@inproceedings{milintsevich-agarwal-2023-calvados,
title = "{C}alvados at {MEDIQA}-Chat 2023: Improving Clinical Note Generation with Multi-Task Instruction Finetuning",
author = "Milintsevich, Kirill and
Agarwal, Navneet",
editor = "Naumann, Tristan and
Ben Abacha, Asma and
Bethard, Steven and
Roberts, Kirk and
Rumshisky, Anna",
booktitle = "Proceedings of the 5th Clinical Natural Language Processing Workshop",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.clinicalnlp-1.56",
doi = "10.18653/v1/2023.clinicalnlp-1.56",
pages = "529--535",
abstract = "This paper presents our system for the MEDIQA-Chat 2023 shared task on medical conversation summarization. Our approach involves finetuning a LongT5 model on multiple tasks simultaneously, which we demonstrate improves the model{'}s overall performance while reducing the number of factual errors and hallucinations in the generated summary. Furthermore, we investigated the effect of augmenting the data with in-text annotations from a clinical named entity recognition model, finding that this approach decreased summarization quality. Lastly, we explore using different text generation strategies for medical note generation based on the length of the note. Our findings suggest that the application of our proposed approach can be beneficial for improving the accuracy and effectiveness of medical conversation summarization.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="milintsevich-agarwal-2023-calvados">
<titleInfo>
<title>Calvados at MEDIQA-Chat 2023: Improving Clinical Note Generation with Multi-Task Instruction Finetuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kirill</namePart>
<namePart type="family">Milintsevich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Navneet</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Clinical Natural Language Processing Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tristan</namePart>
<namePart type="family">Naumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asma</namePart>
<namePart type="family">Ben Abacha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our system for the MEDIQA-Chat 2023 shared task on medical conversation summarization. Our approach involves finetuning a LongT5 model on multiple tasks simultaneously, which we demonstrate improves the model’s overall performance while reducing the number of factual errors and hallucinations in the generated summary. Furthermore, we investigated the effect of augmenting the data with in-text annotations from a clinical named entity recognition model, finding that this approach decreased summarization quality. Lastly, we explore using different text generation strategies for medical note generation based on the length of the note. Our findings suggest that the application of our proposed approach can be beneficial for improving the accuracy and effectiveness of medical conversation summarization.</abstract>
<identifier type="citekey">milintsevich-agarwal-2023-calvados</identifier>
<identifier type="doi">10.18653/v1/2023.clinicalnlp-1.56</identifier>
<location>
<url>https://aclanthology.org/2023.clinicalnlp-1.56</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>529</start>
<end>535</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Calvados at MEDIQA-Chat 2023: Improving Clinical Note Generation with Multi-Task Instruction Finetuning
%A Milintsevich, Kirill
%A Agarwal, Navneet
%Y Naumann, Tristan
%Y Ben Abacha, Asma
%Y Bethard, Steven
%Y Roberts, Kirk
%Y Rumshisky, Anna
%S Proceedings of the 5th Clinical Natural Language Processing Workshop
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F milintsevich-agarwal-2023-calvados
%X This paper presents our system for the MEDIQA-Chat 2023 shared task on medical conversation summarization. Our approach involves finetuning a LongT5 model on multiple tasks simultaneously, which we demonstrate improves the model’s overall performance while reducing the number of factual errors and hallucinations in the generated summary. Furthermore, we investigated the effect of augmenting the data with in-text annotations from a clinical named entity recognition model, finding that this approach decreased summarization quality. Lastly, we explore using different text generation strategies for medical note generation based on the length of the note. Our findings suggest that the application of our proposed approach can be beneficial for improving the accuracy and effectiveness of medical conversation summarization.
%R 10.18653/v1/2023.clinicalnlp-1.56
%U https://aclanthology.org/2023.clinicalnlp-1.56
%U https://doi.org/10.18653/v1/2023.clinicalnlp-1.56
%P 529-535
Markdown (Informal)
[Calvados at MEDIQA-Chat 2023: Improving Clinical Note Generation with Multi-Task Instruction Finetuning](https://aclanthology.org/2023.clinicalnlp-1.56) (Milintsevich & Agarwal, ClinicalNLP 2023)
ACL