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Abstract

Information extraction from clinical text has
the potential to facilitate clinical research and
personalized clinical care, but annotating large
amounts of data for each set of target tasks
is prohibitive. We present a German medical
Named Entity Recognition (NER) system ca-
pable of cross-domain knowledge transferring.
The system builds on a pre-trained German lan-
guage model and a token-level binary classifier,
employing semantic types sourced from the
Unified Medical Language System (UMLS) as
entity labels to identify corresponding entity
spans within the input text. To enhance the
system’s performance and robustness, we pre-
train it using a medical literature corpus that
incorporates UMLS semantic term annotations.
We evaluate the system’s effectiveness on two
German annotated datasets obtained from dif-
ferent clinics in zero- and few-shot settings.
The results show that our approach outperforms
task-specific Condition Random Fields (CRF)
classifiers in terms of accuracy. Our work con-
tributes to developing robust and transparent
German medical NER models that can support
the extraction of information from various clin-
ical texts.

1 Introduction

Information extraction from the large volume of
unstructured text generated in hospitals and clinics
has the potential to facilitate clinical research and
enhance personalized clinical care. Especially the
narrative notes, such as radiology reports, discharge
summaries and clinical notes provide a more de-
tailed and personalized history, assessments, medi-
cation and symptoms, offering a better context for
clinical decision-making (Chen et al., 2015; Spasic
et al., 2020).

In the field of Natural Language Processing
(NLP), the problem of automatically and accu-
rately extracting specific terms from text data is
approached as a Named Entity Recognition (NER)

task. NER methods ranging from rule-based to
deep learning methods are the core technologies
for automatically identifying medical instances
from clinical narratives, such as diseases, diagno-
sis, drugs, and treatments (Sonntag et al., 2016;
Sonntag and Profitlich, 2019; Miotto et al., 2018;
Lerner et al., 2020; Wei et al., 2020; Kim and
Meystre, 2020; Bose et al., 2021). Building clinical
NER systems for non-English languages, e.g. Ger-
man in our case, is challenging due to data scarcity.
Only a few real-world annotated resources in Ger-
man are publicly available (Starlinger et al., 2017;
Kittner et al., 2021). This problem can be overcome
by cross-domain transfer learning, where models
transfer knowledge learned from data-rich relevant
domains to domain-specific target tasks with less
or no annotated data (Wang et al., 2019; Xie et al.,
2018; Yuan et al., 2020; Plank, 2019; Artetxe et al.,
2020; Lauscher et al., 2020).

We propose a simple but effective transfer learn-
ing framework based on a German BERT1 encoder
that is given a prompt consisting of a semantic
type from UMLS semantic network2, followed
by a separator token and the medical text, e.g.
"[CLS]Clinical Drug[SEP]Zofran 4mg for nau-
sea.". On top of the encoder is a binary token clas-
sifier which predicts a probability for each token to
determine whether it belongs to the given semantic
type or not. Our approach, denoted as BERT-SNER
(code3) and depicted in Figure 1, is based on three
insights from recent research in transfer learning: i)
Pre-trained Language Models (PLMs), e.g. BERT
(Devlin et al., 2019), facilitate downstream tasks in
specific domains (Lee et al., 2020; Alsentzer et al.,
2019; Rasmy et al., 2021). ii) Prompting PLMs
is becoming increasingly popular for solving low-
resource NER tasks, as it can successfully exploit

1https://www.deepset.ai/german-bert
2https://www.nlm.nih.gov/research/umls/META3_

current_semantic_types.html
3https://github.com/sitingGZ/bert-sner.git
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Figure 1: An overview of the transfer learning framework with BERT-SNER. We first train the model using a
generic medical corpus with UMLS semantic term types as entity labels and further apply the model to different
clinical domain-specific NER tasks with no or limited annotated training data.

generic knowledge learned in the pre-training tasks
(Cui et al., 2021; Chen et al., 2021; Wang et al.,
2022). iii) The Unified Medical Language System
(UMLS) Metathesaurus (Bodenreider, 2004) is a
useful knowledge source for mining medical terms
in both biomedical and clinical documents (Aron-
son, 2001, 2006; Savova et al., 2010; Perez-Miguel
et al., 2018; Kang et al., 2021; Michalopoulos et al.,
2020).

The lack of domain-specific annotations is our
motivation to develop models that can easily be
adapted after pre-training on non-domain-specific
annotated data. In our transfer learning exper-
iments, we first derive training data from the
open-source MUCHMORE corpus4 to train BERT-
SNER. MUCHMORE consists of German abstracts
from 41 medical journals and entities are annotated
with 134 UMLS semantic types (Archive 20015).
For more details on the annotation process of this
corpus, please refer to Volk et al. (2002). After that,
we map the entity labels of the two clinical target
tasks to UMLS semantic types to be consistent with
the annotations in the MUCHMORE corpus and
perform zero- and few-shot experiments with 10,
50 and 100 shots for the two clinical target tasks.

The contributions of our work can be summa-
rized as follows: 1) Our approach addresses low-
resource German clinical NER tasks effectively. 2)
We identify effective ways of transferring open-
source medical knowledge for improving the per-
formance of German clinical NER models.

4https://muchmore.dfki.de/resources1.htm
5https://lhncbc.nlm.nih.gov/semanticnetwork/

SemanticNetworkArchive.html

2 Approach

Our approach explores the feasibility of knowledge
transfer between different datasets by incorporat-
ing UMLS semantic term types to unify the entity
labels. Table 1 shows how we construct training
data from different domains to train BERT-SNER.

Input Target
[CLS] Clinical Drug [SEP] Zofran
4mg for nausea

[0, 1, 1, 0, 1, 0, 0, 0]

[CLS] Sign or Symptom [SEP]
Zofran 4mg for nausea

[0, 1, 1, 1, 0, 0, 0, 0, 1]

[CLS] Diagnostic Procedure [SEP]
Zofran 4mg for nausea

[0, 0, 0, 0, 0, 0, 0, 0]

Table 1: Examples of training data (translated from Ger-
man to English) using UMLS semantic types as entity
labels. For each preceding entity label, if corresponding
entity phrases (highlighted in orange) are found in the
medical text, the tokens of the entity label and the entity
phrases are annotated as class 1. The remaining part of
the input is marked as class 0. If no entity phrase can be
extracted for a given entity label (here Diagnostic Pro-
cedure), the entire target sequence contains only class 0
labels.

We compare the resulting NER system to a base-
line architecture of BERT encoder combined with
a task-specific conditional random fields (CRF)
classifier (Wallach, 2004), i.e. BERT-CRF (Chaud-
hary et al., 2019; Souza et al., 2019; Pang et al.,
2019; Liu et al., 2022; Mahendran and McInnes,
2021). In contrast to BERT-CRF models, BERT-
SNER does not require the introduction of new task-
specific parameters for solving the cross-domain
target tasks, which benefits few-shot fine-tuning,
while the BERT-CRF models fail if there are less
than 100 samples in the target domain available.
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Entity Type Description Semantic Type
DIAG A disease, a symptom or a

medical observation that can be
matched with the German Modi-
fication of the International Clas-
sification of Diseases.

Sign or Symp-
tom; Disease or
Syndrome; Find-
ing

TREAT A diagnostic procedure, an oper-
ation or a systemic cancer treat-
ment that can be found in the Op-
eration.

Diagnostic Pro-
cedure; Thera-
peutic or Preven-
tive Procedure

MED A pharmaceutical substance or a
drug that can be related to the
Anatomical Therapeutic Chemi-
cal Classification System.

Pharmacologic
Substance;
Clinical Drug

Table 2: Original entity types and descriptions in
BRONCO, and the best-matched selected semantic
types from UMLS semantic network.

We use two datasets from different German clin-
ical domains as target tasks: the Berlin-Tübingen-
Oncology Corpus BRONCO (Kittner et al., 2021)
and Ex4CDS (Roller et al., 2022). BRONCO con-
sists of German discharge summaries for cancer
patients annotated with medical entities of interest,
such as Medication (MED), Diagnosis (DIAG) and
Treatment (TREAT). Ex4CDS is a corpus of textual
explanations for supporting system predictions of
three possible outcomes (rejection, infection, graft
failure) after kidney transplantation in the nephrol-
ogy clinic. It focuses on entities that indicate the
patient’s Health State as well as Laboratory Mea-
sures after a Process. Table 7 presents the number
of training samples and Table 9 presents the most
frequent annotated semantic types in Appendix A
and D. In order to achieve effective cross-domain
transferability, we replace the original entity types
of the target tasks with the best-matched UMLS
semantic types during training. The matching to
semantic types is determined by the ranking of the
cosine similarity scores between the hidden rep-
resentations of the entity types and the semantic
types. The English descriptions of entity types are
provided with the BRONCO and Ex4CDS datasets,
and the hidden representations of type descriptions
are obtained from the final hidden states of the en-
coder output from an English pre-trained language
model6. The matched semantic types are validated
by domain experts. Table 2 and Table 3 show the
matched results. All English words of the selected
semantic types are manually translated into Ger-
man in our experiments.

Entity Type Description Semantic Type
Condition A pathological medical condition

of a patient can describe for in-
stance a symptom or a disease.

Sign or Symp-
tom; Disease or
Syndrome; Find-
ing

DiagLab Particular diagnostic procedures
have been carried out.

Laboratory
Procedure;
Diagnostic
Procedure

LabValues Mentions of lab values. Clinical At-
tribute

HealthState A positive condition of the pa-
tient.

Health State∗

Measure Mostly numeric values, often in
the context of medications or lab
values, but can also be a de-
scription if a value changes, e.g.
raises.

Quantitative
Concept

Medication A medication. Pharmacologic
Substance

Process Describes particular process,
such as blood pressure, or
heart rate, often related to vital
parameters.

Physiologic
Function

TimeInfo Describes temporal information,
such as 2 weeks ago or January.

Temporal Con-
cept

Table 3: Entity types, descriptions in Ex4CDS and the
matched semantic types (∗except for HealthState, where
no proper semantic type is found and retained the natural
words from the original entity type).

3 Results and Discussion

The binary classifier of BERT-SNER predicts a
probability for each token in the input sequence
affected by the preceding semantic type and the
sentence that follows. The classification result
for each token is determined by setting a thresh-
old. If the predicted probability is less than the
threshold, the token is assigned to class 0, oth-
erwise to class 1. The lower the threshold, the
higher the false positive prediction rate, and con-
versely, a high threshold may result in a lower re-
call rate. We determine the threshold value for
each entity label by finding the optimal precision-
recall trade-off on the validation set of both target
tasks based on the calculation results using the
sklearn.metrics.precision_recall_curve func-
tion. Figure 2 presents the range of thresholds in
different shot settings. In the 10-shot case in both
target tasks, the predicted probabilities of each to-
ken are smaller and the thresholds for individual
entity types as a result are set lower. Figures in
Appendix C show more details about the range of
thresholds and Precision-Recall curves in differ-
ent few-shot settings. In the case where a token is
assigned multiple semantic types as several classi-

6microsoft/BiomedNLP-PubMedBERT-base-uncased-
abstract-fulltext
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BRONCO Ex4CDS
shots 0 10 50 100 0 10 50 100
BERT-SNER 0.56±0.011 0.43±0.023 0.63±0.018 0.70±0.014 0.31±0.015 0.41±0.011 0.66±0.024 0.72±0.013

BERT-CRF - - - 0.34±0.014 - - - 0.24±0.012

BERT-SNER(*) - 0.26±0.020 0.33±0.013 0.36±0.024 - 0.18±0.012 0.27±0.024 0.38±0.016

Table 4: Macro-averaged F-scores of few-shot results on two target datasets. BERT-CRF is initialized with a
135-class classifier for the source task including the 134 semantic types adding an OUT (outside of the entity
span) class, and is first pre-trained on MUCHMORE. Then, the encoder of BERT-CRF is further fine-tuned with
domain-specific classifiers for BRONCO and Ex4CDS when switching domains and datasets. BERT-SNER(*) is
our proposed NER framework without pre-training on MUCHMORE, i.e. trained only on data of each target task.
’-’ indicates a classification failure with an F-score < 0.1. ’±’ indicates the variance in scores caused by 2 different
seeds, 3 times of random sampling and selection of semantic types in cases with multiple best-fit semantic types for
individual entity types in each target task.

BRONCO
0 10 50 100

MED 0.54±0.03 0.21±0.05 0.71±0.01 0.81±0.03

TREAT 0.31±0.01 0.22±0.03 0.39±0.03 0.43±0.03

DIAG 0.48 ±0.02 0.42±0.02 0.45±0.03 0.56±0.03

Table 5: F-scores of individual entity type for BRONCO
test data and the BERT-SNER model with optimal
thresholds in different settings.

Ex4CDS
0 10 50 100

Condition 0.30±0.03 0.50±0.03 0.67±0.01 0.72±0.03

DiagLab 0.43±0.04 0.65±0.01 0.73±0.05 0.81±0.02

LabValues 0.20 ±0.03 0.64±0.02 0.78±0.03 0.88±0.01

HealthState 0.31±0.04 0.40±0.02 0.86±0.02 0.90±0.02

Measure 0.20±0.02 0.24±0.03 0.62±0.01 0.66±0.03

Medication 0.14 ±0.02 0.22±0.02 0.22±0.03 0.22±0.01

Process 0.19±0.02 0.24±0.01 0.78±0.01 0.83±0.03

TimeInfo 0.16 ±0.02 0.16±0.02 0.41±0.01 0.60±0.02

Table 6: F-scores of individual entity type for Ex4CDS
test data and the BERT-SNER model with optimal
thresholds in different few-shot settings.

fication probabilities exceed the threshold, we rank
the semantic types assigned to the token by their
probabilities and retain the first type as the final
classification result. Figure 3 in Appendix B pro-
vides an interpretation of the token-level prediction
using BERT-SNER for an input sentence preceded
by various semantic types.

Table 4 presents macro-averaged F-scores for
BERT-SNER and baseline BERT-CRF on the two
target datasets for different numbers of shots for
fine-tuning the models. BERT-SNER first trained
on MUCHMORE performs much better than the
BERT-CRF models trained with the same resource
in few-shot settings. Even without additional
source data, BERT-SNER(*) shows comparable
or better performance than BERT-CRF in both clin-
ical domains. Applying the CRF classifier of the
source task directly to the target tasks in the BERT-
CRF framework shows worse performance than

Figure 2: Ranges of thresholds by finding the best
precision-recall trade-off on validation datasets. In the
case of 10-shot, the prediction scores for each token in
both target tasks are low, and therefore the thresholds
are found lower compared to the other settings.

resetting the classifier with a specific label set on
different target tasks.

Tables 5 and 6 present F-scores per individ-
ual entity types. When comparing the results be-
tween zero- and few-shot, we find some seman-
tic types that can not be generalized well to the
target domains, such as (TREAT -> Diagnostic
Procedure) in BRONCO vs (DiagLab -> Diag-
nostic) in Ex4CDS, and (MED -> Clinical Drug)
in BRONCO vs (Medication -> Clinical Drug) in
Ex4CDS. In contrast, domain-specific entity types,
HealthState, LabValues and Process, which are
unseen or infrequent in the source task, can bene-
fit the most from the increasing number of shots
in the self-domain. These results suggest that in
future work, there is a need to investigate more
deeply the semantic differences of domain-specific
entities matched to the same unified semantic type
when experimenting with the BERT-SNER system
for more diverse clinical domains. In addition, we
need to examine more the impact of the amount
of training data from the MUCHMORE corpus on
individual entity types in target tasks.
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4 Related Work

Our work focuses on solving low-resource NER
tasks in the clinical domain leveraging additional
resources from related domains, and in non-English
languages. A common solution is to perform down-
stream tasks for non-English languages, especially
typologically close to English through cross-lingual
transfer from large-scale pre-trained multilingual
BERT models (Lauscher et al., 2020; Souza et al.,
2019; Jørgensen et al., 2021; Hakala and Pyysalo,
2019; Souza et al., 2019) or English language mod-
els (Artetxe et al., 2020; Plank, 2019). Frei and
Kramer (2022) and Schäfer et al. (2022) attempt
to use synthesised data through translation from
English resources (Henry et al., 2019) to train a
German medical NER model. Most of the previous
works in this field have focused on a single task and
it’s unclear if these task-specific approaches can
easily be extended to other clinical datasets with
different label sets.

Sequence-to-Sequence (Seq2Seq) PLMs with
prompt-based methods in another line have been
shown to be useful for solving low-resource NER
problems (Han et al., 2021; Gao et al., 2020; Cui
et al., 2021; Yan et al., 2021; Chen et al., 2021;
Wang et al., 2022). Other previous work of this
line (Cui et al., 2021; Chen et al., 2021; Wang
et al., 2022) utilized NER data from a resource-rich
domain to fine-tune the Seq2Seq models on NER
tasks before applying them to low-resource NER
tasks. Although no new parameters are introduced
to the pre-trained Seq2Seq language model when
formulating the NER tasks in a generative frame-
work, these methods require much effort for finding
the optimal prompts and framework to transform
an input sequence of tokens (words or characters)
into an output sequence of entity labels. Unlike
Seq2Seq NER models, our BERT-SNER model
uses semantic types as prompts in front of the input
directly, and the binary classifier is more efficient
in terms of computational requirements, inference
time and post-processing needs.

5 Conclusion

Our results suggest that transferring knowledge
from publicly available medical resources with
BERT-SNER is more effective than with BERT-
CRF in low-resource scenarios. The overall ben-
efit of the BERT-SNER in real-world use cases
is that it can be used as an initial model to effec-
tively develop domain-specific models in a variety

of clinical applications, as it requires much less
fine-tuning data than training a NER model from
scratch. In future work, we will explore transfer
learning more to generalize BERT-SNER to more
different clinical NER tasks in low-resource sit-
uations. To apply BERT-SNER to new clinical
applications without annotated samples, we will
use active learning strategies such as Least Confi-
dence oracle (Settles and Craven, 2008) to query
the most informative samples to obtain annotations
for fine-tuning.

Limitations

Due to strict data protection regulations and a high
annotation workload in the clinical domain, ob-
taining more diverse target tasks to validate our
approach is a challenge. In this work, we focused
on only two use cases in German clinical applica-
tions and need to extend our experiments to English
or other non-English languages in the field. In ad-
dition, we need to conduct more experiments in
future work in order to achieve a better balance
between the amount of training data required for
the source and target tasks.
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A Data statistic

train valid test
MUCHMORE 10000 4000 -
BRONCO 100 100 100
Ex4CDS 100 100 100

Table 7: Number of sentences in datasets used for train-
ing, where MUCHMORE is a training source anno-
tated with UMLS semantic types. Training data from
BRONCO and Ex4CDS are limited to maximum 100
samples in each subset in few-shot experiments.

shots 10 50 100 test
MED 4 8 17 17
TREAT 3 17 40 57
DIAG 5 31 62 101
Condition 20 95 189 163
DiagLab 3 8 17 11
LabValues 8 28 60 78
HealthState 7 35 65 69
Measure 7 33 65 97
Medication 2 17 23 8
Process 7 25 44 60
TimeInfo 15 63 102 48

Table 8: Average number of annotated tokens of indi-
vidual entity types from both target tasks in different
few-shot samplings and test sets.

B Interpretation of the Model Outcome

In our proposed NER framework, each input sen-
tence is iterated once with a semantic type by the
BERT-SNER model. The matched semantic types
based on the entity types of each task are shown
in Table 2 and 3. Given an example "stabile Funk-
tion, keine Protenurie noch nie NTX-Versagen" (In
English: stable function, no proteinuria not ever
NTX failure) from Ex4CDS, it is tokenized as [’sta-
bile’, ’Funktion,’, ’keine’, ’Protenurie,’, ’noch’,
’nie’, ’NTX-Versagen’] and contains the follow-
ing token-level entity annotation: [’HealthState’,
’Process’, ’O’, ’LabValues’, ’O’, ’O’, ’Condition’]
from the original entity type set.

Predictions of the BERT-SNER model are made
by a binary classifier, which are probabilities in the
range of (0, 1). The scores predicted for the tokens
of the semantic types are depending on the text
input. The predicted probabilities for each token
in an input sentence are affected by the semantic
type in front. Figure 3 illustrates that the salience
variation of each token in the same input sentence
is influenced by the preceding semantic type. As a

result, the final probability of each token of the in-
put sentence is multiplied by the probability score
of the first token of the given semantic type. We
need to rank the scores across the applied semantic
types and set a threshold to determine the final en-
tity class for each token. In the following section,
we show how to find the optimal threshold ranges
to allocate the classification to each token in differ-
ent few-shot settings based on the final probability
scores.

C Precision-Recall Trade-off and Finding
the Optimal Thresholds

The thresholds are used to determine the final clas-
sification result of a binary classifier. If the proba-
bility values are less than the threshold, assigned
to class 0, while values greater than or equal to the
threshold are assigned to class 1. In order to find
the optimal threshold ranges in different few-shot
settings, we explore the Prediction-Recall Curves
and the correlations between the thresholds and F-
scores according to entity types and trained shots.
We can find similar phenomena in both Ex4CDS
and BRONCO data, as shown in Figures 4-11.

D Most frequent annotated UMLS
semantic types

134 semantic types from UMLS semantic network
ontology in 2001 are annotated in MUCHMORE
corpora. However, the number of annotations of
each semantic type is extremely imbalanced rang-
ing from less than 10 terms to at most 8202. We
show the most frequent annotated semantic types
in Table 9.
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(a) zero-shot

(b) 10-shot

(c) 50-shot

(d) 100-shot

Figure 3: Predicted outcomes of zero-shot or few-shot fine-tuning for the example sentence from Ex4CDS dataset
corresponding to various preceding semantic types. These eight semantic types (translated into German words)
are used to replace the eight entity types during fine-tuning and inference in the target task with BERT-SNER. The
color intensity indicates the value of the prediction score; the darker the color, the higher the value.
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Figure 4: Zero-shot with BRONCO data. Domain-shift presents in types TREAT and DIAG. The optimal thresholds
of each entity types lie in different ranges.

Figure 5: 10-shot with BRONCO data. The optimal thresholds for best F-scores are lowered as the BERT-SNER
model has been fine-tuned with 10 samples from the target task compared to zero-shot.

Figure 6: 50-shot with BRONCO data. The AUC scores are improved after fine-tuning with 50 samples from the
target task. The optimal thresholds for best F-scores are increased compared to 10-shot fine-tuning.
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Figure 7: 100-shot with BRONCO data. The optimal thresholds for obtaining the best F-scores are increased
for MED and DIAG types as the BERT-SNER model has been fine-tuned with 100 samples from the target task.
From the results of F-scores and AUC scores, we find that identifying the entities of type TREAT in BRONCO task
is a challenge for BERT-SNER.

Figure 8: Zero-shot with Ex4CDS data.

Figure 9: 10-shot with Ex4CDS data.
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Figure 10: 50-shot with Ex4CDS data.

Figure 11: 100-shot with Ex4CDS data. The most challenging type for BERT-SNER in Ex4CDS is Medication.
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ID Type Name Description Amount
T101 Patient or Disabled Group An individual or individuals classified according to a disability,

disease, condition or treatment.
8202

T047 Disease or Syndrome A condition which alters or interferes with a normal process, state,
or activity of an organism. It is usually characterized by the
abnormal functioning of one or more of the host’s systems, parts,
or organs. Included here is a complex of symptoms descriptive of
a disorder.

7636

T023 Body Part, Organ, or Organ Com-
ponent

A collection of cells and tissues which are localized to a specific
area or combine and carry out one or more specialized functions
of an organism. This ranges from gross structures to small compo-
nents of complex organs. These structures are relatively localized
in comparison to tissues.

7070

T169 Functional Concept A concept which is of interest because it pertains to the carrying
out of a process or activity.

5569

T061 Therapeutic or Preventive Proce-
dure

A procedure, method, or technique designed to prevent a disease or
a disorder, or to improve physical function, or used in the process
of treating a disease or injury.

5542

T046 Pathologic Function A disordered process, activity, or state of the organism as a whole,
of a body system or systems, or of multiple organs or tissues.
Included here are normal responses to a negative stimulus as well
as patholologic conditions or states that are less specific than a
disease. Pathologic functions frequently have systemic effects.

3974

T191 Neoplastic Process A new and abnormal growth of tissue in which the growth is
uncontrolled and progressive. The growths may be malignant or
benign.

3806

T170 Intellectual Product A conceptual entity resulting from human endeavor. Concepts
assigned to this type generally refer to information created by
humans for some purpose.

3266

T081 Quantitative Concept A concept which involves the dimensions, quantity or capacity
of something using some unit of measure, or which involves the
quantitative comparison of entities.

3049

T033 Finding That which is discovered by direct observation or measurement of
an organism attribute or condition, including the clinical history of
the patient. The history of the presence of a disease is a ’Finding’
and is distinguished from the disease itself.

2621

T060 Diagnostic Procedure A procedure, method, or technique used to determine the nature or
identity of a disease or disorder. This excludes procedures which
are primarily carried out on specimens in a laboratory.

2621

T184 Sign or Symptom An observable manifestation of a disease or condition based on
clinical judgment, or a manifestation of a disease or condition
which is experienced by the patient and reported as a subjective
observation.

2547

T024 Tissue An aggregation of similarly specialized cells and the associated
intercellular substance. Tissues are relatively non-localized in
comparison to body parts, organs or organ components.

2533

T121 Pharmacologic Substance A substance used in the treatment or prevention of pathologic
disorders. This includes substances that occur naturally in the
body and are administered therapeutically.

2403

T037 Injury or Poisoning A traumatic wound, injury, or poisoning caused by an external
agent or force.

2080

T029 Body Location or Region An area, subdivision, or region of the body demarcated for the
purpose of topographical description.

1865

T040 Organism Function A physiologic function of the organism as a whole, of multiple
organ systems, or of multiple organs or tissues.

1540

T041 Mental Process A physiologic function involving the mind or cognitive processing. 1429
T078 Idea or Concept An abstract concept, such as a social, religious or philosophical

concept.
1309

T032 Organism Attribute A property of the organism or its major parts. 1281
T073 Manufactured Object A physical object made by human beings. 1226
T091 Biomedical Occupation or Disci-

pline
A vocation, academic discipline, or field of study related to
biomedicine.

1213

T123 Biologically Active Substance A generally endogenous substance produced or required by an
organism, of primary interest because of its role in the biologic
functioning of the organism that produces it.

1187

T100 Age Group An individual or individuals classified according to their age. 1149
T062 Research Activity An activity carried out as part of research or experimentation. 1148
T079 Temporal Concept A concept which pertains to time or duration. 1124

Table 9: Most frequent UMLS semantic types annotated in the MUCHMORE data. The numbers in the third column
are the amount of annotated terms of the semantic type.
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