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Abstract

Assessing the capacity of numerical under-
standing of vision-and-language models over
images and texts is crucial for real vision-and-
language applications, such as systems for au-
tomated medical image analysis. We provide a
visual reasoning dataset focusing on numerical
understanding in the medical domain. The ex-
periments using our dataset show that current
vision-and-language models fail to perform nu-
merical inference in the medical domain. How-
ever, the data augmentation with only a small
amount of our dataset improves the model per-
formance, while maintaining the performance
in the general domain.

1 Introduction

Vision-and-language models have made great
progress on complex tasks, going beyond image
recognition and towards reasoning over images and
texts (Antol et al., 2015; Xie et al., 2019; Suhr
et al., 2019). Following the success of pre-trained
language models (Devlin et al., 2019, inter alia), re-
cent advances in vision-and-language models have
been made by the introduction of large-scale pre-
training (Li et al., 2019; Kim et al., 2021; Singh
et al., 2022). However, as with pre-trained lan-
guage models, it is unclear what information pre-
trained vision-and-language models learn and use
in their predictions, and what their limitations are.

While a large body of research (Naik et al.,
2018; Rozen et al., 2019; Ravichander et al., 2019;
Richardson et al., 2020) has provided challenging
reasoning tasks to probe the reasoning ability of
pre-trained language models, such work has been
more limited for vision-and-language models. Fur-
thermore, previous visual reasoning datasets are
usually provided by the general domain of images,
and analysis across different domains is desirable.

∗Equal Contribution.
1https://radiopaedia.org/cases/haemorrhagic-intracranial-

metastases-from-breast-cancer

Figure 1: The practical example of the need for visual
reasoning in the medical domain. (a) A magnetic reso-
nance imaging (MRI) image showing two brain metas-
tases1. (b) Treatment strategy depending on the lesion
number of brain metastases (modified from Gondi et al.
(2022), not for medical use).

Our focus is to investigate whether current
vision-and-language models have the ability to in-
fer numerical relationships between images and
texts in the medical domain, which is crucial for
real vision-and-language applications such as sys-
tems for automated medical image analysis. Con-
sider the example of images and textual descrip-
tions in a medical article presented in Figure 1.
The lesion number affects the treatment strategy
for diseases such as brain metastasis. If systems
can automatically judge whether the lesion num-
ber in given images matches that in arbitrary query
texts, they can support medical decision-making.
Recently, a vision-and-language model focusing on
the medical domain (Delbrouck et al., 2022) has
begun to be provided but is not yet fully developed.

With this motivation, we provide a visual
reasoning dataset focusing on numerical infer-
ence in the medical domain by adding annota-
tions to the previous medical image and cap-
tion dataset MedICaT (Subramanian et al., 2020).
We call our dataset MedVTE, which will be
publicly available at https://github.com/
ynklab/MedVTE. Using MedVTE, we investi-
gate the extent to which current pre-trained vision-
and-language models have the ability of numerical
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understanding on visual reasoning tasks across im-
ages and texts in the medical domain. The experi-
ments show that current models have much room
to perform numerical inference in the medical do-
main.

2 Background

2.1 Vision-and-language understanding

Regarding standard vision-and-language under-
standing tasks, SNLI-VE (Xie et al., 2019) is a
large general domain dataset for the Visual Textual
Entailment (VTE) task. The dataset consists of
image-sentence pairs annotated with a three-class
label (entailment, contradiction, or neutral), indi-
cating whether a premise image entails a hypothe-
sis sentence. There have been studies investigating
the counting ability of vision-and-language mod-
els on visual question-answering tasks and object
detection tasks (Chattopadhyay et al., 2017; Zhang
et al., 2018; Song and Qiu, 2018; Trott et al., 2018;
Acharya et al., 2019; Parcalabescu et al., 2021).
However, since previous studies only use datasets
in the general domain, it is unclear the extent to
which models can maintain the ability to under-
stand numerical expressions in the medical domain.

For visual reasoning in the medical domain,
Li et al. (2020) have compared the performance
of four pre-trained vision-and-language models
and traditional CNN-RNN models on two datasets
of thoracic findings classification tasks: MIMIC-
CXR (Johnson et al., 2019) and OpenI datasets.
The results showed that the pre-trained models out-
performed the traditional models. Our VTE dataset
gives a fine-grained analysis of the capacity of the
pre-trained vision-and-language models for numer-
ical understanding in the medical domain.

2.2 Clinical NLP

Clinical NLP is one of the practical fields of NLP,
and various reasoning tasks in the medical domain
have been provided. For sentence-level language
understanding tasks, emrQA (Pampari et al., 2018)
is a large-scale QA dataset on electronic medical
records, and MedSTS (Wang et al., 2020) is a re-
source for Semantic Textual Similarity (STS) tasks
in the medical domain. The most related dataset to
ours is MedNLI (Romanov and Shivade, 2018), a
physician-annotated Natural Language Inference
(NLI) dataset with premises extracted from clinical
notes. However, a recent study has reported anno-
tation artifacts in MedNLI (Herlihy and Rudinger,

2021). To avoid such undesired artifacts, we cover
a variety of numerical expressions.

3 MedVTE Datasets

We introduce MedVTE, visual reasoning datasets
in the medical domain involving numerical expres-
sions. MedVTE is composed of pairs of medical
images, captions, and three-class entailment labels
(entailment, contradiction, or neutral). MedVTE
focuses on the relationship between the number of
lesions, such as cancer in an image and the numeri-
cal expression in a text.

We created MedVTE by selecting examples
involving numerical expressions from MedICaT
dataset (Subramanian et al., 2020). MedICaT con-
tains 217,060 figure-caption pairs in medical arti-
cles, whose captions sometimes refer to the number
of the depicted lesions (e.g., tumors or nodules).
The selection is conducted by one medical expert.

3.1 Premise–hypothesis collection
In MedVTE, a premise is a MedICaT figure, and a
hypothesis is one complete sentence containing one
or more lesion numbers. We created 409 examples
for the MedVTE dataset in total.

Step 1. Cleaning We removed 58 MedICaT
figure–caption duplicate pairs. We also mitigated
occasional errors in MedICaT captions, such as
missing letters or interrupted sentences. Some
MedICaT captions are provided in two versions,
the one by the MedICaT authors and the other from
the S2ORC dataset (Lo et al., 2020). In such cases,
we always chose the longer one to avoid including
incomplete sentences.

Step 2. Figure collection We collected MedICaT
figure–caption pairs whose captions include lesion
numbers in a rule-based approach. We assigned
Penn Treebank part-of-speech (POS) tags (Marcus
et al., 1993) to all captions. We then applied a
spaCy rule-based matcher to accept only captions
having a numeral followed by a noun suggesting
lesions. This step left us 431 figure–caption pairs.
See Appendix A for details.

Step 3. Hypothesis collection Every MedVTE
hypothesis is a single sentence including one or
more lesion numbers. We collected hypotheses
by splitting captions into sentences and selecting
sentences containing at least one lesion number.

Sentence selection was performed in a rule-
based approach as in Step 2 followed by manual
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Figure 2: MedVTE examples. Premises are MedICaT figures and hypotheses are MedICaT caption sentences
containing numerical expressions of lesions. For each hypothesis, the strict label considers all information, and the
loose label is only determined by comparing lesion numbers. Corresponding lesion numbers are colored in orange,
yellow, and dark blue. Light blue spans indicate out-of-figure information, which is beyond the figure’s scope and
deemed unverifiable by the medical expert based on the figure alone.

reviews. In manual reviews, we removed erro-
neous lesion numbers where integers do not ac-
tually count lesions, such as cell line names Walker
256 tumor. We also excluded invalid premise
figure-hypothesis sentence pairs meeting the be-
low criteria:

• the figure file contains multiple article figures

• the hypothesis is not a single sentence

• the hypothesis does not make sense due to
ungrammaticality.

When multiple hypothesis sentences corre-
sponded to a single premise figure, we treated
each premise figure-hypothesis sentence pair as
an independent sample. We obtained 409 premise-
hypothesis pairs for 373 premise figures, where
430 lesion numbers appear in total.

3.2 Labeling

We assigned two types of entailment labels, strict
labels and loose labels, to premise-hypothesis pairs
on MedVTE.

Strict labels follow the common practice of anno-
tating visual reasoning datasets to compare all the

Models
Test

Train
SNLI-VE MVTEl MVTEs

ViLT
SNLI-VE 0.757 0.243 0.290
+MVTEl 0.757 0.443 0.366
+MVTEs 0.745 0.371 0.416

FLAVA
SNLI-VE 0.790 0.236 0.281
+MVTEl 0.791 0.428 0.356
+MVTEs 0.791 0.355 0.408

Table 1: F1-macro scores of each baseline model and
dataset. MVTEl and MVTEs indicate MedVTE anno-
tated with loose labels and strict labels, respectively.
+MVTEl indicates SNLI-VE mixed with MVTEl.

information, not only numerical one but also med-
ical background knowledge, of a premise figure
and a hypothesis sentence. However, we found that
the considerable number of strict labels became
neutral under given images because out-of-figure
information in hypothesis sentences (i.e., informa-
tion that is not acquired from images), such as “this
image was obtained six months after surgery,” is
necessary to judge their labels as entailment.

To realize separate assessments of the numeri-
cal reasoning abilities of models under only given
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images, we add loose label annotations rather than
editing hypothesis sentences. Loose labels only
compare numerical information of a premise figure
and a hypothesis sentence. This approach provides
an option to focus on numerical reasoning abilities
with loose labels, or to fully measure medical rea-
soning abilities with strict labels, which requires
expert knowledge to recognize out-of-figure infor-
mation.

The following is the definition of loose labels.
Details are available in Appendix C.

• entailment: All lesion numbers are consistent
with the premise figure

• contradiction: One or more lesion numbers
are smaller than those depicted in the premise
figure

• neutral: Either of the following is satisfied:
(i) one or more lesion numbers are larger than
those depicted in the premise figure although
the others are consistent, (ii) the number of le-
sion numbers cannot be determined only from
the premise figure, or (iii) no clauses remain
after removing out-of-figure information from
the hypothesis.

Figure 2 shows MedVTE examples. In the
top and middle examples, their loose labels are
the same as their strict labels. In the bottom
example, its loose label is different from its
strict label with the consideration of out-of-figure
information. The distribution of loose labels in
MedVTE is (entailment, neutral, contradiction) =
(310, 95, 4), and that of strict labels
is (entailment, neutral, contradiction) =
(208, 197, 4).

4 Experiments and Analysis

4.1 Experimental setup

Models Vision-and-language models are catego-
rized into three broad types based on their en-
coding style, fusion encoder, dual encoder, and
a combination of both. We used two vision-and-
language models for our experiments: a Vision-and-
Language Transformer model (ViLT) (Kim et al.,
2021) and a Foundational Language And Vision
Alignment model (FLAVA) (Singh et al., 2022).
ViLT is a fusion-encoder style model which has
112M parameters. FLAVA is a fusion-encoder plus

dual-encoder style model which has 243M param-
eters. See details of pre-training datasets for each
model in Appendix D.

Training For baseline models, we use vision-
and-language models fine-tuned with the training
set of SNLI-VE. We split the MedVTE dataset as
train:test=306:103 and evaluate the performance of
the models on the MedVTE test set. To investigate
whether a small portion of additional training data
in the medical domain contributes to knowledge
transfer for visual reasoning, we evaluate models
fine-tuned with the SNLI-VE training set mixed
with the MedVTE training set. We fine-tune the
models for three epochs for each dataset and use
F1-macro scores for evaluation metrics. Details on
the hyperparameters can be found in Appendix D.

4.2 Baseline results
Table 1 shows baseline results. While both
ViLT and FLAVA models trained with SNLI-VE
achieved around 75% on in-domain SNLI-VE, their
performance was very low on MedVTE.

When we evaluated models trained with SNLI-
VE mixed with a subset of MedVTE, the perfor-
mance on MedVTE was improved while maintain-
ing the performance on SNLI-VE. However, the
overall performance on MedVTE was still lower
than 50%. This indicates that numerical inference
in the medical domain is challenging for vision-
and-language models even when they train with a
subset of MedVTE. Regarding the difference be-
tween loose labels and strict labels with a subset of
MedVTE, the performance improvement on Med-
VTE strict labels was lower than that on loose la-
bels. This suggests that the ability to use out-of-
figure information is difficult to obtain from the
data augmentation.

5 Conclusion

We created the visual reasoning dataset MedVTE,
focusing on numerical understanding in the med-
ical domain. The experiments using MedVTE
showed that current vision-and-language models
struggled with performing numerical inference in
the medical domain. However, the data augmen-
tation with only a small amount of our MedVTE
dataset improved the model performance, while
maintaining the performance in the general domain.
In future work, we increase the size of our Med-
VTE dataset and make further analysis of vision-
and-language models to investigate the extent to
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which the size of a fine-tuning dataset affects the
performance of numerical inference in the medical
domain. Improving automated numerical vision-
and-language understanding in the medical domain
could aid therapeutic decision-making that depends
on lesion numbers.

6 Limitation

Since hypothesis sentences were created and la-
beled by medical experts, the size of our current
dataset is small. In particular, the number of exam-
ples of contradiction is small because the hypoth-
esis sentences were created based on captions to
efficiently construct our dataset. However, we can
increase the number of examples of contradiction
by rewriting phrases in the hypothesis sentences.
The claim of this study is that we can relatively effi-
ciently create a VTE dataset in the medical domain
from the existing image caption dataset, and can
empirically demonstrate the challenges of current
vision-and-language models on the VTE dataset.
Although increasing the data size is an important
next step, it is beyond the scope of this paper.
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A Sample selection rules

This section explains detailed MedVTE sample
selection rules.

We employed rule-based approaches to select
figure-caption pairs from the MedICaT dataset so
that all sampled captions refer to the number of
lesions.

We selected sentences in the MedICaT captions
containing LESION-NUMBER-EXPRESSIONs. We
defined a LESION-NUMBER-EXPRESSION as any
token subsequence of a single sentence of a caption
that satisfies all of the following Rules 1 to 3:

• Definition 1. COMPARATIVE is a string whose
lowercase form is either at least, at most, more
than, or less than.

• Definition 2. NUMBER is a single token whose
Penn Treebank part-of-speech (POS) tag (Mar-
cus et al., 1993) is CD (cardinal number).

• Definition 3. LESION-NOUN is a single token
whose POS tag is either NN (noun, singular
or mass) or NNS (noun, plural).

• Rule 1. A LESION-NUMBER-EXPRESSION

must be a concatenation of COMPARATIVE,
NUMBER, and LESION-NOUN in this order,
or a concatenation of NUMBER and LESION-
NOUN in this order.

• Rule 2. The lemma of LESION-NOUN must be
either cancer, lesion, mass, metastasis, nod-
ule, or tumor.

• Rule 3. A LESION-NUMBER-EXPRESSION

must not appear immediately after a token
whose lowercase form is either figure, figures,
fig, figs, patient, case, day, sample, type, cate-
gory, group, grade, level, stage, rads, pirads,
birads, cin, score, likert, c, t, l, s, segment, gs,
suv, +, +1, +2, +3, +4, +5, mm, cm, mm2,
cm2, mm3, or cm3.

In our implementation, we first assigned POS
tags to all MedICaT captions using Berkeley Neu-
ral Parser (Stern et al., 2017; Kitaev and Klein,
2018; Kitaev et al., 2019). We then built a spaCy
rule-based matcher and applied it to all parsing
results.

Figure 3: Distribution of the quantity of 424 of the 430
lesion numbers in the MedVTE hypotheses. Note that
the remaining six lesion numbers are excluded because
they appear immediately after a comparative expression
such as “at least” or “more than.”

B Dataset statistics

Of the 409 MedVTE premise-hypothesis pairs, 300
(73.3%) have radiological premise figures, twelve
(2.9%) have scopic premise figures, and the remain-
ing have other various types of premise figures in-
cluding histopathological images.

MedVTE contains 430 lesion numbers in total
because three of the 409 hypotheses (0.7%) contain
three lesion numbers, fifteen hypotheses (3.7%)
contain two lesion numbers, while the remaining
391 hypotheses (95.6%) contain one lesion number.

Six of the 430 lesion numbers (1.4%) include
comparative expressions, four of which are associ-
ated with “at least” and the others are accompanied
by “more than.” Figure 3 shows the distribution
of the remaining 424 lesion numbers. The most
frequent lesion number is two, occurring 223 times
in the dataset (52.6%). 398 lesion numbers (92.6%)
are between one and five, and fourteen lesion num-
bers (3.3%) are greater than ten.

C Details of labeling

C.1 Loose labels

Each MedVTE premise image consists of one or
more subfigures that are often excerpts of a vast
series of radiological, pathological, or endoscopic
images. Therefore, it must be considered that the
premise image may not reflect the entire patient
and may contain only a subset of the lesions that
are actually present, or conversely, the same lesion
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Figure 4: Another example of MedVTE. The four subfigures outlined in yellow apparently have six lesions. However,
the medical expert has determined that the yellow subfigures demonstrate five lesions and assigned entailment label
because it is explainable that the lesion numbered “3” repeatedly appears in the second and third subfigures at the
different levels.

may repeatedly appear across multiple subfigures
as in Figure 4. This phenomenon is prevalent not
only in the medical articles from which MedVTE
originates but also in the real-world clinical prac-
tice that we target for application.

We regard each hypothesis as a set of proposi-
tions. For each proposition addressing the lesion
number in the hypothesis sentence, the following
procedure was employed to determine the veracity
or falsity.

(a) If the medical expert determines that the
quantities are equal in the premise figure and the
hypothesis sentence, the proposition is supported.

(b) When the lesion number in the hypothesis
sentence apparently exceeds that in the premise
figure, the medical expert is requested to carefully
review the premise figure and determine if the gap
can be explained by the following reason:

• The original caption is correct, but the medical
expert initially missed some lesions due to
subtle image findings.

If so, the hypothesis is supported. Otherwise, the
loose label is neutral because it is impossible to
judge which of the following is happening:

• The original caption is correct, but the premise
figure does not show all the lesions

• The original caption has overcounted the le-
sions.

(c) When the lesion number in the hypothesis
sentence appears to be smaller than the premise
figure, the medical expert is asked to examine the
premise figure again and determine which of the
following is the most convincing:

• The original caption is correct, but the medical
expert initially overcounted the lesions due to
equivocal image findings

• The original caption is correct, but the medical
expert initially overcounted the lesions due to
the same lesion repeatedly appearing across
multiple subfigures

• The original caption has undercounted the le-
sions.

In the first or second case, the hypothesis is sup-
ported. In the last case, the loose label is contradic-
tion.

C.2 Strict labels
When a hypothesis contains propositions that can-
not be judged true or false from the premise im-
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age alone, we consider it out-of-figure information.
The following are examples of propositions that we
regard as out-of-figure information:

• Mention to other figures than the premise fig-
ure (e.g., “show no enhancement on arterial
phase images of MRI and on the arterial phase
of CT scan (not shown)”)

• Numerical values for elapsed time, such as
days, months, or years (e.g., “Axial contrast-
enhanced CT six weeks pre-RF ablation (a)
demonstrates two lesions”)

• Specific lesion size numbers (e.g., “The two
nodules were 1.2 cm in diameter”).

If the hypothesis sentence includes out-of-figure
information, we set the strict label to neutral re-
gardless of the loose label. Otherwise, the strict
label is the same as the loose label.

D Model details

ViLT is pre-trained on MSCOCO (Lin et al.,
2014)+VG (Krishna et al., 2017)+CC (Sharma
et al., 2018)+SBU (Ordonez et al., 2011). FLAVA
is pre-trained on filtered YFCC100M (Thomee
et al., 2015)+CC12M (Changpinyo et al.,
2021)+WIT (Srinivasan et al., 2021)+Red-
Caps (Desai et al., 2021)+LN (Pont-Tuset et al.,
2020)+MSCOCO+VG+CC+SBU.

We basically adopted models and parameters im-
plemented in transformers2. We attached a 2-layer
classifier head ourselves for FLAVA since there was
no model implementation for classification tasks in
the library. Table 2 and Table 3 show hyperparame-
ters in ViLT and FLAVA models, respectively.

2https://huggingface.co/docs/transformers/v4.20.1/en/index

Hyperparameter Value
Encoder
hidden size 768
number of heads 12
number of layers 12
intermediate size 3072
dropout probability 0
patch size 32× 32
input image size 384× 640

Classifier Head
hidden size 768
Others
text vocabulary size 30522
Training
epochs 3
gradient accumulation steps 3
per device batch size 48
learning rate 5e-05
AdamW weight decay 0
AdamW β1 0.9
AdamW β2 0.999

Table 2: Hyperparameters in ViLT
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Hyperparameter Value
Image Encoder
hidden size 768
number of heads 12
intermediate size 3072
number of layers 12
dropout probability 0
patch size 16× 16
input image size 224× 224

Text Encoder
hidden size 768
number of heads 12
intermediate size 3072
number of layers 12
dropout probability 0
Multimodal Encoder
hidden size 768
number of heads 12
intermediate size 3072
number of layers 6
dropout probability 0
Classifier Head
hidden size 1536
Others
text vocabulary size 30522
image dVAE codebook size 8192
Training
epochs 3
gradient accumulation steps 3
per device batch size 24
learning rate 1e-05
learning rate schedule linear
warmup updates 2000
AdamW weight decay 1e-02
AdamW β1 0.9
AdamW β2 0.999

Table 3: Hyperparameters in FLAVA
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