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Abstract 

Aphasia and dysarthria are both common 

symptoms of stroke, affecting around 30% 

and 50% of acute ischemic stroke patients. 

In this paper, we propose a storyline-centric 

approach to detect aphasia and dysarthria in 

acute stroke patients using transcribed 

picture descriptions alone. Our pipeline 

enriches the training set with healthy data 

to address the lack of acute stroke patient 

data and utilizes knowledge distillation to 

significantly improve upon a document 

classification baseline, achieving an AUC 

of 0.814 (aphasia) and 0.764 (dysarthria) on 

a patient-only validation set. 

1 Introduction 

Published studies reported that about 30% of acute 

ischemic stroke patients are presented with aphasia 

as an initial symptom (Engelter et al., 2006), while 

around half of these patients exhibit some form of 

dysarthria (Urban et. al., 2001), with acute 

dysarthria specifically associated with small 

lacunar stroke primarily due to small vessel 

disease. The “cookie theft” picture description task 

shown in Figure 1 is commonly used for language 

assessment in the NIH stroke scale (NIHSS) to 

score the severity of aphasia and dysarthria among 

others. Currently, the scoring is done by a certified 

healthcare worker. 

 

 

 

 

 

 

 

 

 

Recent research has demonstrated the feasibility 

of deep learning-based stroke detection, using 

facial expression and voice data gathered from the 

“cookie theft” storytelling task (Figure 1) that 

serves to differentiate mild/moderate stroke among 

stroke mimics in the emergency room (Cai et al., 

2022). However, existing approaches to AI-

enabled stroke prediction have only utilized the 

audio spectrum of patient recordings. The language 

content of these recordings is yet to be used for 

language assessment, even though the storytelling 

audio is often automatically transcribed. This 

motivates us to apply unstructured storytelling 

transcript and large-scale language model in order 

to predict the presence of aphasia or dysarthria in 

patients with stroke-like symptoms, using NIHSS 

subscores 9 and 10 as gold standard. 

In this paper, we present a new storyline-centric 

pipeline that uses transcribed patient descriptions 

alone to detect aphasia and dysarthria in patients 

with stroke-like symptoms. Although no such 

study has been done in stroke to the best of our 

knowledge, these unlabeled patient transcripts are 

proven to be highly useful for language-related 

symptoms detection by a robust body of research 

in Alzheimer’s disease (AD) prediction and 

monitoring (de la Fuente Garcia et al., 2020). 

Working with patient descriptions of the cookie 

theft picture amongst other transcripts, recent 

studies in AD discover that transformer-based 

language models that leverage a comprehensive 

language understanding (Guo et al., 2019; Qiao et 

al., 2021; Liu et al., 2021; Wang et al., 2023) tend 

to outperform models trained on syntactic, lexical, 

or pragmatic features alone (Fors et al, 2018; 

Ammar and Ayed, 2018). Moreover, models that 

depend on syntax and pre-defined lexicons are 

more prone to racial and educational biases that 
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Figure 1. Cookie theft picture commonly used in 

patient description tasks for stroke assessment and 

aphasia and dysarthria diagnosis. 
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discriminate against patients who are non-native 

speakers or dialect users of English. 

The relative lack of NLP-enabled stroke 

detection could be due to the lack of patient textual 

data, while similar studies in Alzheimer’s disease 

could benefit from publicly available corpora of 

patient narratives, both on the cookie theft picture 

and otherwise (MacWhinney 2019). To tackle this 

challenge, we are interested in exploring how data 

from cloud-sourced healthy volunteers, which is 

easier and more cost-effective to obtain, could be 

used to improve clinical NLP models. We 

experiment with two approaches to enrich our 

training set with healthy subject data, by including 

them first directly as the texts themselves and then 

indirectly as metadata representations in the form 

of knowledge graphs. By circumventing the data 

bottleneck, we believe that it is possible to improve 

NLP-enabled detection of language symptoms in 

stroke patients. 

 

Major Contributions. In this work, we present 

1) a pair of ELECTRA-based models for detecting 

aphasia and dysarthria in patient documents by 

performing data distillation with storyline-encoded 

knowledge graphs extracted from both healthy and 

patient transcripts, 2) de-noised document-level 

knowledge graphs that represent the “correct” 

storyline as a consensus between healthy 

volunteers, which provides semantic emphasis that 

enriches document classification, and 3) a 

qualitative evaluation of our models’ performance 

that examines their semantic and clinical 

limitations with error-based behavioral testing. 

2 Data Enrichment and Baselines 

2.1 Patient Data 

To build our dataset, patients with stroke-like 

symptoms from the Houston Methodist Hospital 

System are instructed to verbally describe the 

“cookie theft” image for one minute while their 

audio and facial video were recorded. Ground truth 

labels for aphasia and dysarthria are respectively 

obtained from subscores 9 and 10 of the NIH stroke 

assessment. The voice recordings of patients 

describing the image in English are automatically 

transcribed with Assembly AI, resulting in a dataset 

of 268 patient transcripts (3 patient samples are 

dropped due to poor quality). We retrieve subscores 

9 and scale 10 scores for aphasia and dysarthria 

respectively from these patient transcriptions 

(49/268 for aphasia, 74/268 for dysarthria). 

Notably, 44/49 of our aphasia patients and 60/74 of 

our dysarthria patients are diagnosed with stroke. 

2.2 Data Enrichment with Crowdsourced 

Healthy Volunteer Transcripts 

Data enrichment refers to the process of 

supplementing internal data with external data 

sources (Allen and Cervo, 2015). In the clinical 

domain, it could be applied to address the lack of 

available patient data by enlarging the training set 

with healthy subjects as negative labels. We 

leverage Amazon’s Mechanical Turk (mTurk) to 

collect healthy volunteer voice data from native 

English speakers from the United States describing 

the same cookie-jar theft story (n=988). We 

conduct manual quality control and confidence 

score evaluations to filter the mTurk dataset 

(n=675) to ensure that it only consists of high-

quality audio recordings and storylines that 

resemble that of healthy subjects.  

The healthy subject transcripts are then used 

to enrich the patient transcripts, and both healthy 

and patient transcripts were separately split at an 

80/20 ratio into an enriched training set (n=754, 

214 patients), which utilizes both healthy and 

patient data for training, and a patient-only 

validation set (n=54), with the proportion of each 

label class (aphasia or dysarthria) preserved. We 

exclude all healthy data points from the 

validation set, to make sure that measurement 

metrics in upcoming sections would represent the 

classification performance on acute stroke 

patients alone. We choose to not include a hold-

out test set due to the lack of patient data. 

2.3 Enriched Baselines for Patient 

Document Classification 

Transformer-based methods (Vaswani et al., 

2017) have been credited with most recent progress 

in the area of text classification (Minaee et al., 

2021). We experiment with fine-tuning various 

transformer-based language models, including 

BERT (Devlin et al., 2019), RoBERTa (Liu et al., 

2019), ALBERT (Lan et al., 2019), and ELECTRA 

(Clark et al., 2019), to implement binary 

classification on our patient documents for both 

aphasia and dysarthria. We choose not to 

implement any clinical NLP models because 

patient descriptions of the cookie theft picture 

themselves are not particularly relevant to the 

clinical domain. 
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We first experiment with only using patient data 

for model training, and their performance is 

evaluated with the area-under-curve (AUC) metric. 

Due to the small size of the patient training set 

(n=214), the validation performance of various 

baseline models is unsatisfactory when trained on 

patient data alone, with AUC between 0.43 to 0.46. 

To address this, an enriched training set is created 

by combining healthy and patient data, while the 

best model is selected using a patient-only 

validation set. 

Baseline models are established when a 

significant improvement in performance is 

achieved with data enrichment. ELECTRA-large is 

the best performing model overall: after 

enrichment, its AUC rises to 0.615 for aphasia and 

0.627 for either aphasia or dysarthria in the patient-

only validation set. Notably, all models’ inferences 

on aphasia outperform that of dysarthria, as shown 

in Table 1. This gap in performance could be 

attributed to the imprecise and unintelligible 

speech (Yorkston, 1996) that is common in 

dysarthria due to poor motor coordination. As a 

form of language impairment, dysarthria is more 

often manifested as difficulty articulating rather 

than semantic mismatch (Mitchell et al., 2017), 

which might not be directly visible to language 

models without domain-specific fine-tuning. 

Our proposed methods in the next section aim to 

improve upon these baseline results, as stated in the 

metrics of Table 1. 

3 Knowledge Distillation 

This section reports our experiment designs aimed 

at testing the hypothesis that knowledge distillation 

with storyline-encoded knowledge graphs, 

extracted from both healthy and patient transcripts, 

would transfer semantic knowledge to the enriched 

document classification model and improve the 

performance of detecting aphasia and dysarthria.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 2, the knowledge distillation 

pipeline has two components. First, we conduct 

unsupervised knowledge graph extraction with 

BERT-based entity annotation and relation 

extraction models. Second, we leverage these 

knowledge graphs to provide semantic 

reinforcement for the baseline ELECTRA 

document classification model defined in Section 

2.3. 

3.1 Knowledge Graph Extraction from 

Healthy Volunteer Transcripts as 

Representations of Ground Truth 

Storyline 

Beyond data enrichment, we further leverage the 

mTurk dataset of healthy subjects to construct 

document-level knowledge graphs (KG) that 

represent the ground truth storyline of the “cookie 

theft” picture, which we will use to enrich the 

knowledge distillation learning in Section 3.3. The 

nodes of these KGs are key entities extracted from 

each transcript by a BERT-based annotator 

(Grootendorst, 2020), and the edges between them 

are semantic relations that describe a form of non-

sequential storyline. For relation extraction, we 

implement a BERT-based model (Soares et al., 

Model BERT-base ALBERT-large RoBERTa ELECTRA-large 

AUC (label=‘Aphasia’) 0.533 0.595 0.512 0.615 

AUC (label=‘Dysarthria’) 0.421 0.416 0.403 0.424 

AUC (label=‘Combined’) 0.558 0.596 0.52 0.627 

Table 1. Baseline patient document classification performance on aphasia, dysarthria, and combined (patients 

with either aphasia, dysarthria, or both) labels, after data enrichment.  

 

 

Figure 2. Schematic of the knowledge distillation 

pipeline. 
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2019)1 fine-tuned with the general domain relation 

labels of SemEval-2010 Task 8 (Hedrickx et al., 

2010). However, the initial outputs lack coherence 

and contain excessive noise. To address this, we 

implement the following denoising strategies 

sequentially: 

1. Entity permutation on the sentence 

level. Each transcript is tokenized into 

sentences, and key phrases (n=4) are 

extracted on a sentence level. Each key 

phrase is paired with each other’s key 

phrase and then passed into the relation 

extractor with the rest of the sentence. 

We filtered out excessively short 

sentences (n<=5) from going into the 

classifier to avoid having trivial words 

annotated as key phrases, and the 

relations classified as “Other” from 

going into the output knowledge graph. 

This results in a significant improvement 

from the initial approach to pass the 

entire paragraph into the relation 

extractor, which creates many contrived 

situations where a word at the start of the 

paragraph might be paired with a word at 

the end.  

2. Domain-specific pre-training on 

mTurk and patient transcripts. We 

include an additional pre-training step to 

the relation extractor so that the language 

model could have some exposure to our 

corpus before fine-tuning and produce 

more relevant results.  

3. Nodes and edges cleaning. Entities that 

evidently describe the same entity, i.e., 

“mother” and “woman,” are combined. 

Redundant relation labels are also 

removed from the fine-tuning stage. The 

Sem-Eval 2010 Task 8 dataset’s relation 

classification dataset contains these 

following relation labels that are not 

relevant to the cookie theft picture: 

“Component-Whole,” “Product-

Producer,” “Member-Collection,” and 

“Message-Topic.” Removing them 

significantly reduces the number of 

 
1 We could not find the official code repository for 
Soares et al. (2019). Instead, we used a popular 

community implementation available at 

misplaced nodes and edges in the output 

KGs.  

4. Updating to lighter models. We run 

relation extraction on ALBERT instead 

of BERT, since it performed better on 

both the patients and enriched set during 

the baseline testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An example of a typical document-level KG 

after denoising is shown in Figure 3. The nodes 

are then weighted using TF-IDF based on the 

collection of all entities extracted from the 

mTurk dataset, which indicates the relative 

importance of each entity. 

3.2 Knowledge Distillation for Semantic 

Reinforcement in Aphasia and 

Dysarthria Document Classification 

With 675 denoised KGs that represents the 

storyline as described by healthy subjects, we aim 

to conduct storyline-centric knowledge distillation 

learning to improve on the classification results of 

data enrichment alone (Section 3.1) in Table 1. 

https://github.com/plkmo/BERT-

Relation-Extraction. 

 

Figure 3. Example of a denoised knowledge graph. 

The nodes are key entities from the picture 

descriptions, with their size representing their phrase 

importance. The edges are semantic relations between 

the two nodes, including: 

1. Instrument-Agency 

2. Content-Container 

3. Entity-Origin 

4. Entity-Destination 
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To achieve this, we experiment with two types of 

knowledge distillation: 1) triple classification, 

which combines all 675 KGs into one large KG, 

and 2) triple concatenation, which leverages the 

KGs individually on the document level. 

To construct and extract more meaningful and 

accurate KGs from patient transcripts, we make the 

following adjustments to the methods described in 

Section 3.1 to increase its effectiveness in a clinical 

setting:  

• Joining sentences that are excessively 

short. 41.8% of the patients with either 

aphasia or dysarthria and 37.4% of those 

without talk in very fragmented sentences 

with minimal syntax, usually in two-or-

three-word sequences of “subject-verb,” 

“subject-verb-object,” or simply isolated 

words. To ensure the meaningfulness of 

the output entities, we join these sentences 

together to offer sufficient contexts for the 

BERT-based relation extractor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Parameter tuning. We evaluate the output 

from different key phrase counts per 

sentence and minimum sentence length, 

and qualitatively determine that four 

entities per sentence no shorter than 100 

characters generates the best tradeoff 

between noise and the number of triples 

extracted.  

A representative example of patient transcripts 

and their extracted triples is shown in Figure 4. 

While mostly accurate, the KG model is still 

limited by some inaccurate entity pairings as it 

permutates through each sentence, which we hope 

to address with further denoising steps outlined in 

Section 5. 

 

Triple Classification:  Triple classification is a KG 

completion task that identifies whether a triple 

could be a constitutive part of a certain given KG, 

as a naive approach to knowledge distillation. A 

triple is defined as a set of head, relation, and tail 

that is the basic constituting unit of a KG. We 

 

Figure 5. ROC curves of triples-distilled ELECTRA-large on aphasia (AUC=0.814), dysarthria (AUC=0.764), and 

combined (AUC=0.769) in patient only validation set 

                        Patient Passage         Extracted Triples 

 

 

 

 

 

 

 

 

Figure 4. Sample patient transcript and its extracted triples. Color scheme denotes sentence of origin, with entities bolded in the 

transcript. 

Okay. Oh, I’ve seen this before. There’s a lot of things going on, 

and some of them aren’t quite right. The sink is overflowing, and 

there getting some cookies from this cookie jar, and he’s about to 

fall, but then she’s acting like everything’s okay, and it’s not 

okay, but she must be on Prospect or something like that, because 

she does not even see that anything is happening over there. And 

he’s about to fall, and he can have a concussion or something like 

that. And it’s a nice day outside, and there’s some other things in 

the cabinet, and there’s nothing on this side of the sink or 

anything like that. And she’s drying a dish, and there’s curtains, 

and there’s a walkway, and there’s sink 

 

sink, Cause-Effect(e2,e1), overflowing; 

cookie, Cause-Effect(e1,e2), overflowing; 

sink, Cause-Effect(e2,e1), fall;           

sink, Content-Container(e1,e2), cabinet; 

concussion, Cause-Effect(e2,e1), fall; 

curtains, Entity-Origin(e2,e1), drying; 

drying, Instrument-Agency(e2,e1), dish 
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implement triple classification with LMKE (Wang 

et al., 2022), a BERT-based model that is 

representative of various highly similar recent 

triple classification models based on the same 

codebase proposed by Yao et al. (2019). We 

collapse all patient-level KGs generated in Section 

3.1 into one large KG, use it to re-train LMKE as 

the ground truth training set, and then evaluate the 

model on all patient triples as the inference set. This 

is in essence a zero-shot learning approach, as the 

training set only has positive labels. We run 

inference on each triple extracted from the patient 

transcripts to determine if they belong to the 

ground truth KG. The triples extracted from 

patients with either aphasia or dysarthria are 

expected to output a negative label (not belonging 

to the ground truth KG), since our assumption is 

that their descriptions do not semantically fit the 

“no language symptom” storyline. Unfortunately, 

LMKE does not facilitate patient-level prediction, 

while its triple-level performance (AUC=0.612, 

label= ‘combined’) does not suggest potential 

improvement from the baselines in Section 2.3. 

 

Triple Concatenation: Since LMKE does not 

perform well on the triple level, we seek to transfer 

and distill the knowledge that the model learned 

from triple classification to the patient level. One 

approach we successfully implement is to 

concatenate triples to the end of the transcript that 

they are generated from as a way of data distillation 

for semantic reinforcement. Since the triples are 

directly extracted from the transcripts and the two 

are too correlated to be considered statistically 

independent, we choose to concatenate them 

instead of training them as two separate features. 

This significantly increases the performance of 

ELECTRA on combined language symptoms 

detection (AUC=0.769), and the feature 

dependency that motivates the concatenation is 

further validated by an ablation that shows using 

the concatenated triples alone would perform 

poorly (AUC=0.427). Notably, the triples-enriched 

model demonstrates a significant improvement on 

dysarthria detection (AUC=0.764), which makes 

its performance more balanced between different 

language conditions (Figure 5). Excessive 

repetition (Mitchell et al., 2017) is a prominent sign 

of dysarthria, as recent studies (Mitchell et al., 

2021; Kirshner, 2022) find a repetition test to be an 

effective metric for dysarthria diagnosis and 

examination. Our use of triples in aphasia and 

dysarthria detection could be considered as an AI-

enabled automation of the repetition test. It puts 

semantic emphasis on key entities that dysarthria 

patients struggle to articulate, which would 

otherwise not be visible to ELECTRA or other 

language models from the word embedding space 

alone. 

4 Behavioral Testing and Discussion 

We conduct further qualitative testing to 

thoroughly evaluate the sensitivity of our aphasia 

and dysarthria models to different types of 

language errors and generalizability to external 

data. This is motivated by a recent surge in the 

behavioral testing of NLP models that challenge 

the effectiveness of common quantitative testing 

metrics (Ribeiro et al., 2020). For NLP models in 

the clinical domain, van Aken et al. (2022) 

highlight the need to simulate plausible real-life 

patient inputs to analyze model sensitivity directly.  

Our main goals thus are to 1) verify that our 

models are in fact learning semantically, as 

expected by our methodology, 2) simulate 

“external” data to assess potential model 

overfitting to the specific clinical settings of the 

patient data, and 3) better understand the semantic 

limitations and boundary conditions of our models 

in order to make more accurate, informed, and 

measured claims about their clinical outcomes. For 

each patient transcript, we generate 9 versions of 

the original text that amplify types of language 

errors in both semantic and syntactic categories. 

Table 2 compares the aphasia and dysarthria 

models’ performance on all categories of error-

infused transcripts, with F1 as the evaluation 

metric. 

4.1 Syntax Testing 

On the word level, we manually saturate each 

patient description with subject-verb disagreement, 

verb tense, and pronoun errors. The dysarthria 

model’s huge drop in F1, in particular, shows that 

it is particularly sensitive to word-level syntax 

errors.  

On the sentence level, we experiment with 

sentence structures that could cause grammatical 

confusion: 1) run-on sentences with too few 

punctuations, and 2) overly fragmented sentences 

with too many punctuations. 1) has been directly 

identified as a symptom of aphasia by the NIH’s  
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Error Type Example Aphasia (F1) Dysarthria (F1) 

Original “There’s a kid falling off a chair, trying to get 

a cookie. His sisters trying to take the cookie 

away from him. And moms washing dishes. 

The sinking is overflowing. She's looking out 

the window and the water is going all over the 

floor…” 

0.86 0.72 

Random Noise “There’s a kidh fallibng off a chair, trying 

touket a cookie.qHis sisters tryingh to take the 

cookie iway fromq him. jAnd mems wauhing 

dishes. Thepslinhking is overlflowing. Shme's 

lokking omt thg window and the watewr gis 

ghing all nver the floor…” 

0.62 0.33 

Excessive 

Grammatical 

Errors 

“There have a kid falled off a chair, tryed to 

get a cookie. Her sisters tries take the cookie 

away from her. And moms wash dishes. The 

sinking are overflowing. Him’s looked out the 

window and the water is going all over the 

floor…” 

0.69 0.4 

Run-on Sentences “There’s a kid falling off a chair trying to get a 

cookie his sister’s trying to take the cookie 

away from him and moms washing dishes the 

sinking is overflowing she’s looking out the 

window and the water is going all over the 

floor…” 

0.73 0.62 

Fragmented 

Sentences 

“There’s a. kid falling. off a chair trying. to 

get. a cookie. His. sisters trying. to. take. the. 

cookie away from him. And moms. washing 

dishes. The sinking is overflowing. She’s 

looking out. the window. and the water. is 

going. all over the floor…” 

0.67 0.64 

Additional 

Object(s) 

“There’s radio a kid falling radio off a chair, 

trying radio to get radio a cookie. His sisters 

trying to take the cookie away from him. And 

moms washing dishes. The sinking is 

overflowing. She's looking out the window 

and the water is going all over the floor…” 

0.7 0.6 

Removed Key 

Object(s) 

“There’s a kid falling off a chair, trying to get. 

His sisters trying to take away from him. And 

moms washing dishes. The sinking is 

overflowing. She’s looking out the window 

and the water is going all over the floor…” 

0.67 0.54 

Keeping First 

Sentence Only 

“There's a kid falling off a chair, trying to get a 

cookie.” 

0.7 0.25 

Randomly 

Deleting 

“to His take from dishes. The sinking window 

and is pretty that's about getting soaking wet. a 

and the boy's cookie in his right grab another 

one. to” 

0.56 0.37 

Reversed 

Sentence Order 

“Is that no. And the sisters reaching up, trying 

to get one of the cookies from me. The boy’s 

holding cookie in his left hand as he's falling 

off the chair, and he's got his right hand in the 

cookie jar trying to grab another one. That's 

about all I see… There's a kid falling off a 

chair, trying to get a cookie.” 

0.68 0.56 

Table 2. Examples of cookie theft picture descriptions infused with each category of language errors for 

behavioral testing 
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most up-to-date definition 2 , while 2) has been 

linked to dysarthria as many studies find that 

dysarthria patients tend to be more effective at 

processing shorter sentences (Allison et al., 2019), 

especially when aided with pauses and verbal 

stress-making (Kuschmann and Lowit, 2021). Both 

observations are supported by our results: out of all 

error types, the aphasia model achieves the highest 

F1 on 1), validating it as a prominent feature of 

aphasia, and the dysarthria model performs the best 

on 2), which validates it as a prominent feature of 

dysarthria. 

4.2 Semantics Testing 

The aim of semantic pressure testing is to 

evaluate the extent that our models are making 

predictions based on semantic features, through 

observing their reaction to altered input 

descriptions with external or missing information. 

• Semantic Mismatching: Objects in the 

patient descriptions are mismatched by 

both deleting key objects in the cookie 

theft picture or adding ones that are not in 

it. The key objects are selected from the 

TF-IDF ranking of knowledge graph 

entities extracted in Section 3.1. The 

performance of both models is a lot more 

affected by the removal of key objects that 

have been semantically reinforced by 

knowledge graphs, than the addition of 

external objects. This higher sensitivity 

verifies the effectiveness of knowledge 

distillation and triple concatenation. 

• Deleting: The input text is experimented 

with two different degrees of deleting: 1) 

only keeping the first sentence, and 2) 

randomly deleting up to 70% of the text. 

The aphasia model is more affected by 2) 

and the dysarthria model is more affected 

by 1). The results are consistent with our 

findings in Section 4.1, as the aphasia 

model’s strength with run-on sentences 

would be negated by random deleting’s 

disruption of sentence structures, while the 

dysarthria model’s strength with 

fragmented sentences would be irrelevant 

when there is only one sentence in the 

input. In addition, the dysarthria model is 

 
2 
https://www.nidcd.nih.gov/health/aph

asia 

in general significantly more sensitive to 

missing texts. 

• Sentence reversal: We also find that our 

models could be significantly impacted by 

reversing the sentence order alone, 

confirming numerous recent studies that 

demonstrate BERT-based models’ 

sensitivity to the word or sentence order of 

the input (Hessel and Schofield, 2021; 

Pham et al., 2021). 

5 Conclusion and Future Work 

This work explores the under-researched area of 

applying NLP to unlabeled patient transcripts for 

supporting the triage and detection of stroke and 

stroke mimics. We introduce a storyline-centric 

approach that leverages data enrichment and 

knowledge distillation to overcome the lack of big 

clinical training datasets for automating aphasia 

and dysarthria detection. Our experiments show 

that our approach to knowledge distillation has the 

potential to significantly improve the performance 

of patient document classification. Nonetheless, we 

believe that it is possible to further enhance the 

results in Figure 5 by designing more robust and 

effective knowledge distillation techniques to 

integrate transcripts, triples, and graph-theoretic 

aspects of KGs.  

Our ongoing work include: 1) using Sentence 

Transformers (Reimers and Gurevych, 2019) to 

further denoise the output of KG extraction, 2) 

developing solutions to incorporate both semantic 

knowledge embeddings and graph embeddings in 

clinical document classification, and 3) recruiting 

Spanish-speaking patients and healthy volunteers 

and expanding our storyline-centric pipeline to 

Spanish language models (Gutierrez-Fandino et al., 

2021), to better serve the clinical needs of the 

Hispanic community in stroke triage and detection. 

Limitations 

Due to clinical and financial constraints, both the 

patient and the mTurk sample sizes of our study are 

still relatively small. This means that we cannot 

afford to set aside patient data as a hold-out test set, 

and have to use the validation set for model 

evaluation. As we work towards enrolling more 

patients and recruiting more healthy volunteers to 
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improve model generalizability, we hope to expand 

the scope of our pipeline beyond English to serve 

non-native speaker patients. 

One major limitation of the cookie theft picture 

description task is its lack of equitable assessment 

for an increasingly diverse patient population. 

Steinberg et al. (2022) identify gender as a 

particularly fraught aspect of the picture’s expected 

response, as the rubrics of the initial NIHSS were 

established from a male-only corpus. Although 

there is no alternative picture or stroke patient 

corpus available to our study, we try to ensure the 

equity of our models by maintaining a gender 

balance in our patient set, with 136 female patients 

and 132 male patients. On our patient-only 

evaluation set, our aphasia model performs 

significantly better on female patients 

(AUC=0.909) compared to male patients 

(AUC=0.702), while the dysarthria model exhibits 

better performance on male patients (AUC=0.778) 

than female patients (AUC=0.719). At present, we 

are unable to draw any definitive conclusions about 

model equity due to the scale of our data. However, 

it will be a key area of focus for our future research. 
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