
Proceedings of the 5th Clinical Natural Language Processing Workshop, pages 102–107
July 14, 2023 ©2023 Association for Computational Linguistics

Who needs context? Classical techniques for Alzheimer’s disease detection
Behrad TaghiBeyglou1,2 and Frank Rudzicz3,4,5

1Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
2KITE- Toronto Rehabilitation Institute, University Health Network, Toronto, Canada

behrad.taghibeyglou@mail.utoronto.ca
3Faculty of Computer Science, Dalhousie University, Halifax, Canada

4Department of Computer Science, University of Toronto, Toronto, Canada
5Vector Institute for Artificial Intelligence, Toronto, Canada

frank@dal.ca
Abstract

Natural language processing (NLP) has shown
great potential for Alzheimer’s disease (AD)
detection, particularly due to the adverse ef-
fect of AD on spontaneous speech. The current
body of literature has directed attention toward
context-based models, especially Bidirectional
Encoder Representations from Transformers
(BERTs), owing to their exceptional abilities
to integrate contextual information in a wide
range of NLP tasks. This comes at the cost
of added model opacity and computational re-
quirements. Taking this into consideration, we
propose a Word2Vec-based model for AD de-
tection in 108 age- and sex-matched partici-
pants who were asked to describe the Cookie
Theft picture. We also investigate the effec-
tiveness of our model by fine-tuning BERT-
based sequence classification models, as well
as incorporating linguistic features. Our re-
sults demonstrate that our lightweight and easy-
to-implement model outperforms some of the
state-of-the-art models available in the litera-
ture, as well as BERT models.

1 Introduction

Alzheimer’s disease (AD) is the most prevalent
form of dementia, a neurodegenerative disease that
impairs cognitive functioning and is increasingly
common in our aging society (Luz et al., 2021; Il-
ias and Askounis, 2022). According to the World
Health Organization, approximately 55 million peo-
ple currently suffer from dementia, with this num-
ber expected to surge to 78 million and 139 million
by 2030 and 2050, respectively (Ilias and Askou-
nis, 2022). Symptoms of AD include (but are not
limited to) memory decline, disorientation, confu-
sion, and behavioural changes. Importantly, AD
progression can lead to loss of independence which
significantly impacts patients, their families, and
society as a whole (Pappagari et al., 2021). Given
that late-stage AD progression is inevitable, early
detection of AD through cost-effective and scal-

able technologies is critical. While most clinical
diagnoses of AD rely on neuroimaging, there is
a critical need for more accessible and efficient
methods of diagnosis.

Accessible evaluation methods for AD include
cognitive tests such as the Mini-Mental Status Ex-
amination (MMSE) (Kurlowicz and Wallace, 1999)
and the Montréal Cognitive Assessment (MoCA)
(Nasreddine et al., 2003). However, these methods
still require active integration with an expert, and
their specificity in early-stage diagnosis is question-
able. During the course of AD, patients experience
a gradual deterioration of cognitive function and
accordingly may face a loss of lexical-semantic
skills, including anomia, reduced word comprehen-
sion, object naming problems, semantic paraphasia,
and a reduction in vocabulary and verbal fluency
(Mirheidari et al., 2018; Pan et al., 2021; Chen
et al., 2021). Speech processing and, consequently,
natural language processing (NLP) can therefore
provide new precision medicine tools for AD di-
agnosis that deliver objective quantitative analyses
and reliable proof, analysis, comparison, and circu-
lation for faster diagnosis.

The Alzheimer’s Dementia Recognition through
Spontaneous Speech (ADReSS) challenge of IN-
TERSPEECH 2020 is a shared database developed
to advance research into automatic AD detection
based on spontaneous speech and transcripts (Luz
et al., 2020). Participants in the challenge were
tasked with describing the Cookie Theft picture
in English, which is part of the Boston Diagnos-
tic Aphasia Exam (Guo et al., 2021). The first set
of the ADReSS 2020 database comprises speech
recordings and CLAN-annotated transcripts of 54
AD patients and 54 sex- and age-matched controls.

Various groups have worked with the ADReSS
dataset, approaching the problem from different
perspectives and leveraging available information.
These studies typically combined speech process-
ing and linguistic feature extraction or NLP-based
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fine-tuning. The literature on speech process-
ing mostly focused on zero-crossing rate, spec-
tral bandwidth, roll-off, and centroids of audio
recordings, as well as active data representation
cluster-based feature extraction methods including
the emobase (Eyben et al., 2010), ComParE (Eyben
et al., 2013), and Multi-Resolution Cochleagram
(MRCG) (Chen et al., 2014) feature sets. Mean-
while, linguistic features have extracted lexical rich-
ness, the proportion of various PoS tags, utterance
duration, total utterances, type-token ratio, open-
closed class word ratio, and similarity between con-
secutive utterances. NLP-based methods have com-
prised from-scratch training or fine-tuning context-
based models, such as bidirectional long short-
term memory (bi-LSTM) (Cummins et al., 2020),
bi-directional Hierarchical Attention Network (bi-
HANN) (Cummins et al., 2020), Convolutional Re-
current Neural Network (CRNN) (Koo et al., 2020),
and Bidirectional Encoder Representations from
Transformer (BERT) (Balagopalan et al., 2020).
Despite excellent performance compared to base-
line methods (Luz et al., 2020), the complexity of
these methodologies and the need to implement
them on high-memory GPUs highlights the need
to explore simpler methodologies that can ensure
ease and performance in AD detection.

In this paper, we present a novel approach for
detecting AD in the first set of ADReSS dataset by
integrating a new Word2Vec-based model and di-
mension reduction method. We not only implement
and compare top-cited and recent state-of-the-art
models on the same dataset, but also demonstrate
that our approach outperforms these models. Our
proposed approach is simple, easy to implement,
and highly accurate.

2 Methodology

2.1 Other models
In order to evaluate the performance of our pro-
posed language processing model, we have consid-
ered several publicly available models for compari-
son including:

• Linguistic-Based Features (LBF): In this
study, we utilized the CLAN package to ex-
tract 34 linguistic-based features (LBFs) from
transcripts, including duration, total utter-
ances, mean length of utterance (MLU), type-
token ratio, open-closed class word ratio, and
percentages of 9 parts of speech. We also in-
corporated demographic information such as

age and sex. To identify the most informative
features for classification, we performed cor-
relation and variance analyses on the extracted
features using the FeatureWiz package (Au-
toViML, 2020). We set a correlation threshold
of 0.6 and repeated the analyses 5 times with
random seeds over all samples. We then se-
lected the top 5 features that appeared in at
least 3 iterations for further classification.

• BERT Models: Since BERT models have
shown promising performance in different
applications of NLP, in this study we lever-
aged some of BERT-based architectures with
a maximum length of 512 tokens as a ref-
erence for our model. We tested three ver-
sions of uncased base BERT (Devlin et al.,
2018): one with no extension in the last lay-
ers, called baseBERT1, another with two fully
connected layers at the end (768 → 64 and
64 → 1), called baseBERT2, and the last one
with three fully connected layers (768 → 128,
128 → 16, and 16 → 1), called baseBERT3.
For baseBERT2, we varied the training epochs
between 3 and 5. Additionally, we tested Bio-
CLinical BERT (Alsentzer et al., 2019) with
a batch size of 4 and 3 epochs, DistilBERT
(Sanh et al., 2019) with a batch size of 4 and 3
epochs, and BioMed-RoBERTa-based (Guru-
rangan et al., 2020) with a batch size of 4 and
3 epochs. We used binary cross-entropy as
the loss function for all models and AdamW
(Adam with weight decay) (Loshchilov and
Hutter, 2017) as the optimizer with a learn-
ing rate of 2 × 10−5. To address potential
issues with local optima, we applied a linear
warm-up scheduler. Each transcript is classi-
fied as AD if the average of the probabilities
(after the sigmoid layer) over all sentences in
the transcript is greater than or equal to 0.5;
otherwise, it is classified as control.

2.2 Pre-processing

To preprocess the data for our proposed model,
we have neglected the first four sentences of each
transcript, as the initial speaker is typically a mem-
ber of the data collection team. Additionally, stop
words were removed from each sentence using the
Gensim library (Řehřek et al., 2011).
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2.3 Proposed model

In this study, we used Wikipedia2Vec (Yamada
et al., 2018), a tool that generates embeddings (or
vector representations) of words and entities from
Wikipedia, to convert tokens to vector embeddings.
We used the skip-gram strategy for training, and
the embedding dimension of the model was set to
500. We denote this model as W2V throughout
this paper. Suppose that each participant’s tran-
script consists of Nk sentences, each comprising m
words, where m varies from 1 to Mk (the maximum
length among all sentences in the kth transcript).
We input each word ⟨wi,k⟩ into the W2V model
(W2V (⟨wi,k⟩)), which outputs the corresponding
embedded vector xi,k ∈ R500. All embeddings of
the kth transcript form the set Xk. We standardized
each 500-dimensional vector across all embeddings
of each subject using the following formula:

yk =
med(Xk)

std(Xk)
, (1)

where med is the median operator applied to each
dimension independently, std is the standard de-
viation of embeddings, and yk denotes the stan-
dardized vector for the kth participant. So far, we
developed the first framework and leveraged the
previously introduced feature selection method by
iteratively applying FeatureWiz five times. We then
selected features that were chosen at least three
times during the process to identify the most infor-
mative dimensions for AD detection. This feature
selection procedure reduced the dimension from
500 to 64. We refer to this first framework as model
1, and Figure 1 illustrates the process. To further
enhance our analysis, we concatenate linguistics-
based features from the previous section with W2V-
based feature vectors and apply feature selection in
a similar manner to model 1. This second frame-
work, called model 2, resulted in the selection of
86 features (out of 537 features). Prior to inputting
the features into the classifiers of each model, the
zero-mean-unit-variance standardization technique
is applied to normalize the features.

2.4 Evaluation and Metrics

All results presented in this study were obtained
using the leave-one-subject-out (LOSO) cross-
validation technique to evaluate the generalizability
of the models. Thus, a total of 104 models were
trained per architecture/classifier. For each model,
accuracy, sensitivity, specificity, and F1 were re-

ported as performance metrics. For the feature-
based models, such as linguist-based features and
our proposed frameworks, we employed various
classifiers including logistic regression (LR), deci-
sion tree (DT), linear and Nu-support vector clas-
sification (SVC), linear and quadratic discrimi-
nant analysis (LDA and QDA), Gaussian naive
Bayes (GNB), extreme gradient boosting (XG-
Boost), adaptive boosting (AdaBoost), and extra
trees classifier.

3 Results

3.1 Other models

We investigated different BERT models for AD
classification, and the results are presented in Table
1. As expected, the performance of Bio-Clinical
BERT and DistilBERT models were comparable;
however, Bio-Clinical BERT showed superior sen-
sitivity and was chosen as the best BERT model in
this study. Additionally, as demonstrated in Table
2, integrating linguistic-based features with feature
selection and a combination of classifiers achieved
an accuracy of 0.81 in AD detection.

Model E:BS AC SP SE F1
baseBERT1 3:4 0.80 0.89 0.7 0.78
baseBERT2 3:4 0.79 0.81 0.76 0.78
baseBERT2 5:4 0.79 0.93 0.65 0.77
baseBERT3 3:4 0.78 0.90 0.67 0.77
Bio-CLinical BERT 3:4 0.84 0.85 0.83 0.84
DistilBERT 3:4 0.84 0.87 0.81 0.84
BioMed-RoBERTa-based 3:4 0.81 0.87 0.76 0.81

Table 1: LOSO performance of other BERT-based mod-
els. "E" denotes the number of epochs, "BS" denotes
the batch size, and "AC", "SP", and "SE" represent ac-
curacy, specificity, and sensitivity, respectively.

3.2 Proposed frameworks

The performance of our proposed frameworks is
presented in Table 3. The best performance was
achieved by model 2 with the help of the GNB
classifier, which obtained an accuracy of 0.90. On
the other hand, the best performance of model 1
was achieved by the ExtraTrees classifier.

3.3 Comparison with previous literature

Table 4 compares our proposed model with the ex-
isting models in the literature as well as the ones
explored in this paper. Our model achieved sig-
nificantly higher performance, including a 3% im-
provement in accuracy and an 8% improvement
in sensitivity compared to one of the BERT-based
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Figure 1: Proposed framework for AD classification.

Classifier AC SP SE F1
LR 0.76 0.81 0.70 0.75
DT 0.69 0.74 0.63 0.68
Linear SVC 0.76 0.80 0.72 0.76
Nu-SVC 0.81 0.83 0.78 0.80
LDA 0.79 0.89 0.69 0.78
QDA 0.81 0.87 0.76 0.81
GNB 0.78 0.87 0.69 0.77
XGBoost 0.71 0.70 0.72 0.71
AdaBoost 0.74 0.76 0.72 0.74
ExtraTrees 0.72 0.76 0.69 0.72

Table 2: LOSO performance of the linguist feature-
based model, in combination with the proposed feature
selection technique.

Classifier Model AC SP SE F1

LR
model 1 0.74 0.87 0.81 0.84
model 2 0.74 0.89 0.80 0.84

DT
model 1 0.76 0.80 0.72 0.76
model 2 0.56 0.54 0.57 0.55

Linear SVC
model 1 0.81 0.85 0.78 0.81
model 2 0.80 0.85 0.74 0.79

Nu-SVC
model 1 0.85 0.85 0.85 0.85
model 2 0.90 0.91 0.89 0.9

LDA
model 1 0.73 0.74 0.72 0.73
model 2 0.66 0.69 0.63 0.66

QDA
model 1 0.60 0.63 0.57 0.6
model 2 0.44 0.33 0.56 0.42

GNB model 1 0.87 0.87 0.87 0.87
model 2 0.90 0.89 0.91 0.9

XGBoost
model 1 0.77 0.76 0.78 0.77
model 2 0.78 0.78 0.78 0.78

AdaBoost
model 1 0.81 0.78 0.85 0.81
model 2 0.82 0.81 0.83 0.82

ExtraTrees
model 1 0.88 0.89 0.87 0.88
model 2 0.89 0.91 0.87 0.89

Table 3: LOSO performance of the linguist feature-
based model, in combination with the proposed feature
selection technique.

models on the same dataset (Balagopalan et al.,
2020, 2021). It is worth noting that our proposed
model also outperformed the baseline linguistic
model introduced in the ADReSS challenge.

Model AC SP SE F1
Bio-CLinical BERT 0.84 0.85 0.83 0.84
Best Linguist-based features 0.81 0.87 0.76 0.81
BERT and SVM (Balagopalan et al., 2020, 2021) 0.87 0.91 0.83 0.87
Gated LSTM on acoustic and lexical (Rohanian et al., 2021) 0.77 - - -
Baseline Linguistic (Luz et al., 2020) 0.77 0.77 0.76 0.77
Best proposed model 0.90 0.89 0.91 0.9

Table 4: LOSO performance comparison of the best pro-
posed model and explored models with some existing
models on the same dataset. The best linguist-based
features model uses QDA classifier with linguist-based
features, and the best proposed model is our proposed
model 2 with GNB classifier.

4 Discussion

By mapping each word into a 500-dimensional
space where words with similar context are closer
together, the proposed model can identify when all
words in a transcript are focused on the same topic
with minimal deviations. Coupled with the sug-
gested standardization method, the results demon-
strate a significant difference in performance be-
tween the proposed model and the only linguist-
based model, which prioritizes utterances, pauses,
and interactions between text and speech. The
BERT models explored in this study are relatively
massive and require significant computational re-
sources, and training them requires delicate hyper-
parameter optimization. In this study, we followed
the BERT authors’ recommendations to keep the
model’s trainability on an Nvidia RTX 3080 GPU
and to avoid changing the weights of the model by
selecting smaller epoch numbers.

5 Conclusions

In this study, we introduced a word2vec-based
model that combines pre-trained Wikipedia em-
beddings with linguistic features. We also em-
ployed correlation-based feature selection to re-
duce the dimensionality of the embeddings. The
results demonstrated that our proposed model out-
performed existing models on the same dataset.
However, as BERT models offer diverse applica-
bility, a potential future direction is to incorporate
feature maps extracted from the hidden states of
these networks to enhance the performance of our
model.
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