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Abstract

Prompt tuning offers an efficient approach
to domain adaptation for pretrained language
models, which predominantly focus on masked
language modeling or generative objectives.
However, the potential of discriminative lan-
guage models in biomedical tasks remains un-
derexplored. To bridge this gap, we develop
BIODLM, a method tailored for biomedical
domain adaptation of discriminative language
models that incorporates prompt-based contin-
ual pretraining and prompt tuning for down-
stream tasks. BIODLM aims to maximize
the potential of discriminative language mod-
els in low-resource scenarios by reformulating
these tasks as span-level corruption detection,
thereby enhancing performance on domain-
specific tasks and improving the efficiency of
continual pertaining. In this way, BIODLM
provides a data-efficient domain adaptation
method for discriminative language models, ef-
fectively enhancing performance on discrimi-
native tasks within the biomedical domain.

1 Introduction

Recent years witnessed the development of biomed-
ical pretrained language models (PLMs) (Kalyan
et al., 2022). These domain-specific PLMs con-
tribute to a large number of downstream tasks in
the biomedical domain, such as named entity recog-
nition (Yuan et al., 2021; Khandelwal et al., 2022;
Watanabe et al., 2022), entity linking (Zhang et al.,
2022; Liu et al., 2020), relation extraction (Li et al.,
2022a; Sarrouti et al., 2022), and question answer-
ing (Jin et al., 2019a; Pappas et al., 2022).

Most existing domain-specific PLMs rely on
tremendous in-domain corpus and computing re-
sources for continual pretraining (Lee et al., 2020;
Rasmy et al., 2021; Yuan et al., 2022; Alsentzer
et al., 2019) or pretraining from scratch (Gu et al.,
2021; Yasunaga et al., 2022), which could be in-
feasible with limited resources. Meanwhile, PLMs

[Question] Which of the following is the most likely cause 
of this patient's decreased sensation?
[Prompt] The answer is + [Option]

[Context] A 67-year-old woman comes to the physician for 
a follow-up examination. … Examination of the skin shows 
no abnormalities. Muscle strength is normal. …

[Opt. A] Cerebral infarction during the 
hospitalization
[Opt. B] Complication of the IVC filter 
placement
[Opt. C] Compression of the lateral 
femoral cutaneous nerve

[Opt. D] Hematoma of the left thigh

Concat

Score From RTD

Figure 1: A case for prompting discriminative pretrained
language models (DLMs) on multi-choice biomedical
question answering. Each option is first concatenated
with a predefined hard prompt: “The answer is”. They
are separately concatenated with the context and ques-
tion as input. We rank the score from the head of re-
placed token detection (RTD) in DLMs to determine the
best option.

for general purposes usually fails to achieve com-
parable performance on biomedical tasks with fine-
tuning compared with in-domain PLMs at the same
model scale (Gu et al., 2021). To combat these is-
sues, exploring a prompt-based domain adaptation
method that better leverages existing knowledge
learned in pretaining is necessary. Recent research
demonstrates that prompts or instructions can acti-
vate the hidden abilities of PLMs (Liu et al., 2022;
Radford et al., 2019; Brown et al., 2020), includ-
ing cross-domain inference (Yeh et al., 2022; Fries
et al., 2022; Yao et al., 2022b). Therefore, prompt
tuning on general PLMs can be a data-efficient do-
main adaptation method as they are proven promis-
ing on various downstream tasks (Wang et al., 2018,
2019).

Existing explorations about prompt-based do-
main adaptation mainly focus on PLMs with
masked language modeling (Lai et al., 2022; Sung
et al., 2021) or generative objectives (Luo et al.,
2022). However, we identify that discrimina-
tive pretrained language models (DLMs) also hold
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great potential for prompt-based domain adaptation
but remains understudied. DLMs are pretrained to
distinguish between alternatives and proved to be
stronger few-short learners than PLMs with other
training objectives (Xia et al., 2022). Therefore,
DLMs are better choices for domain adaptation
since many downstream tasks in the biomedical do-
main focus on discriminative objectives (Gu et al.,
2021). However, complex model architecture and
training recipes hinder DLMs from efficient adap-
tation to other domains.

To shed light on this topic, we develop BIODLM
(Prompt-based Biomedical Domain Adaptation for
Discriminative Language Models), which can effi-
ciently take advantage of the state-of-the-art DLMs
in the general domain. BIODLM is a prompt-based
biomedical domain adaptation method designed ex-
plicitly for DLMs, including prompt-based contin-
ual pertaining and prompt tuning for downstream
tasks. Inspired by Xia et al. (2022), we first formu-
late discriminative downstream tasks in the biomed-
ical domain, such as multi-choice question answer-
ing, as span-level corruption detection.

As shown in Fig. 1, this prompt tuning reformu-
lation allows general-domain DLMs to be used as
zero-shot or few-shot learners in biomedical tasks,
which is also supported by our probing experiments
in §4.2. We develop an efficient prompt-based con-
tinual pretraining method to further enhance the
performance of DLMs on biomedical tasks. As Ba-
jaj et al. (2022) revealed, the selection of corrupted
tokens and the corruption methods play a vital role
in pretraining DLMs and is highly related to the
performance on downstream tasks. BIODLM se-
lects domain-specific words, defined as different
vocabulary between in-domain and general models,
as corrupted tokens to lead the continual pretraining
focusing on new domain knowledge and improve
pretraining efficiency. For corruption, BIODLM
employs fixed in-domain PLMs as encoders to cor-
rupt selected tokens instead of co-training encoders
and decoders in DLMs. BIODLM is a flexible do-
main adaptation method that can be applied to any
existing DLMs.

The contributions of this work are mainly two-
fold. First, we explore prompt tuning general-
domain DLMs on various biomedical downstream
tasks, showing prompting DLMs has significant
potential on these tasks under low-resource scenar-
ios. Second, we develop a data-efficient continual
pretraining method based on replaced token detec-

tion, which employs in-domain PLMs as generators
to corrupt domain-specific words in the biomedi-
cal corpus. In summary, BIODLM efficiently im-
proves low-resource performance on discriminative
tasks in the biomedical domain.

2 Related Works

Discriminative PLMs. Discriminative PLMs
(DLMs) incorporate replaced token detection
(RTD) or other discriminative objectives during
pretraining. Clark et al. (2020) first propose a dis-
criminative pretraining method, which trains a gen-
erator to create replaced tokens and a discriminator
to distinguish between real and replaced tokens.
This approach increases the pretraining efficiency
by reducing the computation required in the head
compared with previous masked language mod-
eling. Meng et al. (2021) further improves the
RTD to corrective language modeling, which re-
quires both RTD and language modeling for cor-
recting the replaced tokens. Bajaj et al. (2022)
proposes a more stable and efficient training recipe
for DLMs. In this work, we explore domain adap-
tation for these methods in the biomedical domain.
We use METRO-LM (Bajaj et al., 2022) in our ex-
periments of BIODLM since it demonstrates the
best performance on general benchmarks, such as
GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019).

Prompt tuning for DLMs. Prompt tuning for
DLMs is an emerging topic in general and biomedi-
cal domains. Ni and Kao (2022) presents empirical
evidence showing that ELECTRA can perform
well on downstream tasks without fine-tuning or
additional training. Xia et al. (2022) introduces a
prompt-based fine-tuning approach that leverages
discriminative prompts to guide the model towards
learning specific downstream tasks with only a few
examples. Li et al. (2022b) proposes a few-shot
learning approach with pre-trained token-replaced
detection models to transform traditional classi-
fication and regression tasks into token-replaced
detection problems. Yao et al. (2022a) suggests
fine-tuning DLMs with prompts for task-specific
downstream tasks by adding a small number of
task-specific parameters as a prompt to guide the
model’s output. However, these works are limited
to a single method ELECTRA and do not explore
biomedical tasks. We follow the recipe of prompt
tuning in Xia et al. (2022) and use it on biomedical
discriminative tasks.
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Biomedical Domain Adaptation. Biomedical
domain adaptation of PLMs is a fast-developed
topic summarized adequately in the survey from
Kalyan et al. (2022). Therefore, we only provide a
highly selected review. Alrowili and Vijay-Shanker
(2021) propose a novel method for pre-training
large biomedical language models that combine
BERT, ALBERT, and ELECTRA architectures.
Raj Kanakarajan et al. (2021) propose a biomedi-
cal domain-specific language encoder model that
extends ELECTRA to obtain state-of-the-art perfor-
mance on numerous biomedical natural language
understanding benchmarks. Tinn et al. (2023) pro-
pose PubmedELECTRA, a domain-specific version
of ELECTRA by continually pertaining ELEC-
TRA on PubMed articles. Luo et al. (2022) pro-
pose a generative pre-trained Transformer language
model on a large corpus of biomedical articles
for biomedical text generation and mining. Our
method, BIODLM proposes another perspective
that employs prompt-based continual pretraining
to adapt DLMs to the biomedical domain, which is
understudied in this topic.

3 Methods

We describe preliminaries (§3.1), prompt-based
continual pretraining with RTD (§3.2), and prompt
tuning for discriminative PLMs (§3.3).

3.1 Preliminaries

Replaced Token Detection. BIODLM is a prompt-
based method based on the RTD task. RTD is one
of the core pretraining objectives of DLMs (Clark
et al., 2020). During the pretaining of DLMs, the
input is a sequence of tokens x = {xi}ni=1, where
n is the length of input sequences. A random set of
tokens in this sequence is selected and corrupted
with a generator by masked language modeling.
Predictions from the generator will be used to re-
place the original tokens to obtain a corrupted input
x̃ = {x̃}ni=1. At the same time, token-level binary
labels are constructed by y = {I(xi = x̃i)}ni=1,
where I(·) is the indicator function1. The discrim-
inator of DLMs is trained with token-level classi-
fication on the corrupted input and corresponding
labels to detect the replaced tokens.

Method Overview. Similar to the “pretraining-
and-finetuning” workflow, BIODLM involves a
prompt-based continual pretraining (§3.2) and a

1The definition of labels may vary in different DLMs. Our
introduction follows the recipe in Bajaj et al. (2022).

prompt-tuning method on downstream tasks (§3.3).
As shown in Fig. 2, BIODLM first builds a domain-
specific vocabulary for the prompt-based continual
pertaining. Then, we corrupt the original biomedi-
cal corpus with a fixed in-domain language model
as the generator. The corrupted corpus is used to
train the general-domain discriminator with RTD
for domain adaptation. After the continual pertain-
ing, we explore prompt tuning with RTD to apply
BIODLM to biomedical downstream tasks. We
reformulate biomedical discriminative tasks into
single-token or multi-token RTD, as the example
in Fig. 1. BIODLM can also be further tuned on
a reformulated training set with RTD objective to
enhance downstream performance.

3.2 Prompt-based Continual Pretraining
Continual pretraining on in-domain corpus signifi-
cantly improve downstream performance on down-
stream tasks (Gu et al., 2021). However, unlike
other training objectives, pretraining with RTD re-
quires self-supervised training corpus construction
with corruption. Therefore, we develop a prompt-
based continual pretraining method to adapt DMLs
to the biomedical domain. The continual pretrain-
ing involves a token corruption generator and an
RTD discriminator. The recipe of token corruption
is essential for both efficiency and effectiveness
of the pretraining of DLMs (Bajaj et al., 2022).
Therefore, we design a corrupted token selection
recipe focusing on in-domain vocabulary and em-
ploy fixed in-domain PLMs as generators to corrupt
these tokens.

Corrupted Token Selection. Corrupted token se-
lection aims to select the tokens in the in-domain
corpus that the generator will corrupt. We first
build a domain-specific vocabulary by extracting
different tokens from in-domain to general-domain
vocabulary. The first challenge is that in-domain
and general language models may have very differ-
ent tokenizers. However, most of them share sim-
ilar pre-tokenizers to segment context into words.
Therefore, we conduct word-level corruption in-
stead of token-level corruption in the traditional de-
sign of RTD so that in-domain and general-domain
vocabulary can be aligned with each other in the
corruption. The detailed selection recipe is de-
scribed below:

1. We filter tokens that are in in-domain vocabulary
but not in the general-domain vocabulary.

2. To conduct word-level corruption, we filter out
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Heterotopic pancreas, also known as
ectopic pancreas, is pancreatic
tissue located outside the pancreatic
duct without vascular or lymphatic
communication with the gland.

Fixed In-domain LM as
Generator

(MLM Inference)

General-domain
Discriminator

(RTD Training)

Heterotopic pancreas, also known as 
[MASK] pancreas, is pancreatic 
tissue located outside the pancreatic
parenchyma without vascular or 
ductal communication with the 
gland.

DetectionCorruption

ectopic ectopic
pancreatic pancreatic
parenchyma duct
ductal lymphatic

In-domain PLM
Vocabulary

General-
domain PLM
Vocabulary

Domain-specific
Vocabulary

• ectopic
• pancreatic
• parenchyma
• ductal
• …

Annotate

Original Biomedical Corpus

Corrupted Biomedical Corpus

Figure 2: Overview of prompt-based continual petraining in BIODLM. A vocabulary is collected by differing
in-domain and general-domain PLMs vocabulary. And we annotate the in-domain corpus with this vocabulary and
use this annotation as a set of words for sampling corrupted tokens. Selected tokens are corrupted with a fixed
in-domain language model as the generator via masked language modeling inference. The corrupted corpus is then
used to continually pretrain a general-domain discriminator with replaced token detection.

all tokens that are not a whole word in the set of
tokens we collect in the previous step.

3. We tokenize the remained words in the previous
step with the tokenizer of general-domain DLM
and filter out any words that contain “unknown”
tokens2. The rest are our domain-specific vocab-
ulary D.

We use the vocabulary of PubmedBERT (Gu et al.,
2021) as our in-domain vocabulary and the vocab-
ulary of MetroLM (Bajaj et al., 2022) as general-
domain vocabulary. We eventually have 12,919
words remaining in domain-specific vocabulary D.
Most words in D are biomedical terms, and a sam-
ple is listed in §4.3.

Token Corruption. With domain-specific vocabu-
lary D, we employ fixed in-domain LM as a gen-
erator to corrupt the in-domain corpus with the
inference of masked language modeling. Given an
input of the in-domain corpus, such as a PubMed
abstract3, we sample a fixed proportion of words in
the input to corrupt. We follow Clark et al. (2020)
to set the percentage to 30%. We first pre-tokenize
it into words x = {xi}ni=1, where the length of
word sequence is n. Then, we identify any domain-
specific words in D, denoting them as a bag of
words C. The words for corruption are sampled

2These “unknown” tokens refer to out-of-vocabulary to-
kens in the general-domain tokenizer, such as the “[UNK]”
token in the MetroLM (Bajaj et al., 2022).

3PubMed Official Site: https://pubmed.gov

with a strategy that favors domain-specific words:
• |C|>⌊0.3n⌋: We randomly select 0.3n words

from C as candidates for corruption.

• |C| ⩽ ⌊0.3n⌋: We randomly select ⌊0.3n⌋ − |C|
words from the rest of the input to meet the re-
quirement of the proportion of corrupted words.

This strategy ensures domain-specific words will be
corrupted first, which leads the pretraining to focus
on domain knowledge and enhances pretraining
efficiency. After identifying the candidates, each
word in the candidates will be replaced with a mask
token, such as “[MASK]” in the PubmedBERT, and
conduct inference of whole-word masked language
modeling with the in-domain PLM. The predictions
from the in-domain PLM then replace the words
in the original inputs to obtain the corrupted in-
domain training corpus.

Training. We use the corrupted biomedical cor-
pus for continual pretraining general-domain dis-
criminators with RTD. We conduct word-level
corruption—all tokens in corrupted words are la-
beled with “replaced” and the rest are “original”.
Otherwise, continual pretraining is the same as
§3.1.

3.3 Prompt Tuning with RTD
We explore prompt tuning with RTD on biomedical
downstream tasks in BIODLM. Prompt tuning en-
ables DLMs to conduct low-resource inference and
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helps DLMs better leverage pretraining knowledge
in the general domain. Here, we introduce how
to reformulate inputs of biomedical discriminative
tasks to conduct low-resource inference with RTD.

Input Reformulation. We follow the recipe from
Xia et al. (2022) to prompt DLMs on biomed-
ical downstream tasks. We denote the context
as C and labels as y = {yi}ci=1 of discrimina-
tive tasks, where c is the number of labels. We
first verbalize labels with predefined words or
templates and denote the verbalized templates as
T (y) = {t(yi)}ci=1, where t(·) is a manually de-
signed verbalizer for each label. For example, la-
bels from a binary classification task are verbalized
as “yes” and “no”. As for multi-choice question
answering, the labels are already phrases so no ver-
balization will be applied. Each verbalized label is
concatenated with context and a predefined prompt
as inputs, denoting as x = {C ⊕ t(yi)}ci=1, where
⊕ is the text concatenation operation. The inputs
are fed into the DLMs, and we collect scores from
the RTD head within the spans of labels as outputs.
The RTD head classifies tokens in labels into “re-
placed” or “original”, where “original” suggests
the correct answer to the discriminative problem.
The classification scores from the RTD head re-
veal the semantic correlation between the context
and verbalized labels. When verbalized labels are
tokenized into more than one token, we use the
average RTD scores as the score of these labels.
However, the RTD head aims to identify token-
level corruption, so averaging multiple tokens do
not align well with the pretraining objective and
potentially hinders the performance of prompt in-
ference. Therefore, we separately analyze single-
token and multi-token labels in this work. This re-
formulation allows us to conduct zero-shot prompt
inference with DLMs on biomedical discriminative
tasks.

Fig. 1 shows a case that we apply prompt in-
ference for DLMs on a multi-choice biomedical
question answering dataset. The context is made
of a description of the patient background marked
in blue and a question marked in green. Then, it is
concatenated with four options individually, with a
predefined prompt, “The answer is”. We consider
the average RTD score in each option span as the
classification score. And we select the option with
the highest average RTD score as the prediction.

Training. In addition to the zero-shot inference, we
also conduct prompt tuning on downstream tasks.

With the input reformulation described before, dis-
criminative tasks can be reformulated as multi-label
binary classification tasks. We further tune the pa-
rameters of DLMs in this way to conduct few-shot
and fully supervised inference.

4 Experiments

This section introduces an experimental evaluation
of prompting discriminative PLMs for biomedical
domain adaptation. We describe the experimental
setup (§4.1), main results (§4.2), and ablation study
(§4.3) on incorporated techniques.

4.1 Experimental Setup

Training corpus. The biomedical corpus for the
continual pretraining in this work is the PubMed
abstracts in the PubMed Central (PMC) Open Ac-
cess (OA) Subset4 (Gamble, 2017; Bethesda, 2003).
We process this dump with the open-source tool
pubmed_parser5 (Achakulvisut et al., 2020) to ex-
tract abstracts of articles. We then follow the pre-
processing recipe of Bajaj et al. (2022) and segment
the corpus into paragraphs. The original PMC
OA Subset contains 21 million paragraphs from
biomedical journal articles. We only randomly se-
lect three million paragraphs for continual pretrain-
ing due to the limitation of computation resources.

Benchmarks. We evaluate BIODLM on five
public biomedical datasets: (1) PubmedQA (Jin
et al., 2019b) contains 1k expert-labeled question-
answer pairs based on PubMed abstracts with
yes/no/maybe multiple-choice answers. (2)
BioASQ (Tsatsaronis et al., 2012) is a large
question-answering dataset containing biological
questions and answers, and related biomedical pa-
pers and abstracts. (3) MedQA(USMLE) (Jin
et al., 2021) is a question-answering dataset
containing multiple-choice questions and related
answer options in US Medical License Exam
(USMLE) format, which were obtained with a
choice of 4 or 5 possible answers from the National
Medical Board Examination in the United States.
(4) MMLU (Professional Medicine) (Hendrycks
et al., 2020) involves difficult exam questions con-
sisting of four multiple-choice questions with cor-
responding answers in the biomedical domain. (5)
MedMCQA (Pal et al., 2022) is a new large-scale

4PMC OA Subset:https://www.ncbi.nlm.nih.gov/
pmc/tools/openftlist/

5Github repository of pubmed_parser: https://github.
com/titipata/pubmed_parser
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Dataset Size Random Zero-shot (RTD Prompt) Fully Supervised (CLS Finetuning)
MetroLM Electra BioElectra MetroLM Electra BioElectra PubmedBERT

PubmedQA 500 33.3 64.0 58.0 48.0 63.8 57.0 62.2 55.8

Si
ng

le

BioASQ 140 50.0 74.3 73.6 67.1 94.3 73.6 75.7 87.6

MedQA(USMLE) 1273 25.0 25.3 22.1 19.5 28.1 27.4 40.3 39.3
MMLU 272 25.0 25.7 19.9 20.6 27.6 25.8 44.1 29.1

M
ul

ti

MedMCQA* 4183 25.0 26.6 26.8 20.7 35.5 34.8 40.8 41.2

Macro Avg. 31.7 43.2 40.1 35.2 49.8 43.7 52.6 50.6

Table 1: Probing experiment results display the zero-shot performance with the RTD prompt of various DLMs on
the test sets of our benchmark. We also report the CLS-based finetuning performance in the full training setting and
involve an in-domain PLM, PubmedBERT, for comparison. We report accuracy on each data split and the macro
average accuracy on our benchmark. The best zero-shot performance on each dataset is marked in bold. * We report
performance on the development set of MedMCQA since we have not received official scores on the test set.

Dataset Random 0% (Zero-shot) 10% (Few-shot) 100% (Full)
CLS Prompt BIODLM CLS Prompt BIODLM CLS Prompt BIODLM

PubmedQA 33.3 31.1 64.0 57.0 56.0 62.8 58.0 63.8 69.9 66.8

Si
ng

le

BioASQ 50.0 35.2 74.3 77.1 77.9 77.9 80.0 94.3 85.3 89.8

MedQA(USMLE) 25.0 9.8 25.3 27.7 26.5 25.7 29.1 28.1 27.0 29.6
MMLU 25.0 11.0 25.7 26.8 21.7 30.8 32.7 27.6 31.2 31.6

M
ul

ti

MedMCQA* 25.0 6.4 26.6 27.4 30.7 22.9 30.1 35.5 27.2 33.2

Macro Avg. 33.7 18.7 43.1 43.4 42.6 44.1 49.9 50.0 48.1 50.2

Table 2: Results of BIODLM in the zero-shot, few-shot, and full settings compared with finetuning CLS representa-
tions on the test sets of our benchmark. We use MetroLM as the backbone in BIODLM for results in this table.
The prompt baseline is MetroLM with RTD prompt tuning without continual pretraining in BIODLM. We report
accuracy on each data split and the macro average accuracy on our benchmark. Finetuning CLS requires the training
of a classification head, so we conduct zero-shot inference of CLS representations by semantic matching between
context and options. The best accuracy on each dataset in each setting is marked in bold. * We report performance
on the development set of MedMCQA since we have not received official scores on the test set.

Multiple-Choice Question Answering dataset con-
taining about 194k 4-option multiple-choice ques-
tions from Indian medical entrance exams (AI-
IMS/NEET). In our benchmark, PubmedQA and
BioASQ are single-token datasets as their labels
are short as “yes/no/maybe”. However, other multi-
token datasets, such as MedQA(USMLE), are more
challenging since they have longer options and at
least four options. We report accuracy scores on the
test sets. And we only report the performance on
the development set on MedMCQA since we have
not received official feedback for the test scores.

Baselines. In the probing experiments, we consider
Electra and BioElectra as baselines for MetroLM.
We also include PubmedBERT for reference. Elec-
tra (Clark et al., 2020) is a PLM that uses replaced
token detection as a self-supervised task for lan-
guage representation learning. The central concept
of Electra is to train a text encoder to identify input
tokens from high-quality negative samples gener-
ated by a small generator network, resulting in
superior performance on downstream tasks com-

pared to conventional masked language modeling.
BioELECTRA (Raj Kanakarajan et al., 2021) is
a biomedical PLM adapted from the ELECTRA
model for the biomedical domain. It is pretrained
from scratch on the biomedical domain-specific
text and achieves state-of-the-art performance on
various biomedical NLP tasks, demonstrating that
pretraining from scratch with biomedical domain
text enhances the model’s capacity. PubMed-
BERT (Gu et al., 2021) is a biomedical PLM
that has been pretrained on PubMed abstracts. It
achieves state-of-the-art results in several bench-
mark datasets, making it a strong baseline model
for biomedical language understanding tasks. We
also include a random baseline, which is the accu-
racy based on a random guess.

Configurations. We develop BIODLM based on
a strong discriminative pretrained language model
MetroLM-base (Bajaj et al., 2022). This DLM
demonstrates the best zero-shot performance in
our probing experiments described in §4.2. We run
continual pretraining on 8 NVIDIA V100 GPUs
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for 10 hours and evaluation on each dataset in our
benchmark on 1 NVIDIA V100 GPU for less than
1 hour. The hyper-parameters are determined with
the grid search based on the accuracy of the devel-
opment set. Detailed hyper-parameters are shown
in Appx. §A.

4.2 Results

We first show the results of a probing experiment
to demonstrate DLMs are zero-shot learners on
biomedical tasks. Then we present our main results
to show the effectiveness of BIODLM on both full-
and low-resource scenarios on our benchmark.

Probing Experiments. Tab. 1 shows the probing
experiment results about the zero-shot performance
of three DLMs with RTD prompt. We also report
finetuning results based on the CLS representations
of these DLMs, along with the zero-shot prompt
tuning performance. First, we notice that models
with zero-shot RTD prompt tuning even outperform
their finetuning counterparts on several datasets,
marked with the underline in Tab. 1. For exam-
ple, the accuracy of MetroLM with zero-shot RTD
prompt tuning in PubmedQA is 64.0, 0.2 absolute
percentage higher than its fully supervised finetun-
ing counterpart. Similar cases are also witnessed
in other DLMs, such as Electra on the test split
of PubmedQA and BioElectra on the development
set of BioASQ. These cases show that prompt tun-
ing of general-domain DLMs has great potential
as zero-shot learners on biomedical tasks. And
these results also provide evidence that reformu-
lating biomedical discriminative tasks as replaced
token detection contributes to leveraging general-
domain knowledge in pertaining, which is proposed
in §3.3. Furthermore, MetroLM significantly out-
performs other DLMs on most datasets, achiev-
ing 43.2 macro average accuracy. Therefore, we
choose MetroLM as the backbone to conduct the
following experiments and analyses of BIODLM.
Tab. 8 in Appx. §B is an extended version of Tab. 1
containing results on both development and test
sets.

Main Results. Tab. 2 shows the main results of
BIODLM in the zero-shot, few-shot, and fully su-
pervised settings on the test sets of our bench-
mark. In the zero-shot setting, BIODLM out-
performs MetroLM with only prompt tuning on
most datasets, improving macro average accuracy
by 0.3 percent. We conduct zero-shot inference
with CLS representations by semantic matching

between context and options based on CLS repre-
sentations. However, it can not perform well in
the zero-shot setting since the context and options
are significantly different. In the few-shot setting,
the macro average accuracy of BIODLM is higher
than CLS and prompt methods by 7.3% and 5.8%,
respectively. These results prove that BIODLM
enables general-domain DLMs to conduct infer-
ence on biomedical downstream tasks under low-
resource scenarios. Furthermore, even though the
traditional finetuning method outperforms prompt
tuning in the fully supervised setting by 1.9% in
accuracy, we notice BIODLM still slightly outper-
forms the finetuning method by 0.2% on macro
average accuracy. This observation suggests that
BIODLM benefits from the prompt-based contin-
ual pertaining. And we summarize that BIODLM
is a better choice under low-resource scenarios, but
both traditional CLS finetuning and BIODLM per-
form well with adequate supervision.

4.3 Study

We provide the following analyses to evaluate fur-
ther the core components of BIODLM, including
corruption methods, prompt templates, and domain-
specific vocabulary.

Corruption Methods. In this analysis, we con-
duct ablation study experiments to demonstrate the
effectiveness and data efficiency of the corruption
method proposed in BIODLM. We design a ran-
dom strategy that randomly selects 30% words in
the input as the baseline of the domain-specific to-
ken selection strategy for corruption. As for the
generator, we use the general-domain pretrained
language model BERT as the baseline of the in-
domain pretrained language model PubmedBERT.
We conduct continual pretraining on different com-
binations of corrupted token selection and genera-
tors with 1 million to 3 million samples.

Tab. 3 shows the results of the ablation study
on corruption models of BIODLM. Comparing the
random and domain-specific token selection, we
notice the macro average accuracy on the bench-
mark of the domain-specific strategy is consistently
higher than that of the random strategy. Within
each corrupted token selection strategy, Pubmed-
BERT, as the generator, outperforms BERT in most
cases, showing that fixed in-domain PLMs with
more precise corruption benefit the continual pre-
training in BIODLM. Furthermore, we notice the
domain-specific token selection strategy with Pub-
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Token Selection Generator Pretraining Samples
1M 2M 3M

Random BERT 49.3 49.6 50.0
PubmedBERT 49.3 49.5 49.9

Domain-specific BERT 49.7 50.4 51.8
PubmedBERT 50.2 50.9 52.1

Table 3: Ablation study on corruption methods. We
compare two token selection recipes based on Random
and In-domain vocabulary and two generators BERT
(general-domain) and PubmedBERT (in-domain), with
pertaining samples from 1 million to 3 million. We re-
port macro average accuracy scores on our benchmark.

medBERT as the generator used in BIODLM with
only 1 million training samples can outperform
the random token strategy with 3 million training
samples. This result provides valuable insight that
corruption methods in BIODLM can significantly
improve data efficiency in continual pretraining.

Prompt Templates. Prompt templates play a vital
role in prompt tuning. We adopt manually designed
prompt templates in BIODLM to verbalize labels
and reformulate inputs of discriminative tasks. To
better evaluate the influence of manual template
design, we construct three prompt templates for
two biomedical question answering datasets:

• Template A: “[Context]. [Question]? The an-
swer is [prompt label].”

• Template B: “[Context] [Question]? The answer
is [prompt label].”

• Template C: “Context: [Context]. Question:
[Question]? The answer is [prompt label].”

There are only minor differences among these
templates. Using each prompt template, we then
run zero-shot inference with MetroLM and RTD
prompt on two datasets. Tab. 5 shows that the de-
sign of prompt templates may influence zero-shot
performance, which could be related to the specific
dataset. It is worth noticing that prompt template
B only slightly differs from prompt template A but
performance on the test set of BioASQ dropped by
half, suggesting an obvious spurious correlation on
the punctuation in prompt templates.

We also conduct additional prompt ablation stud-
ies on the multi-token prompt datasets. We have
manually designed two prompts for multi-choice
question-answering datasets in our benchmark:

• Template D: “[Context]. [Question]? The an-
swer is [Option].”

Prompt MedQA(USMLE) MMLU MedMCQA
dev test dev test dev

D 27.6 25.3 38.7 25.7 26.6
E 25.9 25.1 31.2 23.9 24.0

Table 4: Zero-shot accuracy of MetroLM with RTD
prompting on multi-token prompt datasets with two
manually designed prompt templates.

Prompt PubmedQA BioASQ
dev test dev test

A 50.2 64.0 72.0 74.3
B 50.2 64.0 62.9 38.7
C 48.6 68.0 71.7 72.3

Table 5: Zero-shot accuracy of MetroLM with RTD
prompting on BiomedQA and BioASQ with three man-
ually designed prompt templates.

• Template E: “[Context] [Question]? The answer
[Option] is [right/wrong].”

The underlined spans include tokens for the RTD.
Template D is used in our main results, while
template E reformulates multi-token prompts into
single-token prompts by simply judging whether
the option is right or wrong. Tab. 4 shows the
results of these two templates. Template D con-
sistently outperforms template E, suggesting di-
rect RTD on the option spans works better in our
multi-token prompt datasets. Therefore, prompt
templates need to be carefully designed to achieve
the best performance on each dataset.

Domain-specific Vocabulary. We present a brief
case study of vocabulary differences between in-
domain and general-domain PLMs to justify our
design in the corrupted token selection. §4.3 shows
cases in the domain-specific vocabulary and their
corresponding categories. Most words in this vo-
cabulary fall into categories such as Gene, Protein,
Disease, Chemical, and Drug. These categories
contain rich biomedical terms frequently used in
the downstream tasks. Therefore, continual pre-
training on the domain-specific vocabulary helps
DLMs focus on biomedical knowledge and im-
proves data efficiency of domain adaptation.

5 Conclusion

We study an efficient way to adapt general-domain
DLMs to the biomedical domain and propose
BIODLM. BIODLM consists of data-efficient con-
tinual pretraining that focuses on domain-specific
vocabulary and leverages domain knowledge in the
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Categories Words

Gene & Protein TGFβ1, IGF1R,
phosphatases,Synaptophysin

Disease
Adenomatous,malarial,
atherosclerotic,
cholangiocarcinoma

Chemical & Drug

Phosphatidylcholine,
cycloheximide,azithromycin,
minocycline,hygromycin,
Methylprednisolone

Table 6: A case study of domain-specific vocabulary
used for continual pretraining. We present randomly-
selected words and their categories in this vocabulary.

in-domain PLMs by employing them as RTD gen-
erators. We also conduct experiments on a biomedi-
cal benchmark with six biomedical datasets, verify-
ing that prompt tuning is an effective way to adapt
DLMs on biomedical discriminative tasks directly.
Future works include extending BIODLM to more
DLMs, such as ELECTRA (Clark et al., 2020) and
COCO-LM (Meng et al., 2021), and experimenting
with BIODLM on other discriminative tasks in the
biomedical domain.

Limitations

BIODLM adopts DLMs as backbone models.
Compared to PLMs with other training objectives,
DLMs may miss language modeling benefits and
squeeze representation space. Besides, our bench-
marks can be extended to more biomedical discrim-
inative tasks, such as relation extraction, document
classification, and entity disambiguation. We con-
sider extending our exploration to more DLMs and
biomedical tasks as valuable future works.

Ethics Statement

All datasets in our benchmark and continual pre-
training are obtained according to each dataset’s
respective data usage policy.
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A Hyper-parameters

Tab. 7 shows details of hyper-parameters in the
experiments of continual pretraining and prompt
tuning. Hyper-parameters are determined by grid
search.

B Comprehensive Results

We demonstrate extensive results, including perfor-
mance on development sets in Tab. 8 and Tab. 9.
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Evaluation Continual TrainingParameters PubmedQA BioASQ MedQA(USMLE) MedMCQA PubmedQA

Batch Size 8 8 32 32 8
Learning Rate 2e-5 2e-5 5e-5 5e-5 2e-5
Warmup Steps 500 500 1000 1000 100

Epochs 20 20 10 10 1
Max Sequence Length 512 512 512 512 512

Table 7: Hyper-parameters used for BIODLM evaluation and continual training on PubmedQA, BioASQ,
MedQA(USMLE), and MedMCQA.

Dataset Split Size Random Zero-shot (RTD Prompt) Fully Supervised (CLS Finetuning)
MetroLM Electra BioElectra MetroLM Electra BioElectra PubmedBERT

PubmedQA dev 50 33.3 50.2 46.9 46.4 62.0 56.0 54.0 52.3
test 500 33.3 64.0 58.0 48.0 63.8 57.0 62.2 55.8

BioASQ dev 75 50.0 72.0 78.6 82.7 93.3 85.3 81.3 89.3Si
ng

le

test 140 50.0 74.3 73.6 67.1 94.3 73.6 75.7 87.6

MedQA(USMLE) dev 1272 25.0 27.6 24.8 18.2 28.5 27.8 43.5 36.8
test 1273 25.0 25.3 22.1 19.5 28.1 27.4 40.3 39.3

MMLU dev 31 25.0 38.7 29.0 16.1 25.8 29.7 45.2 32.2
test 272 25.0 25.7 19.9 20.6 27.6 25.8 44.1 29.1

M
ul

ti

MedMCQA dev 4183 25.0 26.6 26.8 20.7 35.5 34.8 40.8 41.2

Macro Avg. 32.4 44.9 42.2 37.7 51.0 46.4 54.1 51.5

Table 8: Probing experiment results display the zero-shot performance with the RTD prompt of various DLMs on
our benchmark. We also report the CLS-based finetuning performance of these DLMs in the full training setting and
involve an in-domain PLM, PubmedBERT, for comparison. We report accuracy on each data split and the macro
average accuracy on our benchmark. The best zero-shot performance on each dataset is marked in bold.

Dataset Split Random 0% (Zero-shot) 10% (Few-shot) 100% (Full)
CLS Prompt BIODLM CLS Prompt BIODLM CLS Prompt BIODLM

PubmedQA dev 33.3 28.7 50.2 52.4 48.4 62.0 66.0 62.0 58.7 66.0
test 33.3 31.1 64.0 57.0 56.0 62.8 58.0 63.8 69.9 66.8

BioASQ dev 50.0 34.0 72.0 75.0 89.3 87.9 88.0 93.3 90.6 90.7Si
ng

le

test 50.0 35.2 74.3 77.1 77.9 77.9 80.0 94.3 85.3 89.8

MedQA(USMLE) dev 25.0 10.4 27.6 26.4 25.6 28.3 27.9 28.5 25.4 29.7
test 25.0 9.8 25.3 27.7 26.5 25.7 29.1 28.1 27.0 29.6

MMLU dev 25.0 4.2 38.7 39.4 29.0 29.3 32.9 25.8 30.9 35.4
test 25.0 11.0 25.7 26.8 21.7 30.8 32.7 27.6 31.2 31.6

M
ul

ti

MedMCQA dev 25.0 6.4 26.6 27.4 30.7 22.9 30.1 35.5 27.2 33.2

Macro Avg. 32.4 19.0 44.9 45.5 45.0 47.5 49.4 51.0 49.6 52.5

Table 9: Results of BIODLM in the zero-shot, few-shot, and full settings compared with finetuning CLS representa-
tions. We use MetroLM as the backbone in BIODLM for results in this table. The prompt baseline is MetroLM
with RTD prompt tuning but without continual pretraining in BIODLM. We report accuracy on each data split and
the macro average accuracy on our benchmark. Finetuning CLS requires the training of a classification head, so it is
infeasible in the zero-shot setting. The best accuracy on each dataset in each setting is marked in bold.
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