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Abstract

Artificial intelligence based diagnosis systems
have emerged as powerful tools to reform tradi-
tional medical care. Each clinician now wants
to have his own intelligent diagnostic partner
to expand the range of services he can provide.
When reading a clinical note, experts make in-
ferences with relevant knowledge. However,
medical knowledge appears to be heteroge-
neous, including structured and unstructured
knowledge. Existing approaches are incapable
of uniforming them well. Besides, the descrip-
tions of clinical findings in clinical notes, which
are reasoned to diagnosis, vary a lot for dif-
ferent diseases or patients. To address these
problems, we propose a Medical Knowledge-
enhanced Prompt Learning (MedKPL) model
for diagnosis classification. First, to over-
come the heterogeneity of knowledge, given
the knowledge relevant to diagnosis, MedKPL
extracts and normalizes the relevant knowledge
into a prompt sequence. Then, MedKPL in-
tegrates the knowledge prompt with the clini-
cal note into a designed prompt for representa-
tion. Therefore, MedKPL can integrate medical
knowledge into the models to enhance diagno-
sis and effectively transfer learned diagnosis
capacity to unseen diseases using alternating
relevant disease knowledge. The experimental
results on two medical datasets show that our
method can obtain better medical text classifi-
cation results and can perform better in transfer
and few-shot settings among datasets of differ-
ent diseases.

1 Introduction

Clinical notes in Electronic Health Records (EHRs)
are the medical texts written by a physician to ad-

dress the patient’s medical history, chief complaints
and examinations during a patient’s visit. Physi-
cians can get the corresponding diagnosis through
their expertise based on the patient’s clinical notes.
In the past decade, researchers have tried various
methods for medical text classification tasks to as-
sist doctors in their treatment.

Text classification models in the generic do-
main are developing most rapidly. Traditional ma-
chine learning methods, such as Naive Bayesian
(NB) (Maron, 1961), K-Nearest Neighbor (KNN)
(Cover and Hart, 1967), Support Vector Machine
(SVM) (Joachims, 1998), and Random Forest (RF)
(Breiman, 2001) are first introduced to solve text
classification tasks. For deep learning models,
TextCNN (Chen, 2015) is widely used, where Con-
volutional Neural Network (CNN) (Albawi et al.,
2017) models are introduced to solving text clas-
sification problems. Whereafter, Pre-trained Lan-
guage Models (PLMs), such as BERT (Devlin et al.,
2018) achieve state-of-the-art results on several
Natural Language Processing (NLP) tasks and thus
has been widely used. However, these approaches
are based on generic data and therefore ignore the
high reliance on medical knowledge in medical text
classification tasks. When applied directly to the
medical field, these models often fail to achieve the
same performance as in the generic field.

To address the knowledge-dependent medical
text classification tasks, researchers have proposed
a number of medical text classification models that
incorporate knowledge. Garla and Brandt (2013)
map medical text to corresponding medical con-
cepts and is the first to conduct feature engineering.
Yao et al. (2019a) use medical concept descriptions
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Figure 1: Different template generation methods for
clinical notes. Prompt learning method simply adds
questions to the clinical notes, our Medical Knowledge-
enhanced Prompt Learning method incorporates hetero-
geneous medical knowledge in the template.

to improve distributed document representations.
Gasmi (2022) use external terminology resources
to expand and represent the text with a combination
of different methods. Nevertheless, these models
only learn the relationship between the text and
the corresponding knowledge, without having a
good generalization ability. Therefore they tend to
be less effective when transferring to the medical
domains beyond the training data.

In the medical field, there are rich sources of
knowledge, such as expert knowledge (Flores et al.,
2011), medical knowledge bases (Zuccon et al.,
2013), medical knowledge graphs (Li et al., 2019),
medical information on the web, etc. These knowl-
edge present a heterogeneous structure(such as
triples, SQLs and free texts, etc.) and cannot
be well uniformed in the previous methods. Dif-
ferences among knowledge sources prevent these
models from learning by using knowledge prompt
from all sources and thus may have bias when deal-
ing with real-world data. Therefore, we hope to
propose a model that is compatible with all the
sources of medical knowledge.

To solve the above problems in medical text
classification, we propose a Medical Knowledge-
enhanced Prompt Learing (MedKPL) model that
can uniform different knowledge sources. The con-
tribution of this paper can be summarized as fol-
lows: 1) We design the MedKPL model to uniform
heterogeneous knowledge by transforming knowl-
edge from different sources into free texts. Experi-
ments prove that structured and unstructured texts
can be uniform in our model, and both yield good
results. 2) We use the MedKPL model to conduct
medical text classification tasks on two Chinese

EHR datasets and obtain state-of-the-art classifica-
tion results through knowledge incorporation. 3)
We evaluate the MedKPL model for few-shot learn-
ing among departments. The results show that our
method can obtain good results in both zero-shot
and few-shot scenarios, and can effectively transfer
between departments that have low text similarity
in a robust way.

2 Related Work

2.1 Knowledge Enhancement for PLMs
PLMs has become text representation method in
most NLP tasks. Generic PLMs are usually trained
on unstructured text corpus without domain knowl-
edge. For example, BERT (Devlin et al., 2018) is
trained on BooksCorpus (Zhu et al., 2015) and En-
glish Wikipedia, GPT-2 (Radford et al., 2019) and
GPT-3 (Brown et al., 2020) use Common Crawl
(Raffel et al., 2020) and WebText as training cor-
pus. Due to training on generic datasets, most of
contextual information learned by these PLMs lack
domain knowledge, resulting in their lack of exper-
tise in dealing with domain-specific problems.

Continuous Knowledge-enhancement uses
knowledge encoders to get the embedding of knowl-
edge and incorporate them into the process of train-
ing contextual representations of text. Know-BERT
(Peters et al., 2019) propose Knowledge Attention
and Recontextualization (KAR) and entity linking
to incorporate knowledge into PLMs. ERNIE-THU
(Zhang et al., 2019) introduce an knowledge fu-
sion module, injecting entity embeddings through
knowledge encoders. KEPLER (Wang et al., 2021)
jointly optimize the knowledge embedding and lan-
guage modeling objectives within the same PLM.
DKPLM (Zhang et al., 2022) use pseudo token
representations to embed long-tail entities which
relieve computation burdens of previous methods.

Discrete Knowledge-enhancement retrieves
knowledge directly from the knowledge graph and
add them to training texts. K-BERT (Liu et al.,
2020) and CoLAKE (Sun et al., 2020) directly reor-
ganize the triples in the knowledge graph into texts
and insert them directly into the training corpus,
without pre-training any extra models. We also
apply the ideas behind these methods to our work.

2.2 Prompt Learning
Prompt learning refers to transforming the original
text via templates to leverage the contextual pattern
learned by the PLMs. Brown et al. (2020) first use
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Figure 2: The illustration of MedKPL and other methods. (a) is the workflow of MedKPL, knowledge can be
obtained from different knowledge sources and then incorporated into clinical notes through template construction,
and the classifier (multi-classifier and binary classifier) can be further enhanced by using soft attention on knowledge
prompt and clinical notes. (b) is the method for fine tuning at PLM to classify the embedding of the [CLS] token,
and (c) is the method for regular prompt learning to predict the probability distribution of the [MASK] token.

the prompt learning method for text classification
tasks and find it works well on few-shot learning
scenarios. Schick and Schütze (2020) reformu-
late inputs as cloze questions for text classification.
Schick et al. (2020) and Gao et al. (2020) extend
previous methods by automatically generating la-
bel words and templates, respectively. Recently,
some knowledge-related prompt learning methods
have been proposed. Hu et al. (2021) incorporate
external knowledge into the verbalizer with calibra-
tion. Chen et al. (2022) inject latent knowledge into
learnable virtual type words and answer words.

Compared with these approaches, our approach
can uniform heterogeneous knowledge to build
prompt templates, which solves the differences
brought by different knowledge formats sources.
Our approach also provides a deep integration be-
tween clinical notes and knowledge prompts.

2.3 Medical Text Classification
How to apply external knowledge to medical text
classification tasks is a topic that has been con-
stantly explored by researchers. Garla and Brandt
(2013) map clinical text to Unified Medical Lan-
guage System (UMLS), and use those UMLS
Concept Unique Identifiers (CUIs) as features to
train classifiers on medical documents. Yao et al.
(2019a) propose to distribute document represen-
tations with medical concept descriptions for the
classification of traditional Chinese medicine clini-
cal records. Yao et al. (2019b) combine rule-based
features and knowledge-guided CNN for effective
disease classification. Li and Yu (2020) use multi-
filter Residual CNN to predict ICD codes. Chen

et al. (2020) propose an attention-based bidirec-
tional LSTM model for classifying outpatient cate-
gories according to textual content.

However, none of these works mentioned the
model’s transferability among departments and
few-shot learning ability, which are issues that must
be addressed to solve the medical long-tail problem
and achieve truly trustworthy medical AI.

3 Method

The overall structure of our model is shown in Fig-
ure 2. Our model introduce disease d ∈ D re-
lated medical knowledge prompt kd into medical
text classification tasks, where D is the disease set.
The knowledge prompt can come from a variety of
sources, e.g. expert knowledge, knowledge graphs,
knowledge bases, online resources, etc. We use
p(y|xi, k) to denote the probability of patient i get-
ting disease y, where xi is the clinical notes for
patient i, and k is the set of knowledge prompts
used for knowledge incorporation.

Specifically, we decompose the process of
knowledge incorporation into three stages. 1) Ex-
tract medical knowledge of disease d from different
knowledge sources and transform the knowledge
into a uniform representation kd. 2) Construct tem-
plates that incorporate knowledge prompts set k
with clinical notes. We concatenate the collected
medical knowledge prompts into natural text and
generate the template based on the disease name
d. 3) Predict labels using MLM on the [MASK]
token in prompt template. It is also possible to
integrate knowledge prompt and clinical notes at a
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deep level by using PLM to represent knowledge
prompt and clinical notes separately and aligning
them using soft attention mechanisms to enhance
the knowledge representation.

We will then go over our model’s methodology
and its three stages of knowledge incorporation.

3.1 Knowledge Extraction and Uniform
Unstructured knowledge is naturally available as
part of the prompt template, while structured
knowledge needs to be pre-processed. For struc-
tured medical knowledge, the most common or-
ganization form is the medical knowledge graph.
Thus we take knowledge graph as our knowledge
source and denote it as G = (E ,R) where E is the
collection of all entities and R is the collection of
all relations. In the knowledge graph G, a relational
knowledge triple is denoted as (eh, r, et), where
eh ∈ D is the head entity and et is the tail entity. r
is the specific relation between eh and et.

In a large-scale medical knowledge graph, a
disease may have multiple relations, we denote
the relation set of disease ei as Ri. The distribu-
tion of triples related to disease ei is very diverse
and complex, and we need to find those triples
(ei, r, ej) ∈ G, r ∈ Ri that are suitable for our med-
ical knowledge-enhanced prompt learning method.

Specifically, we determine the refined relation
set R′

i = (r1, r2, . . . , rk), ri ∈ Ri based on the
relationships commonly mentioned in the clinical
notes for disease ei. Then with the disease ei and
the refined relation set R′

i, we can retrieve all rel-
evant triples Ti of disease ei from the knowledge
graph.

Ti = {(ei, ri, ej)|ri ∈ R′
i, ei, ej ∈ E} ∈ G (1)

For those diseases lacking relevant medical knowl-
edge, we consider using similar entities ej for re-
placement, where (ei, rsyn, ej) ∈ G and rsyn is the
relationship of synonym. For those diseases not
in the entity set of the medical knowledge graph,
we consider replacing them with other knowledge
sources(e.g., online search engines).

Alternatively, we also consider using unstruc-
tured medical knowledge, such as knowledge bases
and online search engines for replacement. Medical
knowledge related to disease d can be represented
as kd. Since this unstructured knowledge is already
in the form of text, we apply them directly to the
subsequent processes.

3.2 Prompt Engineering
The core idea of the prompt learning method is to
construct templates and use the contextual knowl-
edge learned by the PLM during the pre-training
process to make predictions on the masked words.

Different from the normal prompt approach, we
want our templates to contain medical knowledge
extracted from heterogeneous knowledge sources.
Therefore, we propose a disease-adaptive template
generation method. For a disease d, if the knowl-
edge source is KG, we first extract all the required
knowledge triples Td from the KG and concatenate
all the triples together into free texts. Given an
example knowledge triple t =(dyspnoea, a symp-
tom of, bronchitis), the formed free-text knowledge
would correspondingly be Dyspnoea is a symptom
of bronchitis. By concatenating all the triples, we
can get the disease-related knowledge kd in the text
pattern.

The promoting function fprompt(kd, x, d) con-
tains medical knowledge and manual template engi-
neering. We devise templates for binary classifica-
tion tasks and multi-classification tasks seperately.
These two tasks are different in practical medical
application scenarios, where a multi-classification
task can quickly determine which disease the pa-
tient is most likely to have, and a binary classifica-
tion task can make predictions about the likelihood
of a specific disease more precisely. For binary
classification tasks, the prompt learning method
will extend the input clinical notes x into

x′ = [Kd][X] Does the patient suffer from [D]? [MASK].

and for multi-classification tasks, the input
clinical notes x will be turned into

x′ = [Kd][X] Which disease the patient have? [MASK].

where the slot [Kd], [X], [D] are filled with
kd, x, d respectively. In this way, we convert
the sequence classification task into a task of
predicting the distribution of masked token
[MASK].

By organizing all the heterogeneous knowl-
edge into free texts, we can extend the knowl-
edge sources of MedKPL to almost all types
of medical knowledge.

3.3 Knowledge Enhanced Classification

By simply concatenating and adding knowl-
edge to the template, we can use PLM to

281



learn the contextual association between clin-
ical notes and knowledge prompt. However,
this approach treats them in a sentence as a
whole. To better explore the deeper connection
between clinical notes and knowledge prompt,
we integrate these texts in a deeper way.

Vector representation of the knowledge
prompt K = (k1, k2, . . . , km) and clinical
notes C(c1, c2, . . . , cn) can be obtained by
PLM, where m and n are the length of knowl-
edge prompt and clinical notes respectively.
We use the Soft Attention mechanism (Luong
et al., 2015) to align clinical notes with knowl-
edge prompt.

Specifically, we select the [CLS] token k1 ∈
K as the vector representation of the whole
knowledge prompt and calculate the alignment
vector a which is calculated by comparing the
knowledge prompt representation k1 with each
clinical note word’s hidden state cs ∈ C:

as = align(k1, cs) =
exp(score(k1, cs))

Σn
s′=0(score(k1, cs′))

(2)
where we use dot product function to compute
scores.

score(k1, cs) = kT
1 cs (3)

Given alignment vector a as weight, the in-
tegrated vector it is computed as weighted
average over all the words’ representations
in clinical notes. The integrated vector it =∑n

s=0 ascs can enhance the most relevant part
of the clinical notes with the knowledge
prompt. For medical text classification, we
sum the integrated vector it with the Masked
Language Model (MLM) prediction xmlm on
[MASK] to get xintegrate and compute the
loss based on the classification tasks.

xmlm = fMLM(x′, [MASK]) (4)

xintegrate = Wxxmlm +Wiit (5)

where fMLM is the masked language model
of the PLM. For binary classification tasks,
the loss function Lbinary is computed directly
between xintegrate and the index of label words
("yes" or "no") in the PLM’s vocabulary.

Lbinary = CELoss(xintegrate, label) (6)

where the CELoss is cross entropy loss. For
multi-classification tasks, the loss function is

computed by first map xintegrate into the label
space using a fully-connected layer and com-
pute the cross entropy loss.

Lmulti = CELoss(Wxxintegrate + bx, label)
(7)

where Wx and bx are learnable parameters in
the model, and label represents the categories
in mult-classification tasks.

4 Experiments

4.1 Datasets

In this paper, we compare our results against
many existing methods on two medical
datasets. The first dataset is the Pediatric Pa-
tient EHR (PPE) used in (Liang et al., 2019),
which contains 1,362,559 outpatient visits
from 567,498 pediatric patients across 6 depart-
ments, each outpatient visit includes adverse
event, chief complaint and history of present
illness, some also have physical examination
and image report. The second dataset is Adult-
EMR, which contains 339,672 EHR records
for 2556 diseases across 12 departments, each
record includes chief complaint and history of
present illness. We use the clinical notes of
patients’ history of present illnesses for train-
ing. In PPE, we use the clinical notes of the
Hematology-Immunology department as nor-
mal control data and select six diseases from
each of the other five departments (Respira-
tory (Resp.), Gastroenterology (Gast.), Psy-
chiarty (Psy.), Neurology (Neuro.), Gynecol-
ogy (Gyn.)) for experiments. In Adult-EMR,
we use the clinical notes of the Respiratory De-
partment as normal control data and select six
diseases from Tumor and Cancer Department
and Cardiology Department for experiments.
The knowledge graph we use in our experi-
ments is the DiseaseKG, which is an open-
source Chinese medical knowledge graph from
OpenKG.

4.2 Settings

In the multi-label classification task, we se-
lect 1000 samples from each of the k diseases
(k = 2, 4, 6) from a department and 1000 sam-
ples from normal control data for k + 1 clas-
sification task. The knowledge prompt is the
concatenation of the truncated knowledge from
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Table 1: Standard multi-classification accuracy on different departments. "+ERNIE" and "+DKPLM" means using
knowledge-enhanced PLMs to replace BERT, "+Attn" means using the attention layer to enhance the classification
performance. The results for each department are acquired by averaging the results for disease number k = 2, 4, 6.

PPE Adult EMR
Resp. Gast. Psy. Neuro. Gyn. Overall Tumor. Cv. Overall

LSTM 64.89 77.08 85.63 90.29 77.59 79.10 67.97 64.65 66.31
LSTM+Attn 65.49 78.89 85.58 87.58 79.59 79.42 62.87 74.35 68.61
CNN 69.31 81.98 85.76 91.41 81.38 81.97 71.25 73.05 72.15
Fine tuning 68.74 80.25 86.96 89.41 81.75 81.42 71.00 74.46 72.73
Prompt 71.05 82.51 89.06 91.47 82.17 83.25 71.43 76.45 73.94
Prompt+ERNIE 70.24 83.27 88.08 91.76 80.84 82.84 69.57 73.96 71.77
Prompt+DKPLM 73.94 84.77 88.76 91.69 81.82 84.20 72.14 76.62 74.38
MedKPL (Ours) 74.06 83.72 89.13 92.29 82.10 84.26 73.14 77.44 75.29
MedKPL+DKPLM (Ours) 75.01 85.05 90.11 92.40 83.96 85.31 72.71 78.61 75.66

Table 2: Standard binary classification accuracy on different departments. "+ERNIE" and "+DKPLM" means using
knowledge-enhanced PLMs to replace BERT. The results for each department are acquired by averaging the results
for disease number k = 2, 4, 6.

PPE Adult EMR
Resp. Gast. Psy. Neuro. Gyn. Overall Tumor. Cv. Overall

Prompt 88.44 87.77 97.28 92.31 93.56 91.87 86.67 91.13 88.90
Prompt+ERNIE 85.11 81.78 95.22 88.75 91.92 88.56 84.33 90.54 87.44
Prompt+DKPLM 89.92 89.17 92.14 95.58 97.31 92.82 89.17 95.10 92.14
MedKPL (Ours) 94.89 96.06 98.69 96.08 99.19 96.98 96.33 96.45 96.39
MedKPL+DKPLM (Ours) 95.75 97.36 98.69 96.75 99.31 97.57 94.33 97.78 96.06

all the diseases, the basic truncation length is
50 per disease. In the binary classification
task, we select 500 samples from each of the k
diseases (k = 2, 4, 6) from a department and
select k ∗ 500 samples from the normal control
data for binary classification task. The knowl-
edge prompt used for normal control data is
randomly selected from all extracted medical
knowledge in binary classification tasks.

Standard Settings. For traditional NLP
methods, we select LSTM (Liu et al., 2016),
CNN (Chen, 2015) and LSTM (Chen et al.,
2020) and LSTM with attention (Chen et al.,
2020) for comparison.The word embedding for
LSTM and CNN models is the 300-dimension
skip-gram word embedding (Mikolov et al.,
2013) pre-trained on Sogou News corpus (Li
et al., 2018), and the word embedding for mod-
els applying PLM is BERT-base-chinese (De-
vlin et al., 2018) if not otherwise stated. For
fine tuning, we take the classification token
[CLS] and feed it into a fully connected layer
for classification, as shown in Figure 2 (b). For

prompt learning (Brown et al., 2020), we calcu-
late the probability distribution of the [MASK]
token and further predict the classification re-
sult, as shown in Figure 2 (c). In addition, we
also try different knowledge-integrated PLMs
for comparisons, such as ERNIE (Zhang et al.,
2019) and medical version of DKPLM (Zhang
et al., 2022). These models above are used
as the baseline in our experiments. We use
BERT and DKPLM as PLMs to conduct exper-
iments on our method, the use of DKPLM on
our method can be regarded as using medical
knowledge in both the pre-training phase and
the prompt learning phase.

Low-Resource Settings. In our experi-
ments, we design a couple of different low-
resource scenarios on binary classification
tasks. The first is model transferring among
departments. We compare the effect of 16-shot
transfer learning among the five departments of
the PPE dataset, comparing the results of fine
tuning, prompt learning, and our method. In
addition, we conduct 0-, 2-, 4-, 8-, and 16-shot
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transfer learning experiments to compare the
effectiveness of our method with other meth-
ods on few-shot learning tasks.

In all of our experiments, we use Adam
(Kingma and Ba, 2014) as the optimizer with
a learning rate of 1e − 7. The training epoch
is 20, the batch size is 32, and the dropout rate
is 0.5. Due to the average length of knowledge
prompt is 48, we set the truncation lengths of
a disease’s knowledge prompt as 50, and we
set the truncation length of the input clinical
notes with prompt template as 128. We use the
cross entropy loss as the loss function.

All experiments are conducted on a single
NVIDIA Tesla V100. The evaluation metric is
accuracy, which is widely used in text classifi-
cation tasks (Lee and Dernoncourt, 2016).

4.3 Results

4.3.1 Standard Results
We first evaluate the performance on multi-
classification tasks under standard text classifi-
cation task settings. The results are shown
in Table 1, where we compared to a range
of baselines. The result shows that all Med-
KPL methods, consistently outperform tradi-
tional NLP methods, fine tuning and prompt
learning baselines, indicating the effectiveness
of our methods. Moreover, as a pre-trained
PLM using medical knowledge, prompt learn-
ing method using DKPLM outperforms the
standard prompt learning method by 0.95 per-
cent in multi-classification performance on
PPE dataset, showing the effectiveness of
knowledge-enhanced PLMs. However, the
knowledge-enhanced PLM ERNIE, which is
trained on generic knowledge, is 0.41 per-
cent weaker than the standard prompt learning
method. This demonstrates that the incorpora-
tion of medical knowledge in the pre-training
phase does benefit the medical downstream
tasks. In addition, replacing BERT in our
model with DKPLM can further yield better
results.

We also conduct experiments on binary clas-
sification tasks and the results are shown in
Table 2, where MedKPL outperforms other
methods in a larger gap compared with multi-
classification tasks. We conjecture this is be-
cause in the binary classification tasks, the

Table 3: The effect of different methods on transferring
between departments, this table selects the results of
transfer from Respiratory department (Resp.) to other
4 departments. We choose the sample size shots = 16
and the number of diseases k = 6 as the parameters in
the transfer learning experiment.

Resp.→ Gast. Psy. Neuro. Gyn.

Fine tuning 74.92 53.08 54.75 46.92
Prompt tuning 74.83 73.08 68.58 66.50
MedKPL 85.83(+11) 86.83(+13.75) 84.42(+15.84) 80.83(+14.33)

Table 4: The effect of transferring MedKPL from Res-
piratory department (Resp.) to Gastroenterology depart-
ment (Gast.) with different sample sizes was tested with
shots = 0, 2, 4, 8, 16 and number of diseases k = 6.

Resp.→ Gast.

shots Fine tuning Prompt learning MedKPL

0 53.97 72.75 84.92
2 60.85 86.24 89.98
4 68.25 87.57 90.48
8 71.43 89.98 90.48

16 71.16 89.42 91.53

knowledge prompt only contains knowledge of
the selected disease, so the model can learn the
relationship between the knowledge prompt
and clinical notes in a more targeted way.

For the analysis of each department of clas-
sification task on the PPE dataset, we observe
that the model’s performance in the psychi-
atry (Psy.) department and the gynecology
(Gyn.) department are highest both on multi-
classification and binary classification tasks.
By looking at the clinical notes in these two
departments, we conjecture that the model’s
good performance is due to the low noise con-
tained in the texts of these two departments.

4.3.2 Low-Resource Results
We conduct experiments on transfer learning
across departments in PPE dataset and select
the results of transferring from the Respiratory
department (Resp.) to other departments in
Table 3. The results in Table 3 show that the
transferability of our method among depart-
ments outperforms the fine tuning and prompt
learning methods by a large margin.

According to the results, there is also an in-

284



Table 5: The impact of different knowledge sources on
the effect of MedKPL model, where the Structured is
obtained from the Knowledge Graph, the Unstructured
is obtained from online resources such as Wikipedia, the
Plain Text uses the phrase The disease requires timely
medical attention. as the text that does not contain
medical knowledge, and the Random refers to randomly
selected knowledge for augmentation. The results for
each department are acquired by averaging the multi-
classification results for disease number k = 2, 4, 6.

Resp. Gast. Psy. Neuro. Gyn. Overall

Structured 85.17 84.30 94.03 92.24 95.12 90.17
Unstructured 85.13 84.90 90.59 84.93 94.17 87.94
Plain Text 72.21 71.64 86.42 92.62 84.03 81.39
Random 54.31 61.37 83.36 81.12 69.17 69.87

teresting phenomenon that departments with
lower text similarity have a higher improve-
ment on classification accuracy, we conjecture
that this is because our knowledge incorpora-
tion approach allows our model to discover
the association between knowledge prompt
and clinical notes in a more direct way. Also,
by calculating the variance for all the results,
we get the variance of 104.17 for fine tuning
method and 83.55 for prompt learning method,
while the variance of our method is 56.15,
which is much lower than that of fine tuning
and prompt learning. Therefore we speculate
that our method can achieve higher classifica-
tion results while having good robustness at
the same time.

Besides transferring to other departments,
We have also tested our method under differ-
ent transfer shots to further demonstrate our
model’s few-shot learning capability. The re-
sults of transferring from Respiratory depart-
ment (Resp.) to Gastroenterology department
(Gast.) with different shots are shown in Table
4. It can be observed that under the zero-shot
scenario, our method is far superior to the fine
tuning and prompt learning methods. As the
sample size rises, all methods witnesses an in-
crease in transfer effect, but our method is still
the best among the three methods.

Overall, our MedKPL model is more capa-
ble of transferring among departments and can
also be better adapted to few or zero-shot sce-
narios.

4.3.3 Comparison among Knowledge Sources
To demonstrate that our model can uniform
heterogeneous knowledge as input, we test dif-
ferent knowledge sources and their correspond-
ing classification effects, results are shown in
Table 5.

We begin by contrasting the structured
knowledge prompt, derived from the knowl-
edge graph, with the unstructured knowledge
prompt, sourced from online search. Our find-
ings demonstrate that the structured knowledge
prompt outperforms its unstructured counter-
part in terms of classification accuracy. This
suggests that there exists a trade-off between
the quality and accessibility of knowledge.
While the structured knowledge prompt is
more refined and contains less noise and irrel-
evant information, it is also more challenging
to access. Conversely, unstructured free-text
knowledge prompts offer almost limitless ac-
cessibility. For cases involving plain text, we
employ the sentence The disease necessitates
expedient medical attention. as the knowl-
edge prompt. However, we observed that this
non-medical knowledge prompt yielded signif-
icantly lower classification performance than
the previous two methods. Furthermore, we
conducted an experiment to disrupt the knowl-
edge prompt by augmenting clinical notes
with a random, irrelevant piece of knowledge
prompt. Our results indicate that this method
is the least effective among the four knowledge
sources, with some outcomes even lower than
the fine-tuning method. These findings rein-
force the notion that knowledge prompts can
contribute to improved classification outcomes
in our approach.

In general, our approach can handle hetero-
geneous medical knowledge in a uniform way.
The structured knowledge pormpt works most
effectively, but is relatively difficult to obtain,
while the unstructured knowledge can be ac-
cessed more easily, but at the expense of some
performance.

4.3.4 Ablation Study
To explore how much the knowledge prompt
contributes to our model, we conduct some
ablation experiments of the impact of two main
components: length of knowledge and soft
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Table 6: Ablation study on a) knowledge length and b)
soft attention. We test the knowledge truncation length
from 0 to full length and test methods with or without
soft attention mechanism, experimental parameters are
kept consistent and the number of diseases k = 6.

(a)

Knowledge length Acc.

full-length 95.67
40 95.33
30 94.33
20 95.33
10 94.50
0 93.33

(b)

Attention Acc.

w/o Attention 93.67
w/ Clinical notes 94.17
w/ Knowledge 93.83
w/ Soft Attention 95.67

attention mechanism. Results are shown in
Table 6.

It is noteworthy that the average length of
medical knowledge in the Respiratory depart-
ment is 36. The experimental results presented
in Table 6a reveal that the model performs op-
timally when the medical knowledge is not
truncated. We hypothesize that this is because
larger truncation lengths promote the seamless
integration of medical knowledge. Addition-
ally, we evaluated the knowledge-enhanced
classification module depicted in Figure 2(a)
by comparing the soft attention mechanism
with only clinical notes embeddings or knowl-
edge prompt embeddings. The results in Table
6b demonstrate that the soft attention mecha-
nism is instrumental in directing the model’s
focus towards the knowledge-laden attributes
of the clinical notes, thereby leading to supe-
rior classification outcomes.

5 Conclusion

In this paper, we propose a MedKPL model
and achieve state-of-the-art classification re-
sults on two medical EHR datasets. With the
advantage of knowledge extraction and uni-
form process, our model can eliminate the dif-
ference among different sources and organize
all knowledge into one representation style.
The knowledge incorporation and soft atten-
tion mechanism between knowledge prompt
and clinical notes enable the model to be more
robust and achieve appreciable improvement
on medical text classification tasks. The in-
troduction of knowledge and prompt learning
method exploits better few-shot and zero-shot
transferability among departments.
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