient and physician)
for the medication TNG, and in “amox 500 TID
x 10d: fluids, steam, acetaminophen,” the med-
ication amox has two temporality labels (past
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and future). Furthermore, in “We will initiate Ze-
tia to add to the Pravachol,” the event is labeled as
NoDisposition, despite the word “initiate” clearly
suggesting otherwise.

Additionally, we noticed several mistakes in the
negation class, such as “Not on beta-blocker ” be-
ing labeled as non-negated. The limited number
of samples in the negated category, combined with
the annotation errors in the test set, has a clear and
significant impact on any model. As the model’s
training relies heavily on the quality and quantity
of the data, a small and incorrectly labeled dataset
is particularly harmful. We also noticed several
non-English sentences in the training set, such
as “Hctz (HYDROCHLOROTHIAZIDE) 12.5 MG
(12.5MG CAPSULE take 1) PO QD, Para la pre-
sión alta- si se siente muy mareado deje de tomarla
y avísele a su médico immediatamente.” While any
effort to utilize the advances of natural language
processing in clinical applications in multiple lan-
guages is laudable, the presence of very few in-
stances of other languages in an otherwise English
corpus has a negative impact.

It is noted in the dataset annotation that
medication-related information is contained within
a single sentence. However, we observe that this
is not always the case. There are several instances
where information about a single medication event
extends beyond a single sentence, requiring the
model to analyze multiple sentences in order to
identify the relevant context. The dataset includes
a number of sentences that are labeled as unde-
termined, many of which are located within an
assessment and plan (A/P) section of a medical
document. This section can be quite lengthy and
contain numerous mentions of medications without
specific attributes or events. To correctly classify
these undetermined sentences, it is often necessary
to look beyond the sentence itself and recursively
search for information related to medication events
within the A/P section. However, we believe this is
a challenging task beyond the ambit of the CMED
dataset’s annotation description.

7 Conclusion

Our analysis of CMED and its constituent tasks
reveal three main characteristics. First, it is often
necessary to consider additional context beyond the
specific sentence containing the medication men-
tion to accurately label medication references. This
context could include information from previous or

subsequent sentences, the patient’s medical history,
or other relevant information further away in a doc-
ument (as often found in the assessment and plan
sections) that could impact the interpretation of the
medication mention. Second, we observe the preva-
lence of multiple medication references within a
single sentence, which poses a challenge for accu-
rate extraction. Finally, accurate identification of
the start and end of a sentence containing a medi-
cation mention is also challenging, since standard
sentence splitting and tokenization methods often
fail in clinical notes, especially if task-specific or
domain-specific preprocessing is not done.

We especially underscore the importance of data
preprocessing when training or fine-tuning models
for the medical domain. In this work, for example,
we perform abbreviation resolution, coreference
resolution, syntactic dependency-based sentence
extraction, and a custom sentence extraction with
phrase chunking.

Similar to other recent findings, our study
demonstrates that pretrained language models are
extremely effective in complex clinical information
extraction, when fine-tuned on carefully chosen do-
main data. Overall, our study affirms the utility of
Transformer-based models, particularly BioBERT
and Bio+Clinical BERT, in medication information
extraction from clinical notes. We also exhibit the
additional advantage of training such models with
augmented domain data.
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