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Abstract

Motivated by the scarcity of high-quality la-
beled biomedical text, as well as the success
of data programming, we introduce KRISS-
Search. By leveraging the Unified Medical
Language Systems (UMLS) ontology, KRISS-
Search addresses an interactive few-shot span
recommendation task that we propose. We
first introduce unsupervised KRISS-Search and
show that our method outperforms existing
methods in identifying spans that are semanti-
cally similar to a given span of interest, with >
50% AUPRC improvement relative to PubMed-
BERT. We then introduce supervised KRISS-
Search, which leverages human interaction
to improve the notion of similarity used by
unsupervised KRISS-Search. Through simu-
lated human feedback, we demonstrate an en-
hanced F1 score of 0.68 in classifying spans
as semantically similar or different in the low-
label setting, outperforming PubMedBERT by
2 F1 points. Finally, supervised KRISS-Search
demonstrates competitive or superior perfor-
mance compared to PubMedBERT in few-shot
biomedical named entity recognition (NER)
across five benchmark datasets, with an aver-
age improvement of 5.6 F1 points. We envi-
sion KRISS-Search increasing the efficiency
of programmatic data labeling and also provid-
ing broader utility as an interactive biomedical
search engine.

1 Introduction

One of the major challenges in developing machine
learning models for biomedical text analysis is the

scarcity of high-quality labeled data. Manual an-
notation of biomedical text is a time-consuming
process that demands specialized expertise, lead-
ing researchers to investigate alternative methods
such as weak supervision (Zhang et al., 2022a;
Yakimovich et al., 2021; Poon et al., 2021; Lang
and Poon, 2020) and active learning(Naseem et al.,
2021; Ren et al., 2020) to address this bottleneck.
Programmatic data labeling (Ratner et al., 2016,
2017b,a), a form of weak supervision in which do-
main experts develop heuristics (labeling functions)
to provide noisy labels for large datasets, has been
shown to be effective in leveraging domain exper-
tise. However, developing diverse and high-quality
labeling functions can be challenging, as it requires
knowledge of the programmatic rule specification.
Some techniques have been proposed to suggest
labeling functions to users (Boecking et al., 2021;
Zhao et al., 2021; Li et al., 2021), but they still rely
on users’ understanding of rule specifications to
evaluate or modify the labeling functions.

To address this challenge, we introduce an in-
teractive span recommendation task. Our key idea
is to train a single model and adapt it to human
feedback, enabling it to understand and treat simi-
larity at various levels of granularity. This approach
eliminates the need to train multiple models for dif-
ferent notions of similarity. Conventional entity
linking is one such notion of similarity, where a
user may want to identify all mentions of a spe-
cific concept, such as "hypertension disease" from
the Unified Medical Language System (UMLS).
However, a user may want the flexibility to iden-
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tify not only mentions of "hypertension disease"
but also those of "hypertension treatments" and
"hypertension comorbidities" simultaneously. This
task extends beyond entity linking and can be more
broadly described as interactive span recommenda-
tion.

To tackle the interactive span recommendation
task, we propose KRISS-Search, a method that en-
ables domain experts to develop span recommenda-
tion models for searching unlabeled corpora. A cru-
cial aspect of model performance in KRISS-Search
is the choice of embedding space. The UMLS on-
tology offers a comprehensive set of biomedical
concepts organized hierarchically. We adapt the
UMLS-based self-supervised training technique of
KRISSBERT to generate the embedding space used
by our method.

We evaluate two versions of KRISS-Search.
Unsupervised KRISS-Search takes a single user-
selected query span from a biomedical corpus as
input and returns semantically similar spans. How-
ever, in some cases, this single measure of simi-
larity may not adequately overcome the inherent
ambiguity in identifying spans based on one ex-
ample. To address this limitation, we introduce
supervised KRISS-Search, which employs active
learning to incorporate human feedback and refine
the concept of similarity used in the unsupervised
version. In the context of programmatic data la-
beling, we envision unsupervised KRISS-Search
recommending terms for users to incorporate into
labeling functions and supervised KRISS-Search
directly generating noisy labels, providing a more
flexible alternative to labeling functions.

Our main contributions can be summarized as
follows:

1. We demonstrate that unsupervised KRISS-
Search outperforms PubMedBERT (Gu et al.,
2020) by 51% area under the precision-recall
curve (AUPRC) in returning spans with ex-
act concept unique identifier (CUI) matches
to the CUI associated with the query span.
KRISS-search further outperforms PubMed-
BERT by 54% in returning spans with similar
associated CUIs.

2. By extending unsupervised KRISS-Search
to supervised KRISS-Search through human-
feedback and active learning, we surface spans
associated with specific concepts (CUIs) with
an F1 of 0.68, outperforming PubMedBERT
by 2 F1 points.

3. We demonstrate that supervised KRISS-
Search performs comparably or outperforms
PubMedBERT across five benchmark tasks in
the few-shot biomedical NER setting. On av-
erage, supervised KRISS-Search outperforms
PubMedBERT by 5.6 F1 points, demonstrat-
ing the flexibility of our method to handle
various levels of granularity.

2 Methods

In this paper, we compare various training strate-
gies for the BERT-base (Devlin et al., 2018) (100
million parameters) architecture in order to address
our proposed task. While the training strategies
discussed in this paper are specific to the BERT-
base architecture, they can also be applied to larger
models. The methods we evaluate can be charac-
terized as "contextual," "in-domain," "contrastive,"
and "interactive." "Contextual" methods use the sur-
rounding context to make recommendations, while
"in-domain" methods are trained on data specif-
ically related to the biomedical domain. "Con-
trastive" methods utilize semantic similarity and
dissimilarity during the training process. "Inter-
active" methods involve human participation to
guide model training. The four training strate-
gies we compare are BERT, PubMedBERT, un-
supervised KRISS-Search, and supervised KRISS-
Search. Each strategy implements an additional
descriptor in the order they were listed, with super-
vised KRISS-Search implementing all four.

To highlight the distinctions between BERT, Pub-
MedBERT, unsupervised KRISS-Search, and su-
pervised KRISS-Search, consider the following ex-
ample. In the sentence "The patient received a pt
assay," the query span "pt" refers to the concept
"prothrombin time assay". BERT, which is not
specifically tailored to the biomedical domain or
designed to employ contrastive or interactive tech-
niques, may surface a false positive "platinum,"
which shares the same abbreviation "pt" but is not
relevant to the biomedical domain. Similarly, Pub-
MedBERT, which is trained on biomedical data but
does not utilize contrastive learning, may generate
a false positive "physical therapy," which is in the
biomedical domain but semantically dissimilar to
the query span. In contrast, both unsupervised and
supervised KRISS-Search utilize contrastive learn-
ing, which makes them more likely to recommend
semantically similar spans, such as "prothrombin
time assay", as this similarity is explicitly incor-
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porated into the training process. Now consider
another example: "decrease in right lung mass com-
pared to prior imaging". Here, the user is interested
in the query span "decrease in right lung mass",
which represents a relationship between "decrease"
and "right lung mass". In this scenario, the con-
cept of similarity is complex and may require the
interactive feature of supervised KRISS-Search to
surface similar spans.

2.1 Efficiently Embedding the Corpus

We posit that KRISSBERT (Zhang et al., 2022b)
serves as an excellent foundation for our method, as
it is trained using a contrastive learning approach
based on the UMLS ontology that enables it to
effectively predict the correspondence of multi-
ple entities to the same underlying concept, a task
known as entity-linking. However, in its original
form, KRISSBERT is not computationally tractable
for our use case. The KRISSBERT model (Zhang
et al., 2022b) uses the [CLS] token to represent the
contextual embedding of a span and places entity
tokens between the span and its context to com-
municate the span of interest to the model. As
such, generating embeddings for X spans requires
X forward passes. This can prove computationally
intractable when the number of spans to embed
is large. To address this issue, the KRISS-Search
method removes the entity tokens from the men-
tion representations and instead aggregates the final
layer embeddings of the tokens in a span to gen-
erate the span’s embedding. Fig. 2a shows how
KRISSBERT uses entity tokens (corresponding em-
beddings shown in orange) to denote the entity and
[CLS] embeddings to compute the contrastive loss.
Fig. 2b shows how KRISS-Search removes the
entity tokens and aggregates the final layer embed-
dings of the entity tokens to compute the loss. The
dummy text snippets in Fig. 2 provide an example
of a positive pair where "patient discharge" and
"released" correspond to the same concept and are
thus pulled together in the embedding space dur-
ing contrastive training. The entity encoder is left
unchanged and is trained jointly with the mention
encoder, as we hypothesize that the hierarchical
UMLS ontology embedded in the entity encoder is
useful for the task. For training, we used a single
Tesla V100 16GB GPU.

These modifications increase computational effi-
ciency by reducing the number of forward passes
required for generating embeddings. If we pass 512

Figure 1: The KRISS-Search method consists of the
following steps: (a) embed the corpus using the KRISS-
BERT embedding space, which places mentions of the
same concept closer together and different concepts
further apart; (b) the user selects spans to seed super-
vised and unsupervised KRISS-Search. For unsuper-
vised KRISS-Search, the user selects a single positive
query span. For supervised KRISS-Search, the user
selects any number of positive and negative spans; (c)
in unsupervised KRISS-Search, nearest neighbors to
the positive query span are returned; (d) in supervised
KRISS-Search, active learning is used to train a light-
weight classifier to refine recommendations, with exam-
ples closest to the decision boundary being returned for
subsequent active learning; (e) the user provides feed-
back on the returned spans, which can be used to retrain
the light-weight classifier and return to step (d).
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(a) KRISSBERT mention encoder training with entity tokens.
The [CLS] token is used for computing the contrastive loss.
This is the approach used in the original KRISSBERT paper.

(b) KRISSBERT mention encoder training without entity to-
kens. Span token embeddings (blue) are agggregated to gener-
ate the span embeddings and compute the contrastive loss. This
is the strategy adopted for KRISS-Search.

Figure 2: A comparison of the mention encoder training
with and without the entity tokens.

tokens (the maximum sequence length of BERT-
base) into our model during a single forward pass,
our method reduces inference time by N × 512
where N is the maximum span length that we em-
bed. Additionally, our approach allows us to lever-
age the contrastive loss while still maintaining per-
token embeddings. We use the same hyperparame-
ters to retrain KRISSBERT and observe marginally
degraded performance on validation data for the
original KRISSBERT entity linking task. We note
that this is expected as the KRISSBERT hyperpa-
rameters optimize validation performance of the
original model. As the goal of this paper is not en-
tity linking, we leave re-selecting hyperparameters
to future work.

To further increase the efficiency of our method,
we also filter the embeddings, discarding spans
where the tokenization (Honnibal and Montani,
2017) of the span triggers a stop token, punctuation
token, or whitespace token based on the assumption
that such spans are not generally of interest.

2.2 Unsupervised KRISS-Search

The unsupervised KRISS-Search task involves re-
turning a ranked list of spans from the corpus that
are semantically similar to a query span, as deter-
mined by the L2 distance of their embedding to the
query span embedding.

Evaluation: For evaluation of unsupervised
KRISS-Search, we use the n2c2 dataset (2019
n2c2/UMass Lowell shared task 3) (Luo et al.,
2020). This dataset contains 100 discharge sum-
maries labeled with CUI annotations. We choose
this dataset as it represents a domain shift from
the PubMed abstracts used to train KRISSBERT.
Additionally, n2c2 is annotated with diverse enti-
ties, including medical problems, treatments, and
tests from established ontologies (Liu et al., 2005;
Spackman et al., 1997).

To evaluate the quality of the retrieved spans, we
assess the model’s ability to retrieve (1) spans with
associated CUIs that match the CUI associated with
the query span (same evaluation type in Tables 1, 2,
and 3) and (2) spans with associated CUIs that are
closely related to the CUI associated with the query
span (related evaluation type in Tables 1, 2, and 3).
Related CUIs are generated by sampling a parent
CUI of the query-associated CUI and returning its
children using the UMLS hierarchy (Bodenreider,
2004). The same evaluation type experiments indi-
cate how well each approach is at returning specific
concepts of interest, while the related evaluation
type experiments measure how well each approach
can return more loosely related concepts.

We adopt a relaxed evaluation measure where
spans that overlap with a concept mention are asso-
ciated with the concept. We apply relaxed evalua-
tion as we hypothesize that for our task, generating
precise span boundaries is less important than pro-
viding the user with a greater number of recommen-
dations. We represent spans with the mean of the
span token embeddings. We choose the test query
spans, used in Tables 1, 2, 3, as well as Figures 5
and 10, as follows. For 255 CUIs with more than
25 mentions in the corpus and corresponding span
embeddings, we randomly sample one span for
each of the 255 CUIs. We select CUIs that appear
more than 25 times hypothesizing the difficulty of
comparing approaches using low-prevalence CUIs.

To assess the model performance, we calculate
the average precision, recall, and F1 metrics for
a varying number of retrieved spans (Fig. 1 and
Fig. 10). Specifically, we evaluate the performance
at 1×N , 2×N , and 3×N , where N represents
the total number of mentions of a specific CUI in
the dataset. It is important to note that N varies
across different CUIs. The precision, recall, and F1
metrics are computed based on the number of cor-
rectly retrieved mentions of a specific CUI relative
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to the total number of CUI mentions present in the
dataset. The denominator of precision corresponds
to the number of nearest neighbors retrieved, while
the denominator of recall corresponds to the total
number of mentions in the corpus for each CUI.
These average values are not optimally informative
as performance across different CUIs varies widely
for all methods. As such, we also report per-query
measures (Table 1). We compute average per-query
percent recall improvement of KRISS-Search com-
pared to PubMedBERT (%∆ in Table 1) and the
frequency with which unsupervised KRISS-Search
outperforms PubMedBERT with respect to recall
("Win Rate" in Table 1). We also compute p-values
testing the null hypothesis that the means of the
recalls from unsupervised KRISS-Search and Pub-
MedBERT are the same using a two-sample t-test
("P-Val" in Table 1).

Additionally, we compute AUPRC values across
the 255 test query spans for both the same and
related experiments (AUPRC in Table 2). As with
the recall measures, we compute average per-query
percent AUPRC improvement of KRISS-Search
compared to PubMedBERT (%∆ in Table 3), the
frequency with which unsupervised KRISS-Search
outperforms PubMedBERT with respect to AUPRC
("Win Rate" in Table 3), and p-values testing the
null hypothesis that the means of the AUPRCs from
unsupervised KRISS-Search and PubMedBERT
are the same using a two-sample t-test ("P-Val" in
Table 3).

2.3 Supervised KRISS-Search

To incorporate human feedback, we train a light-
weight classifier with KRISSBERT embeddings
as input. We cache the KRISSBERT embeddings
to reduce the latency that would result from fine-
tuning KRISSBERT and embedding the corpus at
each active learning iteration. Our active learning
strategy is as follows. First, the user selects a small
number of positive and negative seed examples.
We then train the light-weight classifier on these
seed examples. Leveraging this trained model, we
generate a small number of additional examples to
be labeled and added to the training dataset. We
then retrain the classifier from scratch, repeating
this procedure until the label quality appears satis-
factory.

Concept Retrieval: To measure the performance
of supervised KRISS-Search in retrieving specific
concept mentions, we use same 2019 n2c2 entity

linking dataset that was used to evaluate unsuper-
vised KRISS-Search. We simulate human feedback
with the ground truth labels. We adopt a least con-
fidence (LC in Table 5 and Table 4) active learning
strategy where we return examples closest to the de-
cision boundary for labeling. Furthermore, we use
a logistic regression linear probe as the classifier,
5 active learning iterations, 15 seed examples, and
15 labeled examples per active learning iteration.
Furthermore, we hypothesize that the contrastive
loss makes distance to positively labeled examples
a useful feature. Thus, we append the square of the
L2 distance from the mean of the positively labeled
embeddings to the KRISSBERT embeddings as an
additional input feature, which we refer to as sum
of squares (SS in Table 5 and Table 4). For these
experiments, we use 28 concepts with greater than
100 mentions and corresponding embeddings, as
we require additional spans for active learning. For
evaluation, we compute performance on retrieving
all ground truth mentions in the corpus.

Few-Shot Biomedical Named Entity Recogni-
tion: We evaluate our method on the BLURB NER
datasets (Gu et al., 2020) to ground our method
in benchmarked tasks and demonstrate the flexi-
bility of our method to handle various notions of
similarity. Here, we adopt strict evaluation as is
conventional in NER and to be consistent with pre-
vious work evaluated on these tasks. We hypoth-
esize that mean pooling aggregation does not suf-
ficiently represent span boundaries, as it discards
spatial information about span embeddings. Thus,
we concatenate the first token embedding with the
last token embedding and append the length of
the span. To provide a fair comparison between
the traditional NER approaches and KRISS-Search,
we equalize the number of labeled words used for
training. We empirically choose the total number
of labeled words to be equal to the number of words
in 75 randomly sampled sentences that are used for
BERT and PubMedBERT training. For all meth-
ods, we use the same single layer perceptron as the
light-weight classifier. During BERT and PubMed-
BERT training, we save training checkpoints, and
for testing, we choose checkpoints with the best
performance on the validation sets. We forgo this
approach with KRISS-Search, as we assume that
the user has not labeled validation sets. We report
results (Table 4) using the random sampling base-
line (RSB), least confidence active learning (LC),
and a spatial refinement strategy (SpR).
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2.4 KRISS-Search with Spatial Refinement

Supervised KRISS-Search is different from stan-
dard active learning tasks in that the examples
(spans) are not independent, rather they have spa-
tial relationships. Specifically, since one span can
overlap with other spans in the sample set, we apply
the following spatial refinement (SpR in Table 5,
Table 4, and Fig. 7) strategies for KRISS-Search:

• When the span presented to the user overlaps
with a true positive span, the user can modify
the boundaries and label the correct span (Fig.
3).

• In NER tasks aiming for exact span recovery,
only one span from an overlapping group of
spans can be correct, in which case we predict
only the span with highest probability and
mark all the other spans as negative.

Figure 3: An example human feedback interface in Su-
pervised KRISS-Search with spatial refinement (SpR).
Yellow highlighting depicts spans presented to the user.
Red bold letters are ground truth positive spans. For
any recommended span, the user provides feedback by
choosing from the following options: 1. mark the span
as exactly correct (green button); 2. refine the bound-
aries of the span if it overlaps with a true span (cyan
button); 3. mark the span as wrong (red button).

3 Results

3.1 Unsupervised KRISS-Search

Fig. 4 demonstrates a performant example on a test
query for the “prothrombin time assay” CUI. Here,
we show recall for unsupervised KRISS-Search
(blue), PubMedBERT (red), and BERT (green) vs.
the number of nearest neighbors for the same evalu-
ation type. For this example, unsupervised KRISS-
Search has an edge in terms of recall and thus preci-
sion, requiring fewer nearest neighbors to retrieve
a similar number of positive spans. Fig. 8 in A
demonstrates a similar outcome for this example
using the related evaluation type.

Fig. 5 shows the mean recall, precision, and
F1 across the 255 test query spans for the same
evaluation type. Across the 255 corresponding
concepts, an average (standard deviation) of 47%

Figure 4: Recall using the same evaluation type (CUIs
associated with returned spans must match the query
associated CUI exactly). Query span is “PT”, corre-
sponding to the concept “prothrombin time assay”. The
vertical dotted lines indicate 1×N , 2×N , and 3×N .

(16%) of mentions are unique. We observe that on
average, unsupervised KRISS-Search has an edge
over both PubMedBERT and BERT in terms of
recall, precision, and F1. The error bars indicate ±
1 standard deviation. These error bars are large as
the performance across CUIs varies.

As in Fig. 5 with the same evaluation type, Fig.
10 in A aggregates the results across 255 test query
spans for the related evaluation type. Overall, it
appears that the benefit of unsupervised KRISS-
Search over PubMedBERT and BERT is still sub-
stantial when we make the evaluation less rigid and
allow for more diverse spans.

In, Table 1 we compare the aggregate per-
formance of unsupervised KRISS-Search and
PubMedBERT. %∆ indicates that the average
per-query percent improvement of unsupervised
KRISS-Search over PubMedBERT is substantial.
Furthermore, the win rates indicate that unsuper-
vised KRISS-Search does better than PubMed-
BERT across most of the test queries. The P-values
indicate that for number of nearest neighbors equals
1×N , 2×N , 3×N , and both evaluation types, the
benefit of unsupervised KRISS-Search over Pub-
MedBERT is statistically significant.

Fig. 6 shows the precision-recall curves for the
same performant prothrombin time assay exam-
ple previously evaluated using the same evaluation
type. We note that for this example, the benefit of
unsupervised KRISS-Search (AUPRC = 0.60) over
both PubMedBERT (AUPRC = 0.31) and BERT
(AUPRC = 0.11) is substantial. Fig. 9 in A shows
similarly beneficial results for the related evalua-
tion type.
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Figure 5: Mean recall (left), precision (center), and F1 (right) of unsupervised KRISS-Search (blue), PubMedBERT
(red), and BERT (green) in retrieving concepts with the same CUI for number of nearest neighbors equals 1×N ,
2×N , and 3×N across 255 test query spans. The error bars indicate ±1 standard deviation. The three plots are
staggered slightly to make the errors bars more visible.

Table 1: Comparison of unsupervised KRISS-Search
and PubMedBERT with respect to recall across 255
test query spans. #NN refers to the number of nearest
neighbors.

Eval Type #NN %∆ Win Rate P-Val
1xN + 24% 0.61 4.2e-3

Same 2xN + 29% 0.69 2.4e-5
3xN + 31% 0.73 7.0e-7
1xN + 26% 0.69 3.0e-4

Related 2xN + 35% 0.73 1.7e-6
3xN + 35% 0.75 4.0e-7

Figure 6: Precision-recall curves using the same evalua-
tion type on an example query span with the text “PT”,
corresponding to the concept “prothrombin time assay”.

Table 2: Average AUPRC scores from unsupervised
KRISS-Search, PubMedBERT, and BERT across 255
test query spans. Results are presented as mean ± 1
standard deviation

Eval Type Model AUPRC

Same BERT 0.14 ± 0.12
PubMedBERT 0.37 ± 0.23
KRISS-Search 0.43 ± 0.25

Related BERT 0.10 ± 0.09
PubMedBERT 0.26 ± 0.19
KRISS-Search 0.33 ± 0.23

Table 3: AUPRC comparison of unsupervised KRISS-
Search and PubMedBERT.

Eval Type %∆ Win Rate P-Val
Same + 51% 0.71 4.5E-03
Related + 54% 0.76 1.6E-04

From Table 2 we observe that unsupervised
KRISS-Search statistically significantly outper-
forms PubMedBERT ("P-Values" in Table 3). Al-
though the average AUPRC decreases when mov-
ing from the same to the related evaluation type (as
seen in Table 2), the average percentage change (as
represented by %∆) increases (as seen in Table 3).
This suggests that KRISS-Search’s performance
does not decline as steeply when transitioning from
the same to the related evaluation type. We further
assess whether this advantage persists when con-
sidering only unique mentions as positive spans.
Utilizing the same evaluation type, we observe av-
erage AUPRCs of 0.24 ± 0.14, 0.20 ± 0.13, and
0.14 ± 0.11 for KRISS-Search, PubMedBERT, and
BERT, respectively.
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3.2 Supervised KRISS-Search
In concept retrieval on the n2c2 dataset, we out-
perform PubMedBERT and achieve an average F1
score of 0.68 ± 0.14 (using least confidence active
learning, the sum of squares feature, and spatial
refinement).

Table 5 shows an ablation study which demon-
strates the utility of least confidence active learning
(LC vs. the random sampling baseline), the sum of
squares feature (SS), and spatial refinement (SpR).
Furthermore, for the most performant configura-
tions, the KRISS-Search embeddings outperform
the PubMedBERT embeddings.

Fig. 7 shows the concept retrieval performance
curves for an example "White Blood Count" span.
This figure illustrates that as the supervised KRISS-
Search iterations progress, incorporating human
feedback consistently enhances the model’s F1 per-
formance. Furthermore, utilization of least confi-
dence sampling (LC), sum of squares feature (SS)
and spatial refinement (SpR) techniques results in
less recall degradation while achieving the highest
F1 score performance.

Table 4 shows that our method significantly out-
performs BERT and also performs comparably to
or outperforms PubMedBERT by an average of 5.6
F1 points. This is significant given that our method
was not designed for NER. Our performance here
indicates that supervised KRISS-Search can gen-
eralize to coarse-grained biomedical concepts and
strict evaluation.

4 Conclusion

We demonstrate that unsupervised KRISS-Search
outperforms existing embedding methods for
biomedical interactive span recommendation. Su-
pervised KRISS-Search utilizes humans-in-the-
loop to achieve high levels of performance on
both granular and course grain span recommenda-
tion. Future work will investigate whether KRISS-
Search does indeed address the initial motivation
- aiding programmatic data labeling as part of an
interactive biomedical NLP system. Nonetheless,
we envision KRISS-Search being broadly useful
as a general purpose interactive biomedical search
engine.

5 Limitations

One drawback of our method is that given a maxi-
mum span length, we always miss longer spans.
For example, the BC2GM and JNLPBA NER

datasets contain lengthy spans so we do not do
as well on those tasks. Another drawback of our
method is that it requires embedding the full corpus.
One of our methods for making this tractable intro-
duces another limitation - span filtering based on
token types may discard spans that are useful to the
user. Additionally, although we demonstrate that
our method can be robust to training time (A.1), we
have not explored principled methods for selecting
the model checkpoint in supervised KRISS-Search,
as the user does not label a validation set. Methods
for making the process more rigorous should be
explored, especially for out of distribution tasks.

6 Ethics Statement

The authors have evaluated the potential conse-
quences of their research, including both positive
and negative effects. Furthermore, the authors have
ensured compliance with the guidelines outlined in
the ACM Code of Ethics and Professional Conduct,
and confirm that this work is in accordance with
those principles.
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Figure 7: "White Blood Count" concept retrieval example across active learning iterations: precision (left), recall
(middle), and F1 score (right). L stands for linear and denotes using the span embeddings without any additional
features. LSS represents an additional sum of squares feature, which is the squared distance to the mean of positively
labeled embeddings. LC denotes least confidence active learning, while RSB is the random sampling baseline. SpR
represents spatial refinement human feedback. Values are mean ± 1 standard deviation across 3 active learning runs.

Table 4: Few-Shot biomedical NER results. For the KRISS-Search methods, the reported values represent the mean
of 3 runs using different random seed example for active learning. PMB refers to PubMedBERT and KS refers to
KRISS-Search. RSB, LC, and SpR refer to random sampling baseline, least confidence active learning, and spatial
refinement respectively.

Dataset BERT PMB KS (RSB) KS (LC) KS (SpR)
BC5-chem 0.69 0.73 0.67 0.82 0.84
BC5-disease 0.49 0.60 0.52 0.71 0.74
NCBI-disease 0.55 0.63 0.45 0.65 0.70
BC2GM 0.48 0.54 0.31 0.49 0.56
JNLPBA 0.55 0.59 0.37 0.47 0.53

Table 5: Ablation study with PubMedBERT and KRISS-
Search on the concept retrieval task. The table compares
least confidence active learning (LC) versus the random
sampling baseline. It also measures how the sum of
squares feature (SS), which denotes the squared distance
to mean of the positively labeled embeddings, impacts
performance. Furthermore, it measures the impact of
spatial refinement human feedback (SpR). Values repre-
sent mean ± 1 standard deviation.

LC SS SpR PubMedBERT Kriss-Search
0.66 ± 0.13 0.68 ± 0.14
0.61 ± 0.13 0.63 ± 0.13
0.57 ± 0.14 0.58 ± 0.14
0.56 ± 0.14 0.56 ± 0.15
0.34 ± 0.12 0.41 ± 0.16
0.33 ± 0.11 0.35 ± 0.11
0.33 ± 0.12 0.31 ± 0.12
0.39 ± 0.12 0.37 ± 0.12
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A Appendix

A.1 KRISS-Search Hyperparameters

For the conventional NER methods, we choose the
following hyperparameters based on performance
on the validation set. For KRISS-Search, the task
of choosing hyperparameters for the single layer
perceptron is less straightforward as we would like
our method to generalize to settings where we do
not have a labeled validation set for hyperparame-
ter tuning. We hypothesize that we can include an
L2 regularization term and train for many epochs
without overfitting, eliminating the need for select-
ing a precise number of training iterations. We
thus increase the default regularization coefficient
from the scikit-learn MLP classifier default value
of 1e-4 to 1e-3. Furthermore, we choose the Adam
optimizer, hypothesizing that it is less sensitive
than other optimization methods to initial learning
rate. We selected an initial learning rate of 1e-4, a

train batch size of 64, and 200 training iterations
based on our hypothesis that these hyperparameters
would result in training that is not sensitive to the
number of training iterations. To validate this hy-
pothesis, we also conducted additional experiments
with only 100 training iterations, and found that
the performance differences between the two sets
of experiments were negligible. This suggests that
our chosen hyperparameters are indeed robust and
do not greatly affect the outcome of the training.

A.2 Recall of "PT" example using related
evaluation type

Fig. 8 shows results for the same prothrombin
time assay CUI example as was used in Fig. 4 but
with the related evaluation type. We note here that
the number of nearest neighbors corresponding to
1×N , 2×N , and 3×N is greater as expected.

Figure 8: Recall using the related evaluation type on an
example query span with the text “PT”, corresponding
to the concept “prothrombin time assay”.

A.3 Aggregate recall, precision, and F1 using
related evaluation type

Fig. 10 aggregates the results across 255 test query
spans for the related evaluation type. The benefit of
unsupervised KRISS-Search over PubMedBERT
and BERT is substantial when we make the evalua-
tion less rigid and allow for more diverse spans as
compared to the same evaluation type.

A.4 AUPRC of "PT" example using related
evaluation type

Fig. 9 shows the precision-recall curves for the pro-
thrombin time assay example using the related eval-
uation type. As with the same evaluation type, the
benefit of unsupervised KRISS-Search (AUPRC
= 0.77) over both PubMedBERT (AUPRC = 0.26)
and BERT (AUPRC = 0.13) is significant.
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Figure 9: Precision-recall curves using the related evalu-
ation type on an example query span with the text “PT”,
corresponding to the concept “prothrombin time assay”.
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Figure 10: Aggregate recall (left), precision (center), and F1 (right) of unsupervised KRISS-Search (blue), Pub-
MedBert (red), and BERT (green) in retrieving concepts with related CUIs for number of nearest neighbors equals
1×N , 2×N , and 3×N across 255 test query spans.
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