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Abstract

This paper explores methods for extracting in-
formation from radiology reports that general-
ize across exam modalities to reduce require-
ments for annotated data. We demonstrate
that multi-pass T5-based text-to-text genera-
tive models exhibit better generalization across
exam modalities compared to approaches that
employ BERT-based task-specific classification
layers. We then develop methods that reduce
the inference cost of the model, making large-
scale corpus processing more feasible for clin-
ical applications. Specifically, we introduce
a generative technique that decomposes com-
plex tasks into smaller subtask blocks, which
improves a single-pass model when combined
with multitask training. In addition, we lever-
age target-domain contexts during inference
to enhance domain adaptation, enabling use of
smaller models. Analyses offer insights into the
benefits of different cost reduction strategies.

1 Introduction

Radiology reports contain a diverse and rich set
of clinical abnormalities documented by radiolo-
gists during their interpretation of the images. Au-
tomatic extraction of radiological findings would
enable a wide range of secondary use applications
to support diagnosis, triage, outcomes prediction,
and clinical research (Lau et al., 2020). We adopt
an event-based schema to capture both indications,
the reason for radiology exams, and abnormal find-
ings documented in radiology reports. We use
an annotated a corpus of reports from three dis-
tinct radiology examination modalities (Lybarger
et al., 2022): Magnetic Resonance Imaging (MRI),
Positron Emission Tomography (PET), and Com-
puted Tomography (CT). Each event consists of a
trigger, words that indicate a particular indication
or finding (e.g., lesion), and a set of attributes (as-
sertion, anatomy, characteristics, size, size trend,
size count) that describe this indication or finding.
Manual annotation of radiology reports is costly,

therefore we hope models can generalize across
different exam modalities. In this work, we define
each modality in our annotated corpus as a domain
and study cross-domain generalization among dif-
ferent modalities for the task of event extraction.
Event extraction can be conceptualized as a series
of subtasks, which include entity detection (trigger
and attribute spans), relation detection (between
triggers and attributes), and entity normalization
(fine-grained labels on spans). In our experiments,
we focus on trigger detection and anatomy attribute
extraction with normalized labels.

To enhance generalization capabilities, some
studies employ generative models and formulate
tasks as question answering and using texts to rep-
resent both inputs and outputs (Raffel et al., 2020;
Xie et al., 2022), as opposed to allowing the model
to solely learn task intent from training data (Eberts
and Ulges, 2019; Lybarger et al., 2023).

The exceptional performance of generative mod-
els often rely on large model size; however, in
real-time inference for processing large-scale clin-
ical notes, reducing inference costs is crucial. To
address this need, for task inference, we want to
reduce the number of decoding passes and employ
smaller models. Due to the high inference costs,
there is a desire to merge these subtasks and de-
code them in a single step. However, the genera-
tive approach has been reported to perform better
on solving subtasks individually but worsen when
combined, a phenomenon referred to as the com-
positionality gap (Press et al., 2022). This gap can
be exacerbated under domain shifts when models
learn subtasks jointly, as interdependence of sub-
tasks may vary across domains.

While large language models (LLMs) mitigate
the compositionality gap using reasoning steps
(Wei et al., 2022; Press et al., 2022) to solve com-
plex questions by decomposing them into smaller
ones, there is limited work on reasoning for highly
specialized domains (such as medical event extrac-
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tion) or with smaller models. In this paper, we
reduce the compositionality gap for smaller mod-
els through formatting of complex tasks into easier
subtasks as blocks. This approach teaches models
how to solve individual subtasks independently and
how to assemble them for solving more complex
tasks.

The generative model enables seamless integra-
tion of supplementary contexts into the prompt,
which compensates for the knowledge gap to larger
models and reduces inference costs. To aid in do-
main adaptation, we extract target domain contexts
that are likely to be helpful for the task, instead
of retrieving similar contexts for general purpose.
Specifically, to assist with anatomy normalization
tasks, we employ an unsupervised extractor to ac-
quire pertinent contexts that likely contain anatom-
ical information from the same document and/or
unannotated text from the same domain. This pro-
cess can either disambiguate the original single-
sentence input or provide anatomy-related hints
that the model can utilize. To avoid introducing
source-domain-specific reliance on the contexts,
we incorporate the contexts only at the inference
stage.

In our experiments, we first study domain shift
for extracting radiology finding events and observe
that cross-domain performance decline is more pro-
nounced for knowledge-intensive anatomy normal-
ization tasks, while detecting entity spans exhibits
relatively stable performance. We demonstrate that
building subtask blocks and assembling them as se-
quences to solve complex tasks can reduce the com-
positionality gap in smaller models. We show that
incorporating target-domain contexts in domain
adaptation can compensate for reduced model sizes,
enabling good performance with smaller models.

2 Task

2.1 Event extraction for radiology findings

Our event scheme includes three event types: i) In-
dication is the reason for the imaging (e.g. motor
vehicle accident or cancer staging); ii) Lesion cap-
tures lesions uncovered by the exam (e.g. mass
or tumor); and iii) Medical Problem characterizes
non-lesion abnormalities (e.g. fracture or hernia).
Each finding event is characterized by an event trig-
ger and set of attributes (assertion, anatomy, char-
acteristics, size, size-trend, count). In this work,
we focus only on extracting events with normal-
ized anatomical information and investigate cross-

domain generalization for different examination
modalities. Figure 1 presents a Lesion event exam-
ple. The event extraction process can be broken
down into four subtasks: (1) Trigger span extrac-
tion (e.g., "density"), (2) Trigger type classification
(e.g., "density" - Lesion), (3) Anatomy span extrac-
tion (e.g., "left lobe of liver" associated with the
trigger "density"), and (4) Anatomy normalization
to parent-child anatomy categories (e.g., "left lobe
of liver" - Parent: Hepato-Biliary, Child - Liver).
See Appendix A for the full list of hierarchical
parent-child anatomy categories.

We evaluate event extraction performance us-
ing the F1 metrics by Lybarger et al. (2021). Our
assessment of the trigger extraction is based on
the span overlap and the event type match with
respect to the gold standard labels. The anatomy
extraction is first assessed at the span level. A cor-
rect anatomy prediction is associated with a correct
predicted trigger and anatomy span overlap with
the gold standard labels. Additionally, we evalu-
ate anatomy extraction based on the normalization
level, irrespective of their spans. A match between
the predicted anatomy entity and the gold label
indicates that the trigger is matched, and the nor-
malized anatomy category is equal.

2.2 Domain shifts across radiology modalities

Our research investigates cross-domain generaliza-
tion among three distinct radiology examination
modalities: MRI, PET, and CT. These exam modal-
ities are performed for different reasons with differ-
ent technologies and the resulting radiology reports
differ in terms of level of details as well as anatomy
distribution. While CT and MRI scans allow radi-
ologists to view structures inside the body, a PET
scan, on the other hand, captures how tissues in the
body work on the cellular level and shows unusual
activity. MRI scans very frequently involve neu-
rological exams. The most common use of PET
scans is to diagnose or monitor certain cancer types.
In our experiments, we define each modality as a
domain. We use PET as the target domain, and
train on three domains separately to evaluate both
in-domain and cross-domain scenarios.

3 Method

3.1 Generative event extraction with T5

In order to improve the model’s generalization ca-
pabilities over BERT-based alternatives (Lybarger
et al., 2023; Eberts and Ulges, 2019), we struc-
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Figure 1: Representations of anatomical information in radiology reports, with the event-based annotation at the
top and two generative model output formats to multi-step and one-step processing. The left-hand side shows the
vanilla format and the right-hand side shows the building block format.

ture our event extraction task in a unified question-
answering (QA) format (Xie et al., 2022; Raffel
et al., 2020). With the generative approach, the
model leverages the semantic meaning of prompts
for specifying subtasks and associated categoriza-
tion labels. Based on experiments with in-context
learning (Hu et al., 2022), we expect this to be
beneficial for domain-mismatches in class label
distributions, e.g. where infrequent classes in the
source domain are frequent in the target domain.
Furthermore, the text-to-text format offers the flexi-
bility to incorporate additional contexts to facilitate
tasks, as discussed in Section 3.3.

The input prompt comprises: (1) an input sen-
tence from clinical notes to extract events from,
(2) a question that describes the task or subtask,
and (3) an ontology that provides textual labels for
classification tasks and hierarchical relationships
if multi-level granularities are required. The out-
put is a word sequence that specifies the extracted
information (the answer). Two alternative output
formats are discussed in the next section; example
input-output pairs for both are in Appendix B.

Event extraction can be seen as a multi-hop
question-answering process, involving a series of

subtasks for successful completion. We use a
pipeline approach to address the event extraction
subtasks in different steps, where each step in the
pipeline consists of a specialized generative model
trained for one or more of the subtask types. Three
different architectures are explored:

Three-step approach: This involves a first step
for detecting trigger spans and trigger types, fol-
lowed by a second step for identifying the anatomy
associated with each detected trigger, and a third
step for normalizing each identified anatomical en-
tity at parent and child levels individually.

Two-step approach: This involves a first step for
detecting trigger spans and trigger types, followed
by a second step for identifying and normalizing
the anatomy associated with each detected trigger.1

One-step approach: we address all subtasks,
which may be associated with multiple entities,
in a single pass per input sentence. This method
results in longer output lengths compared to the
individual steps of previous two approaches.

The one-step approach substantially reduces in-

1Both the 2-step and 3-step approaches use the same sec-
ond step, predicting anatomy spans and their normalized val-
ues. The three-step approach drops the normalized values
from its second step.
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ference costs compared to other two multi-step
approaches. However, we find that it negatively
impacts model performance due to the longer out-
put and the compositionality gap. The performance
loss is mostly recovered by changing the output for-
mat (as described next) together with a multi-task
training strategy. Specifically, we train the model
on both the complete task and the decomposed sub-
tasks. This allows the model to perform subtasks
independently and assemble subtask sequences for
complex tasks. During inference, we decode in a
single step to minimize costs.

Our work builds on generative models, specif-
ically the clinical version of the T5 models (Lu
et al., 2022), which are pre-trained on medical arti-
cles and clinical notes. This choice leverages their
strengths in comprehending clinical text styles and
medical knowledge.

3.2 Output formats

We explore two different output formats as illus-
trated in Figure 1, with subtask answers provided
in sequence when there are multiple subtasks.

The baselines leverage a standard output format
(referred to here as the vanilla format), which spec-
ifies the answer for a subtask with an extracted span
followed by the entity label in brackets "[]". When
multiple entities are detected, they are generated in
sequence.

The vanilla format can be used with the one-
step approach, but the resulting output can be very
long when multiple triggers and/or entities are de-
tected. The lack of distinction between types of
spans in the output makes it harder for the lan-
guage model to learn the subtask structure. To ad-
dress this problem, we introduce a state-augmented
prompt (referred to as the building block format),
in which each subtask is associated with a state (as
in a finite-state transducer) and explicitly named.
Our approach is motivated by the work on chain-
of-thought LLMs (Wei et al., 2022; Press et al.,
2022), which use natural language reasoning in
the generated outputs to address the composition-
ality gap. However, it differs in that we do not
use natural language reasoning, but rather more of
a programming-like description. In addition, the
finite-state framework is amenable to meulti-task
training, which is particularly important for the
block approach.

3.3 Using target-domain contexts in prompts

A single input sentence may not provide enough
information for a model to complete a task, as ad-
ditional details may be needed for disambiguation
or to supplement missing knowledge in pre-trained
language models. Fortunately, the text format of
the input allows for the seamless integration of ad-
ditional contexts from the target domain during in-
ference to aid in the task and infuse helpful domain-
specific bias, even if the models were not trained
for reading contexts.

The desired contexts should be relevant to the
input sentence and contain helpful task informa-
tion. We utilize two types of contexts: document-
level and domain-level contexts to help anatomy
normalization subtasks. Document-level contexts
include adjacent sentences before and after the in-
put, automatically extracted section headers2 and
exam type metadata associated with the same clin-
ical note. The document-level contexts are likely
to describe relevant anatomical parts, as section
headers and exam types often summarize anatom-
ical information. Domain-level contexts are re-
trieved from the unlabeled target-domain corpus.
We search for the most similar sentence with the
greatest lexical overlap degree, using the search
algorithm BM25 (Trotman et al., 2014).3 When
the search pool is large, the top-ranked retrieved
context sentence likely describes a similar anatomy
part as the queried input sentence. To reduce com-
putational costs and ensure that the retrieved sen-
tences contain useful anatomical information, we
pre-filter the target corpus to limit the search scope
to sentences containing common anatomy terms
listed from anatomy normalization categories and
high-frequency auto-extracted section headers, re-
ducing the number by 74%. More context-retrieval
details are in Appendix D.

We add contexts only during decoding (and not
in training) to prevent the model from relying too
much on source-domain contexts. In the input
prompts, exam type, section headers and prior sen-
tences are placed before input sentences, following
their natural orders. Other contexts are inserted
between the input sentences and task ontology.4

We test this approach in a separate anatomy nor-

2We extract section headers as the beginning of the last
previous sentence containing ’:’

3We implement the BM25 algorithm using https://
github.com/dorianbrown/rank_bm25

4The full T5 input template is described in Table 9 from
Appendix B
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malization run after the one-step building block
model. This process combines building block out-
put format with target domain context integration.
The reason for not directly adding it to a one-step
process is that introducing contexts to inputs can
potentially corrupt span detection, as the model
may extract spans from the context rather than ex-
clusively from the input sentence.

4 Experiments

4.1 Radiology datasets across exam modalities

Data split Note Count Sent Count

CT (train) 143 3707
MRI (train) 144 3551
PET (train) 142 5184
PET (valid) 20 758

PET (test) 40 1481
PET (unlabeled) 1471 50000

Table 1: Dataset statistics for the three radiology exam-
ination modalities: CT, MRI, and PET. We explore in-
domain and cross-domain training, evaluating on PET.

We use an annotated corpus containing radiol-
ogy notes about CT, MRI, and PET imaging exams;
statistics are given in Table 1. The anatomy normal-
ization labels are grouped into sublevels according
to the SNOMED CT concepts. Notes in the test
and validation sets are all doubly annotated. The
inter-rater agreement for Trigger is 0.73 F1.

Variations in anatomy distribution across imag-
ing modalities can cause domain discrepancies.
PET has the most balanced distribution among
parent-level anatomy categories, followed by CT.
However, MRI has a heavily skewed distribution,
with 62% of trigger-associated anatomy entities be-
ing neurological among 16 parent-level categories.
See Appendix A for anatomy distribution details.

To enhance domain-specific context retrieval and
boost the chances of retrieving helpful contexts, we
expand the search pool by sampling 50,000 unla-
beled PET report sentences from the same distri-
bution as in the annotated reports (Lybarger et al.,
2022), with a minimum of three tokens.

4.2 Implementation

In the non-generative baseline, we adopt the
mSpERT model (Lybarger et al., 2023) for hier-
archical multi-label entity and relation extraction.

Entities are extracted as spans. We initialize with
Bio-Clinical BERT (Alsentzer et al., 2019).

For the T5 model using both vanilla output for-
mats and the subtask block formats, we initialize
with ClinicalT5 (Lu et al., 2022),

For all models, the best checkpoint is chosen
after 15 training epochs based on the validation
performance on the target domain. For T5 models
with multitask training on subtask blocks, which
involves a higher number of training steps, we eval-
uate the model on the validation set after every 0.5
epoch approximately. For methods that do not in-
volve multitask training, we evaluate the model on
the validation set per epoch.

We implement multitask training on subtask
blocks for MRI and PET, using the auxiliary tasks,
as described in Section 3.1, including trigger span
detection, trigger classification, joint anatomy span
detection and normalization, and anatomy normal-
ization. For the CT-PET transfer scenario, we add
an additional anatomy span detection auxiliary task,
as we observe that more aggressive learning is
needed for anatomy span detection in the CT do-
main. Detailed information about hyperparameters
can be found in Appendix E.

5 Results

Table 2 shows the trigger and anatomy detec-
tion results for mSpERT compared to different
context-independent T5-base alternatives. For the
in-domain condition, all T5 approaches outperform
the mSpERT model for the three anatomy-related
metrics. The results for trigger detection are mixed,
but fairly similar for all. The best performance over-
all is obtained using the 2-step vanilla output T5
model. For the cross-domain scenarios, all models
suffer degradation in performance compared to the
in-domain condition, with the greatest performance
drop for the normalized anatomy categories, par-
ticularly for the MRI-PET condition which has the
greatest mismatch in anatomy distribution. The per-
formance loss is greatest for the mSpERT model,
with a 44% relative reduction in F1 scores for nor-
malized anatomy (at both parent and child levels)
for the MRI-PET case. In contrast, the relative
loss on the parent and child levels for the T5 mod-
els is 24-29%. For both within and across-domain
scenarios, the building block technique improves
the 1-step results for all categories, but particu-
larly for the more difficult anatomy normalization
tasks. As described later in Section 6.2, the 1-step
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Table 2: F1 scores (%) for: non-generative mSpERT (Lybarger et al., 2023), generative vanilla T5 models with both
multi-step pipeline and one-step joint approaches, and our proposed one-step T5 model using the building block
technique. All models adopt the T5-base architecture and are initialized with ClinicalT5 (Lu et al., 2022). Best
overall scores are in bold, and best one-step scores are underlined.

Entity mSpERT T5-base
3-step

(vanilla)

T5-base
2-step

(vanilla)

T5-base
1-step

(vanilla)

T5-base
1-step

(blocks)

PET → PET

Trigger 82.4 81.9 81.9 82.1 82.6
Anatomy Span 65.8 67.6 67.6 66.0 66.1
Anatomy Parent 61.9 64.7 64.9 63.3 63.5
Anatomy Child 59.6 62.1 62.3 59.7 60.7

MRI → PET

Trigger 75.6 76.6 76.6 76.4 77.8
Anatomy Span 59.9 60.9 60.9 59.2 61.1
Anatomy Parent 34.7 48.6 47.1 44.9 48.3
Anatomy Child 33.5 44.6 44.0 41.2 44.8

CT → PET

Trigger 75.7 76.1 76.1 74.0 76.6
Anatomy Span 59.7 61.4 61.4 56.3 59.8
Anatomy Parent 53.2 55.8 54.8 50.8 55.0
Anatomy Child 47.5 53.3 51.8 48.1 51.2

approach is sensitive to the compositionality gap,
which is ameliorated by the block approach. For
the cross-domain scenarios, the best overall results
are obtained with the 3-step approach for the CT-
PET condition and with the 1-step block approach
for the MRI-PET condition (greater mismatch). An
additional advantage of the 1-step approach is the
lower latency associated with using only one de-
coding pass.

As described earlier, target-domain contexts
are added to prompts during a second step of
T5 decoding to help anatomy normalization,
after the 1-step subtask block decoding with
T5-base. Table 3 shows results for all different
types of contexts, as well as using either T5-large
or T5-base in the second step without context.
Without context, the T5-base and T5-large models
give similar results for in-domain and CT-PET
cross-domain conditions, but T5-large improves
results for the MRI-PET condition. (Note that
T5-large is only used in the last step; a bigger
benefit could be observed if used in both steps.) All
types of context are useful for the two domain-shift
cases, but there is little or no benefit for the
in-domain case. Of the different types of context,

automatically retrieved similar sentences from
unlabeled target-domain data provide the greatest
benefit in the mismatched scenarios. Combining
all contexts provides a small additional benefit,
except for the anatomy parent in the MRI-PET
case. Anecdotally, we observe that same-document
contexts are useful for disambiguation, while
hints for challenging examples are more likely
collected from a large domain-level corpus rather
than just the same document. (For examples, see
Appendix F.)

Table 4 provides information on the relative
cost of the different T5 models. The multi-
pass models have higher latency (average
passes/sample) in that passes are necessarily
sequential. (Note that samples with no findings
or no anatomy identified in the first pass do not
require additional passes.) The number of tokens
per sample is an indicator of cost. The 1-step
model with blocks has a higher cost than the
2-step approach because of the additional tokens
introduced by the state-augmented prompt, but the
cost is still lower than the 3-step approach. The
use of context adds additional cost.
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Table 3: F1 scores (%) for T5 anatomy classification models with and without contexts. Results with context
involve a first pass with the 1-step T5-base building blocks method, the same as "T5-base one-step (blocks)" in
Table 2, followed by another pass that normalizes the anatomy spans that are previously detected by the 1-step
T5-base (block) model. We normalize with the model used in the last step of the 3-step (vanilla) pipeline, optionally
augmented with contexts in the prompts. We also add the T5-large normalization model without context to compare
with the larger-scale counterpart.

Normalization model T5-large T5-base T5-base T5-base T5-base T5-base

Context n/a n/a adjacent
sentences

metadata
& header

BM25
retrieval

all
combined

PET → PET, Trigger: 82.6, Anatomy Span: 66.1

Anatomy Parent 63.6 63.9 63.8 63.7 63.8 63.7
Anatomy Child 60.9 60.9 61.0 61.1 60.3 60.4

MRI → PET, Trigger: 77.8, Anatomy Span: 61.1

Anatomy Parent 51.2 50.8 52.1 51.6 53.8 53.5
Anatomy Child 48.6 45.4 47.1 46.6 48.3 48.8

CT → PET, Trigger: 77.8, Anatomy Span: 59.8

Anatomy Parent 54.1 54.2 55.5 55.0 55.5 55.9
Anatomy Child 51.2 51.2 52.2 51.6 52.6 53.0

Table 4: Average number of decoding passes per sample
(indicating relative decoding time) and tokens per sam-
ple (indicating relative cost) of one-step and multi-step
approaches for testing on the PET domain. The token
counts per sample are the average of the sum of input
and output token counts, which is used for proportional-
ity pricing LLM usage by ChatGPT. The context method
uses all context combined in another normalization step
as in Table 3.

passes/ tokens/
Method sample sample

3-step (vanilla) 2.5 355
2-step (vanilla) 1.7 199
1-step (block) + context 1.7 450
1-step (block) 1 245

6 Analysis

In this section, we analyze results to better under-
stand performance improvements associated with
the subtask block format and retrieved context in
prompts.

6.1 Multitask training for subtask blocks

To understand the contributing factors for the sub-
task block method’s effectiveness, we examine
whether the output format encodes helpful struc-
tural task information, or multitask training on

Table 5: F1 scores (%) for the cross-domain MRI-
PET condition using 1-step T5-base models, comparing:
vanilla output format, building block format but no mul-
titask training, and building block format with multitask
training.

Entity vanilla blocks, no
multitask

blocks,
multitask

Trigger 76.4 76.0 77.8
Anatomy 59.2 57.1 61.1
Parent 44.9 38.6 48.3
Child 41.2 36.9 44.8

individual subtasks predominantly drives perfor-
mance. We conduct an additional experiment using
the same subtask block output format, but without
the multitask training for individual blocks. We
use MRI as the source domain, because it suffers
the most cross-domain performance drop. The
results in Table 5 show a substantial drop in the
model’s performance in the absence of multi-task
training, as compared to both the multi-task version
and the baseline output format. This performance
degradation may be attributed to increased decod-
ing lengths.
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6.2 Predictions for multiple anatomy parents
In addition to differences in the anatomy parent
class distribution across domains, the three exam-
ination modalities also differ in how frequently
sentences with multiple anatomy entities involve
multiple parent classes. As shown in Table 6, 57%
of the sentences with multiple anatomy entities
in the target domain (PET) have multiple parents,
whereas the percentage is much lower for the other
domains (only 12% for MRI). When using the
vanilla method, models trained on a domain with
few instances of multiple parents will tend to pre-
dict the same parent class for each entity, as shown
by the lower frequency of prediction in the table.
The use of subtask blocks together with multitask
training substantially improves the model’s ability
to identify multiple parent types when there are
multiple anatomy entities. In all domains, roughly
20% of sentences have multiple anatomy entities,
so this leads to overall performance improvement.

Table 6: Relative frequency (%) of sentences with mul-
tiple anatomy entities that have different parents, com-
paring frequencies as predicted by different models to
the frequencies based on gold annotations for training
data. The gold relative frequency on the PET test data
is 55%.

Domain Training Vanilla Blocks

PET 57 53 56
MRI 12 29 46
CT 33 45 52

6.3 Target domain retrieval filtering

Table 7: Normalized anatomy F1 score (%) for the
MRI-PET condition, comparing approaches for using
target-domain context retrieved using BM25: no context,
unfiltered retrieval, and filtering the retrieval corpus to
anatomy informative sentences.

Entity no context unfiltered
contexts

filtered
contexts

Parent 50.8 52.7 53.8
Child 45.4 47.4 48.3

Trigger: 77.8, Anatomy: 61.1

To reduce the search costs, we filter the unla-
beled target domain data to include only sentences
with anatomy terms before running retrieval with
BM25. To understand the impacts on performance,

we run experiments on unfiltered data, again focus-
ing on the MRI data where domain differences are
greatest. Table 7 shows that filtering for anatomy
not only reduces costs but also gives a small im-
provement in results for identifying normalized
categories.

7 Related work

7.1 Event extraction methods

Event extraction research has predominantly de-
pended on BERT-based (Devlin et al., 2019;
Alsentzer et al., 2019) models, where the extrac-
tion subtasks are performed by classifiers utilizing
the language model layer representations (Eberts
and Ulges, 2019; Zhong and Chen, 2021; Lybarger
et al., 2023). They often yield satisfactory results
when training on sufficient in-domain training data.
For example, when training and testing on CT scan
reports, normalizing anatomical terms can result
in an F1 score of 79% for nine major body parts
and 73% for 41 sub-body parts (Lybarger et al.,
2021). Recently, there has been growing interest
in adopting generative approaches (Raffel et al.,
2020; Brown et al., 2020) for information extrac-
tion, which incorporates task descriptions and aux-
iliary context information to enhance performance
(Xie et al., 2022). Many efforts (Lu et al., 2022;
Phan et al., 2021; Lehman et al., 2023; Luo et al.,
2022) support exploration of clinical tasks through
pre-training generative models for biomedical and
clinical domains. In this study, we explicitly evalu-
ate generative models in domain shift settings, with
an emphasis on minimizing inference costs.

7.2 Context augmentation

Integrating models with supplementary contexts
has shown benefits in knowledge-intensive tasks
(Lewis et al., 2020; Guu et al., 2020). Generative
models can utilize knowledge prompts from exter-
nal knowledge sources (Peng et al., 2023; Liu et al.,
2021). In our work, we retrieve contexts from the
unlabeled clinical note corpus without relying on
external resources.

7.3 Compositionality Gap

The compositionality gap has been identified as
a challenge in generative models when multiple
subtasks are combined (Press et al., 2022). Prior re-
search on large language models has demonstrated
that breaking down complex tasks into smaller sub-
problems can be beneficial (Wei et al., 2022; Press
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et al., 2022). Small models have been employed for
multiple decoding passes (Khot et al., 2021), but
there is limited research on reasoning with smaller
models that merge these steps, which is essential
for real-time applications in the clinical field.

8 Conclusion

In conclusion, we present generative event ex-
traction methods for radiology findings that im-
prove generalization under domain shifts and re-
duce the inference costs. By decomposing com-
plex tasks into simpler subtask blocks and incorpo-
rating target-domain context during the inference
process, our approach enables smaller models to
achieve performance similar to or better than those
obtained with more decoding passes, and compa-
rable to larger models on anatomy normalization.
Our methods make efficient inference for exten-
sive clinical notes more feasible. This work offers
insights into reasoning with smaller models and
using context to compensate the reduced model
size.

Limitations

The use of machine learning models in clinical
decision-making requires an understanding of the
reasoning behind model predictions. Our study
focuses on improving the performance of smaller
models using context and subtask blocks. While
the subtask state labels provide some interpretabil-
ity, we have not explored its impact on trust among
medical professionals. In addition, the relative ben-
efit of the different multi-pass strategies and differ-
ent types of context appear to depend on the degree
of domain mismatch, which should be further ex-
plored in future work.

Ethics Statement

Radiology reports contain sensitive patient infor-
mation and it is crucial to handle this data respon-
sibly, adhering to strict privacy and confidentiality
guidelines. The dataset used in this paper was fully-
de-identified. We received approval from our insti-
tution’s IRB prior to conduct the presented research
and used HIPAA compliant servers. Additionally,
a careful examination is needed to assess potential
bias in models used for extracting information from
radiology reports prior to implementing real life
secondary use applications.
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Parent-level Class Child-level Classes

Neurological Undetermined, Spine Cervical, Spine Thoracic, Spine Lumbar,
Spine Sacral,
Spine Cord, Spine Unspecified, Brain, Nerve, Pituitary, Cere-
brospinal Fluid Pathway,
Cerebrovascular System, Extraaxial

Cardiovascular Undetermined, Venous, Arterial, Pulmonary Artery, Heart, Peri-
cardial Sac,
Coronary Artery

Thoracic Undetermined, Mediastinal

Respiratory Undetermined, Lung, Pleural Membrane, Tracheobronchial

Digestive Undetermined, Esophagus, Stomach, Intestine, Small Intestine,
Large Intestine

Hepato-Biliary Undetermined, Gallblader, Bile Duct, Pancreas, Liver

Urinary Undetermined, Kidney, Urinary Bladder, Ureter

Lymphatic Undetermined

F Reproductive Ob-
stetric

Undetermined, Breast, Ovary, Uterus, Adnexal, Extra-embryonic,

Placenta, Fetus, Umbilical Cord, Female Genital Structure

M Reproductive Undetermined, Prostate, Testis, Epididymis

Musculo-Skeletal Undetermined, Skeletal and or Smooth Muscle, Bone and or Joint

Body Regions Undetermined, Entire Body, Pelvis, Lower Limb, Upper Limb

Head Neck Undetermined, Thyroid, Neck, Ear, Eye, Mouth, Nasal Sinus,
Pharynx, Laryngeal

Skin Undetermined, Skin and or Mucous Membrane, Subcutaneous

Abdomen Undetermined, Retroperitoneal, Abdominal Wall, Peritoneal Sac,
Spleen, Adrenal Gland, Mesentery

Miscellaneous Undetermined, Adipose Tissue, Connective Tissue, Biomedical
Device

Table 8: Hierarchical anatomy normalization categories at parent and child levels.

classification with 72 categories. Each parent-level
class includes an "Undetermined" child-level class
to account for cases that don’t fit into its other speci-
fied child classes. The full normalization categories
are in Tabel 8.

As shown in Figure 2, MRI exhibits a more
imbalanced distribution, with a majority of the
anatomies related to the "Neurological" parent-
level class. In CT exams, "Respiratory" account
for 16% and "Neurological" represent 19% among
all finding-related anatomies. For MRI, "Musculo-
Skeletal" constitutes 18% while "Neurological" ex-

ams make up a substantial 62%. Lastly, in PET,
"Head Neck" accounts for 12% and "Musculo-
Skeletal" comprises 14%.

B Generative method input and output
formats

We document the templates for the input and out-
put, with examples in Tabel 9. For the template
with contexts, "prepended contexts" include prior
sentences, section headers, exam type metadata,
other contexts are "appended contexts".
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TEMPLATE
Template: [Input sentence] [Question] structured knowledge: [Task ontology]
Template with contexts: [Prepended contexts] [Input sentence] [Question] structured knowledge:
[Appended contexts] [Task ontology]
Trigger task ontology (for T5-vanilla pipeline: 1st step) Indication | Lesion | Medical_Problem
Anatomy task ontology (for T5-vanilla pipeline: 2nd step, 3rd step) Neurological: Undetermined,
Spine Cervical, Spine Thoracic .... (see Table A)
Trigger anatomy task ontology (for all related to one-step building block ) trigger types: Indication
| Lesion | Medical_Problem anatomy categories: Neurological: Undetermined, Spine, ...

EXAMPLE
Input sentence: 18 x 17 mm hypermetabolic soft tissue density insinuating between the left lobe
of the liver and anterior abdominal wall ( the R/112 ) with maximum SUV 14.4 .
Model: T5-vanilla pipeline: first step (trigger span & type)
Question: Question: What are medical findings in this sentence?
Output: trigger: density [ Lesion ]
Model: second step (anatomy span & type)
Question: Consider the medical finding "density" in the span "hypermetabolic soft tissue density
insinuating between the", Question: What anatomy it occurs in? Where is it located?
Output: anatomies: soft tissue [ Hepato-Biliary | Liver ], left lobe of the liver [ Hepato-Biliary |
Liver ], anterior abdominal wall [ Abdomen | Abdominal Wall ]
Model: third step (anatomy normalization)
Question: Consider the anatomy "soft tissue" in the span "17 mm hypermetabolic soft tissue
density insinuating between", which anatomy category it belongs to among listed options?
Output: anatomies: soft tissue [ Hepato-Biliary | Liver ]
Model: T5-vanilla one-step (trigger span & type, anatomy span & normalization)
Question: Question: What are medical findings in this sentence? What anatomy they occur in?
which anatomy category they belong to among listed options?
Output: trigger: density [ Lesion ] anatomies: soft tissue [ Hepato-Biliary | Liver ], left lobe of the
liver [ Hepato-Biliary | Liver ], anterior abdominal wall [ Abdomen | Abdominal Wall ]
Model: T5 one-step subtask blocks (trigger span & type, anatomy span & normalization)
Question: [ same as T5-vanilla one-step ]
Output: state: trigger detection answer: density state: trigger classification answer: density [
Lesion ] state: span detection answer: soft tissue, left lobe of the liver, anterior abdominal wall
state: classification answer: soft tissue [ Hepato-Biliary | Liver ] state: classification answer: left
lobe of the liver [ Hepato-Biliary | Liver ] state: classification answer: anterior abdominal wall [
Abdomen | Abdominal Wall ]
Model: multitask for trigger classification (trigger type)
Question: Consider the medical finding "density", Question: What is the type of this medical
finding?
Output: state: trigger classification answer: density [ Lesion ]
Model: multitask for anatomy span (anatomy span)
Question: Consider the medical finding "density" in the span "hypermetabolic soft tissue density
insinuating between the", Question: Please identify terms that describe the finding’s anatomy
locations.
Output: state: span detection answer: soft tissue, left lobe of the liver, anterior abdominal wall

Table 9: Templates and examples for T5 inputs and outputs. The "multitask" rows correspond to auxiliary tasks
for the T5 one-step subtask block method. We omit rows for "multitask for anatomy" and "multitask for anatomy
normalization", since they use the same question format as the 2nd and 3rd steps of the pipeline approach, but with
answers in the subtask block format.
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Figure 2: Domain differences in terms of the frequencies of parent-level anatomy normalization labels from the
training data.

C Post-processing for the generative event
extraction

When matching spans in the input sentence for pre-
dicted terms, for single-token terms, we match the
corresponding token. For multiple-token phrases,
we match phrases using the longest common nor-
malized string to the input sentence. Where multi-
ple matches are found, we choose the first match
from the left of the sentence, while for anatomy
spans, we choose the closest match to their query
triggers.

D Domain-level context retrieval

We conduct a domain-level context search using
50,000 sentences from the target domain (PET)
corpus with more than three tokens, plus 1841 sen-
tences from the test set. The retrieved content must
not be the input sentence itself. For each input
clinical sentence, we identify the most lexically
similar sentence from the search pool by selecting
the one with the highest BM25 score. We remove
punctuation and lowercase each input query when
matching it with the search corpus sentences using
the BM25 method.

To filter for anatomy-informative sentences, we
employ the same BM25 model to match the en-
tire search corpus with a single anatomy string,
which was cheaply curated from the anatomy nor-
malization categories and frequently auto-extracted

section headers, as shown in Table 10. After filter-
ing, the search corpus is reduced to 36%, shrinking
from 51,481 sentences to 18,959 sentences.

E Implementation details

The mSpERT models are trained at a batch size of
15 for 15 epochs.5 T5 models utilize a maximum
input length of 768 tokens and a maximum output
length of 512 tokens. When incorporating all types
of contexts, we double the input maximum length
to 1536 tokens. We train 15 epochs, with a batch
size of 8. For the T5 large model, to accommodate
a single NVIDIA A100 device, we employ gradi-
ent accumulation by using a batch size of 2 and
accumulating four times.

F Case study for context benefits

We observe that contexts can aid in disambiguation
(e.g. right middle lob) and understanding difficult
medical terminology (e.g. biapical). For both ex-
amples presented in Table 11, contexts include the
term "pulmonary", indicating the anatomies are
related to lungs.

5We use full event schema for mSpERT models, including
all attribute types in the annotations, including anatomy, char-
acteristic, size, size-trend, and count. While T5 models only
extract the most important attribute, the anatomy attribute.
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Neurological: Spine Cervical, Spine Thoracic, Spine Lumbar, Spine Sacral, Spine Cord, Spine,
Brain, Nerve, Pituitary, Cerebrospinal, Cerebrovascular, Extraaxial
Cardiovascular: Venous, Arterial, Pulmonary Artery, Heart, Pericardial Sac, Coronary Artery
Thoracic: Mediastinal
Respiratory: Lung, Pleural Membrane, Tracheobronchial
Digestive: Esophagus, Stomach, Intestine, Intestine, Intestine
Hepato-Biliary: Gallbladder, Bile, Pancreas, Liver
Urinary: Kidney, Urinary Bladder, Ureter
Reproductive: Breast, Ovary, Uterus, Adnexal, Extra-embryonic, Placenta, Fetus, Umbilical Cord,
Genital Structure, Prostate, Testis, Epididymis
Musculo-Skeletal: Skeletal, Smooth Muscle, Bone, Pelvis, Limb
Head Neck: Thyroid, Neck, Ear, Eye, Mouth, Nasal Sinus, Pharynx, Laryngeal
Skin: Skin, Mucous Membrane, Subcutaneous
Abdomen: Retroperitoneal, Abdominal, Peritoneal Sac, Spleen, Adrenal, Mesentery,
Adipose, Chest, Mediastinum, Osseous, Bones, Extremities, Lungs, Musculoskeletal, Ventricular,
Bowel, Pleura, Spleen, Vasculature, Thorax, Gallbladder, Kidneys, Adrenals, Adrenal, Cardio

Table 10: Common anatomy terms for filtering the search scope of domain-level context retrieval. This list is curated
from the anatomy task ontology (Table 8) and frequent section headers. Stop words are removed.

Table 11: Error examples with helpful contexts

Error with example Contexts Before and after
[ambiguity] Right
middle lobe nod-
ule (4, 81) mea-
sures 3 mm, previ-
ously 4 mm

[document-level section header]
Scattered bilateral pulmonary
nodules, as described below

before: Hepato-Biliary | Liver
after: Respiratory | Lung

[hard vocabulary]
There is biapical fi-
brosis

[domain-level BM25] There is
biapical pulmonary fibrosis
compatible with radiation ther-
apy

before: Musculo-Skeletal | Bone and or Joint
after: Respiratory Lung
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