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Preface

This volume contains papers from the 5th Workshop on Clinical Natural Language Processing (Clinical
NLP), held at ACL 2023.

Clinical text offers unique challenges that differentiate it not only from open-domain data, but from other
types of text in the biomedical domain as well. Notably, clinical text contains a significant number of
abbreviations, medical terms, and other clinical jargon. Clinical narratives are characterized by non-
standard document structures that are often critical to overall understanding. Narrative provider notes are
designed to communicate with other experts while at the same time serving as a legal record. Finally,
clinical notes contain sensitive patient-specific information that raise privacy and security concerns that
present special challenges for natural language systems. This workshop focuses on the work that develops
methods to address the above challenges, with the goal of advancing state-of-the-art in clinical NLP.

ClinicalNLP 2023 also hosted the MEDIQA-Chat 2023 shared tasks that promote research on effecti-
ve solutions for clinical note generation from medical conversations. The shared tasks focused on the
summarization of doctor-patient conversations and on the generation of synthetic dialogues from clini-
cal notes for data augmentation. They introduced new benchmarks for training and evaluation and used
an ensemble of evaluation metrics that highly correlate with human judgments. Further, the organizers
added a new requirement to submit the code for a second evaluation of the outputs. The MEDIQA-Chat
shared tasks attracted 120 registered teams with 17 teams submitting their codes and runs for official
participation. The participating teams experimented with the recently released Large Language Models
(LLMs) vs. older models and explored data augmentation, fine-tuning, and prompting methods. The
results provided new insights on the best approaches and techniques for future research directions in cli-
nical text generation.

This year, we received the total of 82 submissions, inclusive of shared task submissions, from which 58
were accepted for presentation.
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Keynote Talk: Patient record summarization: tasks,
approaches, evaluation, and open challenges

Noémie Elhadad
Columbia University

Abstract: The patient record contains an overwhelming large amount of information, too much for a
clinician to make sense of it, and yet the information it contains may be critical for clinicians to care
for their patients safely and effectively. In this talk, I will review two tasks to alleviate the information
overload in clinical care: longitudinal patient record summarization and abstractive brief hospital course
summarization. I will describe potential approaches, evaluation objectives, and current open questions.
Finally, using the abstractive task of brief hospital course summarization as a grounding example, I will
discuss large language models (LL.Ms) in the context of clinical NLP.

Bio: Noémie Elhadad is Chair of the department of Biomedical Informatics at Columbia University,
affiliated with the department of Computer Science and the Data Science Institute. Elhadad’s research
lies at the intersection of artificial intelligence, human-centered computing, and medicine. She creates
novel methods and tools to support patients and clinicians in their information needs, with particular
focus on ensuring that the Al systems of the future are robust, safe, fair, and just.
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Keynote Talk: The evolution of representations for clinical
text and a few more thoughts about generative clinical models

Timothy Miller
Boston Children’s Hospital, Harvard Medical School

Abstract: Large language models (LLMs) have excited the broader public like no previous NLP advan-
ce. This has led to predictions from all corners about the future of LLM-enabled NLP for clinical data
and tasks. In this talk, I review several recent projects from my lab that did not use LLMs, and re-imagine
these projects in an LLM-enabled context. The talk then synthesizes the lessons from those projects to
propose some guidelines for optimal use of LLMs in clinical NLP research, imagine future directions
that are now enabled, and to make some predictions about the future of our field.

Bio: Tim Miller is an Associate Professor in the Computational Health Informatics Program at Boston
Children’s Hospital, Department of Pediatrics at Harvard Medical School, and at the Harvard-MIT Center
for Regulatory Science. He is the PI of the Machine Learning for Medical Language Lab, home of several
federally funded projects, including projects focused on basic biomedical NLP research, as well as pro-
jects that are driven by biomedical use cases. His research focuses on domain adaptation/generalizability
of ML-based NLP methods, as well as methods for learning universal patient representations.
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Clinical BERTScore: An Improved Measure of Automatic Speech
Recognition Performance in Clinical Settings

Joel Shor*
Verily Life Sciences, USA
joelshor@verily.com

Steven Ibara
Verily Life Sciences, USA

Abstract

Automatic Speech Recognition (ASR) in med-
ical contexts has the potential to save time,
cut costs, increase report accuracy, and reduce
physician burnout. However, the healthcare
industry has been slower to adopt this technol-
ogy, in part due to the importance of avoiding
medically-relevant transcription mistakes. In
this work, we present the Clinical BERTScore
(CBERTScore), an ASR metric that penalizes
clinically-relevant mistakes more than others.
We collect a benchmark of 18 clinician prefer-
ences on 149 realistic medical sentences called
the Clinician Transcript Preference benchmark
(CTP) and make it publicly available' for the
community to further develop clinically-aware
ASR metrics. To our knowledge, this is the first
public dataset of its kind. We demonstrate that
our metric more closely aligns with clinician
preferences on medical sentences as compared
to other metrics (WER, BLUE, METEOR, etc),
sometimes by wide margins.

1 Introduction

Clinicians in a number of disciplines work in an
overburdened healthcare system that leads to dif-
ficult working environments and an epidemic of
physician burnout (Dzau et al., 2018). Al-related
technologies have the potential for improving ef-
ficiency on repetitive tasks, therefore increasing
both patient throughput and decreasing physician
burnout. For example, physicians in a number of
disciplines spend as much time doing paperwork as
with patients (Tai-Seale et al., 2017). However, the
adoption of speech technology in the medical com-
munity has been slow (Latif et al., 2021), and there
are a number of speech technologies that could
improve efficiency.

Speech technology can be applied to a number
of medical problems including transcribing patient-
physician conversations (Shafran et al., 2020), help-

*Authors contributed equally
'https://osf.io/tgd92/

Ruyue Agnes Bi*
MIT, USA
ruyuebi@mit.edu

Roman Goldenberg
Verily Life Sciences, Israel

1

Subhashini Venugopalan
Google Research, USA

Ehud Rivlin
Verily Life Sciences, Israel

ing dysarthric patients communicate (Shor et al.,
2020), and diagnosing medical conditions from
speech (Shor et al., 2022; Shor and Venugopalan,
2022; Peplinski et al., 2021; Venugopalan et al.,
2021). In this work, we focus on the task of gener-
ating a report after a colonoscopy procedure.

One of many reasons for the lower adoption of
time-saving speech transcription technologies is
that the ASR systems often don’t perform as well in
real-world clinical settings as they do on evaluation
benchmarks. The most common metric for mea-
suring ASR performance, Word Error Rate (WER),
has significant practical drawbacks (Wang et al.,
2003; Morris et al., 2004; He et al., 2011). First,
all mistakes are treated equally. In clinical set-
tings, however, medical words are more important
(e.g. "had complete resection” — "had complete
c-section" is a worse mistake than — "has com-
plete resection", but both have equal WER). Sec-
ond, some mistakes affect the overall intelligibility
more than others (e.g. "was no perforation” —
"was no puffer age" vs "was not any perforation").
Although researchers have proposed alternatives
to the WER, no metric combines medical domain
knowledge with recent Al advances in language
understanding.

In this work, we make the following contribu-
tions:

1. Generate a collection of realistic medical sen-
tences and transcripts with plausible ASR errors
and collect preferences from 18 clinicians on
149 sentences. We publicly released this dataset
for reference and future studies. This is the first
public dataset of its kind.

2. Present the Clinical BERTScore (CBERTScore)
and demonstrate that it more closely matches
clinician preferences on medical transcripts than
other ASR metrics (WER, BLEU, METEOR,
BERTScore).

3. Demonstrate that CBERTScore does not per-
form worse than other metrics on non-medical

Proceedings of the 5th Clinical Natural Language Processing Workshop, pages 1-7
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transcripts.

2 Related work

There are a number of ways to evaluate transcript
quality. The Word Error Rate (WER), is the sim-
plest to compute and most common. It counts the
number of insertions, deletions, and substitutions
between two text strings, and normalizes by the
length of the reference string. The Bilingual Eval-
uation Understudy (BLEU) (Papineni et al., 2002)
measures the amount of n-gram overlap between
two text strings (where #n is often 4). It captures the
intuition that groups of words are important in addi-
tion to individual words. METEOR (Banerjee and
Lavie, 2005) focuses on unigrams, but computes an
explicit alignment between two strings and takes
both precision and recall into consideration. While
these techniques are cheap to compute, they pri-
marily focus on character or string similarity, not
semantic similarity.

Our work most closely follows the BERTScore
(Zhang et al., 2019). This metric computes a neural
word embedding for each word in the reference
and candidate. Embeddings are matched using
cosine distance instead of string similarity, and the
final score takes precision and recall into account
(see Fig.1). This method takes semantic similarity
into account, but not that some words are more
important to preserve in clinical contexts.

Structured graphs are one way to encode real-
world knowledge in a machine-readable format.
The Knowledge Graph (KG) (Singhal, 2012) is a
publicly available structure that encodes medical
knowledge. Previous work has used the medical
subset of the KG to learn medical entity extraction
(Shafran et al., 2020). We primarily follow this
approach to determine which words are clinically
significant.

3 Methods

3.1 Clinical BERTScore

Our proposed metric, the Clinical BERTScore
(CBERTScore), combines the BERTScore (Zhang
et al., 2019) and the medical subset of the Knowl-
edge Graph (Shafran et al., 2020).

BERTScore is a relatively novel language gener-
ation evaluation metric proposed in (Zhang et al.,
2019) based on pre-trained BERT contextual em-
beddings. It is designed to capture semantic sim-
ilarity between two sentences, instead of sim-
ple string matching. Given a reference sentence

x = (z1,...,7k) and a candidate sentence & =
(%1, ..., Z), we first represent each token by a con-
textual embedding, and then calculate the cosine
similarities between the tokens. Each token in the
reference sentence is matched to the most similar
token in the candidate sentence, and vice versa.
The former is used to compute the recall Rgggr,
and the latter to compute the precision Pgggy. Pre-
cision and recall are then combined into a single
score BERTScore as follows:

Rgerr = — maxXx; Xj,
| | T;ET
x; €
1 T A
Bigrr = — max x; X;
|a¢| -  TiExT
TjET

PBERT : RBERT
PB]:'RT + RBI:RT

Building on this, we define CBERTScore:

CBERTScore(z, &) =k X BERTScoremedical (7, &)+
(1 — k) x BERTScorea(z, £)
,where 0 < k <1

BERTScore = 2

BERTScore,y is computed over all words in the
sentences, and BERTScorepegical is computed over
a subset of them that are medically relevant. If
there are no medical terms in either the reference
or candidate sentence, we define the CBERT Score
to be the standard BERTScore (on all words), i.e.,
k is set at 0.

We inject medical information into this metric in
two ways. First, we compute a weighted score on
a subset of words involving medical terms, as de-
termined by the Knowledge Graph (Shafran et al.,
2020). Second, we tune the weight of the clinical
term penalty to best match a clinician transcript
dataset (CTP) that we collected. We describe our
method for determining k in Sec. 3.1.2.

3.1.1 Medical Entities

Similar to (Shafran et al., 2020), we de-
rive roughly 20K medically relevant words
from Google’s Knowledge graph (Singhal,
2012). These words come from entities
with properties such as ‘“/medicine/disease”,
“/medicine/drug", “/medicine/medical_treatment",
and “/medicine/medical_finding". We also include
numbers for the CBERTScore algorithm, since
numerical accuracy is important in medical
contexts.

3.1.2 Tuning the medical entities weight factor

CBERTScore has a parameter controlling the
weight of the clinical component. To determine
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Figure 1: Left: Background of the clinicians who were surveyed to create the Clinician Transcript Preference (CTP) dataset.
Right: Some examples of triplet medical sentences, which transcript clinicians prefer, and which transcript scores better based

on different metrics.

this factor, we picked the best performing k£ on
the training subset of the Clinician Transcript Pref-
erence (CTP) dataset (Sec. 3.2). We evaluated k
using 11 points evenly spaced between 0 and 1, and
performed the evaluation methodology in Sec. 3.2
for each. We then used this value for all subsequent
results and analyses.

3.2 Clinician Transcript Preference (CTP)
Dataset

In order to compare CBERTScore’s agreement with
human preference, we sent out a Qualtrics survey
to elicit judgment specifically from clinicians. We
call this dataset the Clinician Transcript Preference
dataset (CTP), and we make it publicly available
on the Open Science Framework (OSF). To our
best knowledge, this is the first publicly available
dataset with clinician preferences of transcript er-
Tofrs.

We collected data on 150 sentences. They were
divided into three groups, each containing 50 trials.
18 subjects with clinical backgrounds responded
to more than half the questions. Fig. 1 (left)
describes clinician backgrounds. Each participant
was randomly assigned to a group to ensure ap-
proximately uniform response coverage. For each
trial, participants are given a ground truth sentence
and two “transcripts" and asked to select the less
useful one or to indicate the two are about the
same. An example of such a triplet is as follows:
“Patient elects to go under Propofol sedation.”

#1: Patient elects to go under Prilosec sedation.
#2: Patient selects to go under Propofol sedation.

The survey was designed to take no more than 20
min to minimize the cognitive strain on partici-
pants. One sentence was malformed, resulting in
149 sentences for the final dataset.

*Broadly defined as a person with extensive clinical experi-
ence or from a clinical research background, for our purpose.

3.2.1 Constructing the CTP triplets

To generate the triplets of (target, transcript #1,
transcript #2) used in the survey, we started by
downloading publicly available YouTube videos on
colonoscopies created by GI physicians and edu-
cational institutes. The target sentences were tran-
scribed by Google’s publicly available Speech-to-
Text medical dictation model (Soltau et al., 2021)
and manually checked for accuracy. Filler words
such as “uh" and repeated words were edited out.
Sentences longer than 30 words or less than 5 were
discarded.

For each target sentence, transcript #1 was gen-
erated by one of Google’s other, non-medical, pub-
licly available ASR models. Transcripts with an
edit distance(edi) outside [1, 3] were discarded.
This procedure generated 1220 candidate sen-
tences.

To ensure that the two transcripts were roughly
comparable in terms of fidelity, transcript #2 was
generated synthetically. We used a publicly avail-
able English word frequency dictionary(Goldhahn
et al., 2012) to select words in the target sentence
that were candidates for synthetic errors. Candi-
date words were at least 5 characters, appeared in
the 1M word dictionary fewer than 10 times, and
were not proper nouns. 486 candidate sentences
matched these criteria. Finally, transcript #2 was
generated by deleting the candidate word or manu-
ally substituting it with a phonetically similar word
or phrase®. We discarded similar sentences and se-
lected 150 triplets for the final survey. The ordering
of the two transcripts was randomized, and so were
the sentences.

3.2.2 Evaluating metrics on the CTP

To compare the ability of different metrics to agree
with rater preference from the CTP, we define a

3 A Python fuzz search algorithm based on CMU Pronounc-
ing Dictionary was used for consistency.
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Figure 2: Comparison of different metrics’ agreement with human rater transcript preferences. Process of deriving a prediction
from metric values is described in Sec. 3.2. In all plots, "CBERTScore1.0* is the performance from only the medical term
component (k = 1.0 in Sec. 3.1). "CBERTScore0.4 uses the optimal value of k according to the train set. Left: Agreements
with clinicians on the CTP benchmark when labels are derived using majority voting. Center: Agreements with clinicians on the
CTP benchmark when restricted to questions with unanimous answers. Right: Agreement with speech pathologist raters on the
non-medical dataset, when restricting the data to cases where there is a fidelity difference between two candidate transcripts.

3-class classification problem as follows:

Predicted better transcript(M ) (gt, t1,t2) =

tl M(gt,51) - M(gta 52) >
to M (gt, s1) — M(gt, s2) < 1

same else

where M is an evaluation metric, gt is the ground
truth sentence, and ¢; are the transcripts. Note
the predictions are reversed for the WER, since
lower values indicate higher fidelity. [ is a free
variable, which we optimize separately for each
metric. We split the data into two halves, choose
the best performing ! on one half, and report the
accuracy using that [ on the second half.

3.2.3 Non-medical sentences

To demonstrate that CBERTScore doesn’t degrade
on non-medical speech, we compare the metrics’
agreement with rater preferences on a dataset with
annotations similar to (Tobin et al., 2022). Part of
this dataset consists of 5-tuples of (ground truth
sentence, transcript 1, transcript 2, assessment 1,
assessment 2), where the sentence assessments de-
scribe how much of the ground truth sentence’s
meaning is captured in the transcript. We used a
subset of 103 utterances from our annotated data
where the ratings were not the same, and at least
one transcript was rated as having ‘“Major errors".
We report performance using a similar formulation
as on the CTP evaluation in Sec. 3.2.2: we frame
this as a 2-way classification problem (no cutoff is
needed since we exclude tuples that have the same
rating).

4 Results

4.1 Clinician responses

18 clinicians responded to a total number of 149
triplet questions. Each question had 5 or 6 re-
sponses. 78% of questions had more than half
agreement on which transcript was less useful and
42% had more than 80% agreement. Clinicians
thought transcripts were the same usefulness in
21% of cases.

4.2 Metric agreement on medical text

We report 3-way accuracy classification on the CTP
dataset using two labeling schemes (Fig. 2). In the
first, we only look at the questions where more
than half the respondents agreed. In the second, we
report accuracy on the questions where more than
4/5 of the respondents agreed. For both numbers,
we determine the cutoff from one half the data and
report accuracy on the second half.

First, the metric ordering by performance is
the same using both labeling schemes, and the
best CBERTScore medical weighting factor was
the same using both label schemes. Second,
BERTScore and CBERTScore are significantly
more closely aligned with clinician preferences
than other metrics. Third, CBERTScore weighted
entirely toward medical terms outperforms or ties
with BERTScore agreement. Fourth, the weighted
combination of medical and non-medical terms
outperforms other metrics in terms of clinician
agreement. Fifth, the medical component meaning-
fully improves the performance of CBERTScore
over BERTScore (75.9% vs 67.2% and 87.5% vs
84.4%).
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Figure 3: Fraction of cases where metric Y is correctly con-
ditioned on metric X and Y disagreeing. An indicator of how
similar the pattern of mistakes is between metrics.

4.3 Metric agreement on non-medical text

CBERTScore was the second best-performing met-
ric on non-medical text. Importantly, the addition
of the medical component did not degrade the per-
formance compared to BERTScore.

5 Discussion

5.1 Knowledge Graph medical terms wins
and losses on the CTP

The CTP (Sec. 3.2) had 127 distinct words that
were the source of transcript errors, and 684 dis-
tinct other words. The medically-relevant terms
used in the CBERTScore algorithm, identified pri-
marily from the Knowledge Graph as described
in Sec. 3.1.1, intersected with 99 of the 127 tran-
script error words. By manual inspection, 25 of
the 28 transcript error words in the CTP not in-
cluded in the CBERTScore word list were used
in a medical context but were not only medical in
meaning (ex. “surveillance", “tethered", and “lon-
gitudinal"). 3 of the 28 missed words did have a
primarily medical meaning, but were not included
in the CBERTScore list either due to errors in the
KG or errors in the queries generating the list (“co-
loguard", “colonoscope”, “protuberance”). Some
of the words have a clear meaning in a medical
context, and could be manually added to the list for
future applications (“snare", “suctioning", etc.).

The CBERTScore word list included 100 words
that weren’t selected for transcript errors. Many of
these are medical in nature, but were not selected
for synthetic transcript errors via the method de-
scribed in Sec. 3.2 (ex. “endoscope”, “hypoplastic”,
“lymphoma").

5.2 CBERTScore performance on the CTP

5.2.1 CBERTScore wins

Fig. 3 left shows the degree to which better-
performing metrics subsume other metrics, or make
a different pattern of mistakes. The plot shows
the (Metric Y correct) /(Metric X and Y disagree).
Metrics that have higher clinician agreement and a
high fraction on this plot are strictly better, whereas
metrics with higher agreement but a low value in
this plot indicate that another metric might have
an additional signal. We see that CBERTScore is
nearly strictly better than the other metrics, with
the possible exception of METEOR (when they
differ, METEOR gives the correct rating in roughly
a third of cases).

There were some triplets that CBERTScore got
correct that no other metric did. The improvements
over BERTScore always involved a medical term,
and sometimes involved encouraging the metric to
prioritize medical mistakes (ex. "Marked the site
with 5 cc's of indigo carmine.* — "Marked the site
with 5 cici's of indigo carmine.” vs "Marked the
sight with 5 cc's of indigo carmine.*)

There were thirteen triplets that the neural word
embeddings predicted correctly that other metrics
did not. Many of these wins came from the strength
of neural word embeddings penalizing less for se-
mantically similar mistakes (ex. "Small burst of
coagulation to create a darkish white ablation.” —
"Small burst of coagulation to create a darkish
white oblation.” vs "Small burst of coagulation
to create a dark white ablation.”). Furthermore,
BERTScore agreed with clinicians on some medi-
cal word mistakes, likely due to the BERT embed-
ding somewhat understanding when a transcript
error leads to a large semantic change in a medical
term (ex. "No ongoing infection or coagulopathy.*
— "No on going infection or coagulopathy.” vs
"No ongoing infection or glomerulopathy.*).

5.2.2 CBERTScore mistakes

Fig. 3 shows that METEOR made the most cor-
rect predictions when CBERTScore was incorrect.
Some mistakes are due to the KG medical list being
incomplete. For example, "longitudinal® was not
included, but has medical meaning in clinical con-
texts (ex. "The longitudinal extent of the hot snare.*
— "The long eternal extent of the hot snare.* vs
"The longitudinal extend to the hot snare.*).
Another pattern of mistake is when a non-
medical adjective contains an error, but the ad-



jective modifies a medical term in an important
way. For example, "vessel* is a medical term, but
"feeding* is not (ex. "This polyp is at high risk of
bleeding, with multiple feeding vessels.” — "This
polyp is at high risk of bleeding, with multiple
seeding vessels.* vs "This polyp is at high risking
bleeding, with multiple feeding vessels.”). This
suggests that future work might include modifica-
tions and dependencies when calculating clinical
importance.

Finally, a third pattern of mistake involves the
fact that METEOR penalizes complex correspon-
dences between candidate and reference sentences,
while CBERTScore only considers the best pair-
wise word matches. One example in the CTP pre-
serves most of the words, but reorders them (ex.
"Inject into the head of the polyp, another 1 to 2
cc.” — "Injectant the head of the polyp, another
1 to 2 cc.” vs "Inject into the head of the polyp,
another 1 2 to cc.%).

6 Conclusions

We present CBERTScore, a novel metric that com-
bines medical domain knowledge and recent ad-
vances in neural word embeddings. We collect and
release a benchmark of clinician rater preferences
on transcript errors, demonstrate that CBERTScore
is more closely aligned with clinician preferences,
and release the benchmark for the research com-
munity to continue to improve ASR in medical
contexts.
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Abstract

Assessing the capacity of numerical under-
standing of vision-and-language models over
images and texts is crucial for real vision-and-
language applications, such as systems for au-
tomated medical image analysis. We provide a
visual reasoning dataset focusing on numerical
understanding in the medical domain. The ex-
periments using our dataset show that current
vision-and-language models fail to perform nu-
merical inference in the medical domain. How-
ever, the data augmentation with only a small
amount of our dataset improves the model per-
formance, while maintaining the performance
in the general domain.

1 Introduction

Vision-and-language models have made great
progress on complex tasks, going beyond image
recognition and towards reasoning over images and
texts (Antol et al., 2015; Xie et al., 2019; Suhr
et al., 2019). Following the success of pre-trained
language models (Devlin et al., 2019, inter alia), re-
cent advances in vision-and-language models have
been made by the introduction of large-scale pre-
training (Li et al., 2019; Kim et al., 2021; Singh
et al., 2022). However, as with pre-trained lan-
guage models, it is unclear what information pre-
trained vision-and-language models learn and use
in their predictions, and what their limitations are.

While a large body of research (Naik et al.,
2018; Rozen et al., 2019; Ravichander et al., 2019;
Richardson et al., 2020) has provided challenging
reasoning tasks to probe the reasoning ability of
pre-trained language models, such work has been
more limited for vision-and-language models. Fur-
thermore, previous visual reasoning datasets are
usually provided by the general domain of images,
and analysis across different domains is desirable.

*Equal Contribution.

"https://radiopaedia.org/cases/haemorrhagic-intracranial-
metastases-from-breast-cancer
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(a)

(b)

Extensive brain metastases
with largest lesion = 4 cm without mass effect
for patients capable of all selfcare

Stereotactic
radiosurgery

Hippocampal-avoidance
whole brain radiotherapy

Figure 1: The practical example of the need for visual
reasoning in the medical domain. (a) A magnetic reso-
nance imaging (MRI) image showing two brain metas-
tases'. (b) Treatment strategy depending on the lesion
number of brain metastases (modified from Gondi et al.
(2022), not for medical use).

Our focus is to investigate whether current
vision-and-language models have the ability to in-
fer numerical relationships between images and
texts in the medical domain, which is crucial for
real vision-and-language applications such as sys-
tems for automated medical image analysis. Con-
sider the example of images and textual descrip-
tions in a medical article presented in Figure 1.
The lesion number affects the treatment strategy
for diseases such as brain metastasis. If systems
can automatically judge whether the lesion num-
ber in given images matches that in arbitrary query
texts, they can support medical decision-making.
Recently, a vision-and-language model focusing on
the medical domain (Delbrouck et al., 2022) has
begun to be provided but is not yet fully developed.

With this motivation, we provide a visual
reasoning dataset focusing on numerical infer-
ence in the medical domain by adding annota-
tions to the previous medical image and cap-
tion dataset MedICaT (Subramanian et al., 2020).
We call our dataset MedVTE, which will be
publicly available at https://github.com/
ynklab/MedVTE. Using MedVTE, we investi-
gate the extent to which current pre-trained vision-
and-language models have the ability of numerical
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understanding on visual reasoning tasks across im-
ages and texts in the medical domain. The experi-
ments show that current models have much room
to perform numerical inference in the medical do-
main.

2 Background

2.1 Vision-and-language understanding

Regarding standard vision-and-language under-
standing tasks, SNLI-VE (Xie et al., 2019) is a
large general domain dataset for the Visual Textual
Entailment (VTE) task. The dataset consists of
image-sentence pairs annotated with a three-class
label (entailment, contradiction, or neutral), indi-
cating whether a premise image entails a hypothe-
sis sentence. There have been studies investigating
the counting ability of vision-and-language mod-
els on visual question-answering tasks and object
detection tasks (Chattopadhyay et al., 2017; Zhang
et al., 2018; Song and Qiu, 2018; Trott et al., 2018;
Acharya et al., 2019; Parcalabescu et al., 2021).
However, since previous studies only use datasets
in the general domain, it is unclear the extent to
which models can maintain the ability to under-
stand numerical expressions in the medical domain.

For visual reasoning in the medical domain,
Li et al. (2020) have compared the performance
of four pre-trained vision-and-language models
and traditional CNN-RNN models on two datasets
of thoracic findings classification tasks: MIMIC-
CXR (Johnson et al., 2019) and Openl datasets.
The results showed that the pre-trained models out-
performed the traditional models. Our VTE dataset
gives a fine-grained analysis of the capacity of the
pre-trained vision-and-language models for numer-
ical understanding in the medical domain.

2.2 Clinical NLP

Clinical NLP is one of the practical fields of NLP,
and various reasoning tasks in the medical domain
have been provided. For sentence-level language
understanding tasks, emrQA (Pampari et al., 2018)
is a large-scale QA dataset on electronic medical
records, and MedSTS (Wang et al., 2020) is a re-
source for Semantic Textual Similarity (STS) tasks
in the medical domain. The most related dataset to
ours is MedNLI (Romanov and Shivade, 2018), a
physician-annotated Natural Language Inference
(NLI) dataset with premises extracted from clinical
notes. However, a recent study has reported anno-
tation artifacts in MedNLI (Herlihy and Rudinger,

2021). To avoid such undesired artifacts, we cover
a variety of numerical expressions.

3 MedVTE Datasets

We introduce MedVTE, visual reasoning datasets
in the medical domain involving numerical expres-
sions. MedVTE is composed of pairs of medical
images, captions, and three-class entailment labels
(entailment, contradiction, or neutral). MedVTE
focuses on the relationship between the number of
lesions, such as cancer in an image and the numeri-
cal expression in a text.

We created MedVTE by selecting examples
involving numerical expressions from MedICaT
dataset (Subramanian et al., 2020). MedICaT con-
tains 217,060 figure-caption pairs in medical arti-
cles, whose captions sometimes refer to the number
of the depicted lesions (e.g., tumors or nodules).
The selection is conducted by one medical expert.

3.1 Premise-hypothesis collection

In MedVTE, a premise is a MedICaT figure, and a
hypothesis is one complete sentence containing one
or more lesion numbers. We created 409 examples
for the MedVTE dataset in total.

Step 1. Cleaning We removed 58 MedICaT
figure—caption duplicate pairs. We also mitigated
occasional errors in MedICaT captions, such as
missing letters or interrupted sentences. Some
MedICaT captions are provided in two versions,
the one by the MedICaT authors and the other from
the S20RC dataset (Lo et al., 2020). In such cases,
we always chose the longer one to avoid including
incomplete sentences.

Step 2. Figure collection We collected MedICaT
figure—caption pairs whose captions include lesion
numbers in a rule-based approach. We assigned
Penn Treebank part-of-speech (POS) tags (Marcus
et al., 1993) to all captions. We then applied a
spaCy rule-based matcher to accept only captions
having a numeral followed by a noun suggesting
lesions. This step left us 431 figure—caption pairs.
See Appendix A for details.

Step 3. Hypothesis collection Every MedVTE
hypothesis is a single sentence including one or
more lesion numbers. We collected hypotheses
by splitting captions into sentences and selecting
sentences containing at least one lesion number.
Sentence selection was performed in a rule-
based approach as in Step 2 followed by manual



MedICaT Figure /
MedVTE Premise

MedICaT Caption

MedVTE Hypothesis

Fig. 2. 58-year-old woman with hepatocellular carcinoma. A. Hepatobiliary phase image of
gadoxetic acid-enhanced MRI shows two small nodules of hypointensity (arrowheads).
These two nodules show no enhancement on arterial phase images of MRI and on arterial
phase of CT scan (not shown). B. Axial image of C-arm cone-beam CT shows
enhancement of these two nodules (arrowheads). Note motion artifact of hepatic artery
caused by inadequate breath-hold. C, D. Unenhanced CT scan images obtained
immediately after chemoembolization show dense accumulation of iodized oil in these m
m (arrowheads) with surrounding parenchymal accumulation of iodized oil.

: Sentence with lesion numbers

Out-of-figure information exists

These two nodules show no enhancement on arterial phase images of MRI and on arterial

phase of CT|scan (not shown).

No clauses remain after removing out-of-figure information

Strict label: neutral
Loose label: negtral

B. Axial image of C-arm cone-beam CT shows enhancement of these two nodules

(arrowheads).

C, D. Unenhanced CT scan images obtained immediately after chemoembolization show
dense accumulation of iodized oil in these WML LIEE (arrowheads) with surrounding

All propositions entail

Strict label: entailment
Loose label: en{ailment

Lesion number entails

Out-of-figure information exists

Strict label: neJtraI
Loose label: enxailment

parenchymal accumulation of iodized oil.

Lesion number entails

Figure 2: MedVTE examples. Premises are MedICaT figures and hypotheses are MedICaT caption sentences
containing numerical expressions of lesions. For each hypothesis, the strict label considers all information, and the
loose label is only determined by comparing lesion numbers. Corresponding lesion numbers are colored in orange,
yellow, and dark blue. Light blue spans indicate out-of-figure information, which is beyond the figure’s scope and
deemed unverifiable by the medical expert based on the figure alone.

reviews. In manual reviews, we removed erro-
neous lesion numbers where integers do not ac-
tually count lesions, such as cell line names Walker
256 tumor. We also excluded invalid premise
figure-hypothesis sentence pairs meeting the be-
low criteria:

* the figure file contains multiple article figures
* the hypothesis is not a single sentence

* the hypothesis does not make sense due to
ungrammaticality.

When multiple hypothesis sentences corre-
sponded to a single premise figure, we treated
each premise figure-hypothesis sentence pair as
an independent sample. We obtained 409 premise-
hypothesis pairs for 373 premise figures, where
430 lesion numbers appear in total.

3.2 Labeling

We assigned two types of entailment labels, strict
labels and loose labels, to premise-hypothesis pairs
on MedVTE.

Strict labels follow the common practice of anno-
tating visual reasoning datasets to compare all the

10

Models Tralﬂ\Test SNLI-VE MVTEl MVTEs
SNLI-VE | 0757 0243  0.290
VILT +MVTEl | 0757 0443 0366
+MVTEs | 0745 0371 0416
SNLI-VE | 0790 0236 0281
FLAVA +MVTElI | 0791 0428 0356
+MVTEs | 0.791 0355  0.408

Table 1: F1-macro scores of each baseline model and
dataset. MVTEI and MVTEs indicate MedVTE anno-
tated with loose labels and strict labels, respectively.
+MVTEI indicates SNLI-VE mixed with MVTEL

information, not only numerical one but also med-
ical background knowledge, of a premise figure
and a hypothesis sentence. However, we found that
the considerable number of strict labels became
neutral under given images because out-of-figure
information in hypothesis sentences (i.e., informa-
tion that is not acquired from images), such as “this
image was obtained six months after surgery,” is
necessary to judge their labels as entailment.

To realize separate assessments of the numeri-
cal reasoning abilities of models under only given



images, we add loose label annotations rather than
editing hypothesis sentences. Loose labels only
compare numerical information of a premise figure
and a hypothesis sentence. This approach provides
an option to focus on numerical reasoning abilities
with loose labels, or to fully measure medical rea-
soning abilities with strict labels, which requires
expert knowledge to recognize out-of-figure infor-
mation.

The following is the definition of loose labels.
Details are available in Appendix C.

e entailment: All lesion numbers are consistent
with the premise figure

* contradiction: One or more lesion numbers
are smaller than those depicted in the premise
figure

* neutral: Either of the following is satisfied:
(i) one or more lesion numbers are larger than
those depicted in the premise figure although
the others are consistent, (ii) the number of le-
sion numbers cannot be determined only from
the premise figure, or (iii) no clauses remain
after removing out-of-figure information from
the hypothesis.

Figure 2 shows MedVTE examples. In the
top and middle examples, their loose labels are
the same as their strict labels. In the bottom
example, its loose label is different from its
strict label with the consideration of out-of-figure
information. The distribution of loose labels in
MedVTE is (entailment, neutral, contradiction) =
(310,95,4), and that of strict labels
is  (entailment, neutral, contradiction) =
(208,197,4).

4 Experiments and Analysis

4.1 Experimental setup

Models Vision-and-language models are catego-
rized into three broad types based on their en-
coding style, fusion encoder, dual encoder, and
a combination of both. We used two vision-and-
language models for our experiments: a Vision-and-
Language Transformer model (ViLT) (Kim et al.,
2021) and a Foundational Language And Vision
Alignment model (FLAVA) (Singh et al., 2022).
ViLT is a fusion-encoder style model which has
112M parameters. FLAVA is a fusion-encoder plus
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dual-encoder style model which has 243M param-
eters. See details of pre-training datasets for each
model in Appendix D.

Training For baseline models, we use vision-
and-language models fine-tuned with the training
set of SNLI-VE. We split the MedVTE dataset as
train:test=306:103 and evaluate the performance of
the models on the MedVTE test set. To investigate
whether a small portion of additional training data
in the medical domain contributes to knowledge
transfer for visual reasoning, we evaluate models
fine-tuned with the SNLI-VE training set mixed
with the MedVTE training set. We fine-tune the
models for three epochs for each dataset and use
F1-macro scores for evaluation metrics. Details on
the hyperparameters can be found in Appendix D.

4.2 Baseline results

Table 1 shows baseline results. While both
ViLT and FLAVA models trained with SNLI-VE
achieved around 75% on in-domain SNLI-VE, their
performance was very low on MedVTE.

When we evaluated models trained with SNLI-
VE mixed with a subset of MedVTE, the perfor-
mance on MedVTE was improved while maintain-
ing the performance on SNLI-VE. However, the
overall performance on MedVTE was still lower
than 50%. This indicates that numerical inference
in the medical domain is challenging for vision-
and-language models even when they train with a
subset of MedVTE. Regarding the difference be-
tween loose labels and strict labels with a subset of
MedVTE, the performance improvement on Med-
VTE strict labels was lower than that on loose la-
bels. This suggests that the ability to use out-of-
figure information is difficult to obtain from the
data augmentation.

5 Conclusion

We created the visual reasoning dataset MedVTE,
focusing on numerical understanding in the med-
ical domain. The experiments using MedVTE
showed that current vision-and-language models
struggled with performing numerical inference in
the medical domain. However, the data augmen-
tation with only a small amount of our MedVTE
dataset improved the model performance, while
maintaining the performance in the general domain.
In future work, we increase the size of our Med-
VTE dataset and make further analysis of vision-
and-language models to investigate the extent to



which the size of a fine-tuning dataset affects the
performance of numerical inference in the medical
domain. Improving automated numerical vision-
and-language understanding in the medical domain
could aid therapeutic decision-making that depends
on lesion numbers.

6 Limitation

Since hypothesis sentences were created and la-
beled by medical experts, the size of our current
dataset is small. In particular, the number of exam-
ples of contradiction is small because the hypoth-
esis sentences were created based on captions to
efficiently construct our dataset. However, we can
increase the number of examples of contradiction
by rewriting phrases in the hypothesis sentences.
The claim of this study is that we can relatively effi-
ciently create a VTE dataset in the medical domain
from the existing image caption dataset, and can
empirically demonstrate the challenges of current
vision-and-language models on the VTE dataset.
Although increasing the data size is an important
next step, it is beyond the scope of this paper.
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A Sample selection rules

This section explains detailed MedVTE sample
selection rules.

We employed rule-based approaches to select
figure-caption pairs from the MedICaT dataset so
that all sampled captions refer to the number of
lesions.

We selected sentences in the MedICaT captions
containing LESTON-NUMBER-EXPRESSIONs. We
defined a LESION-NUMBER-EXPRESSION as any
token subsequence of a single sentence of a caption
that satisfies all of the following Rules I to 3:

Definition 1. COMPARATIVE is a string whose
lowercase form is either at least, at most, more
than, or less than.

Definition 2. NUMBER is a single token whose
Penn Treebank part-of-speech (POS) tag (Mar-
cus et al., 1993) is CD (cardinal number).

Definition 3. LESION-NOUN is a single token
whose POS tag is either NN (noun, singular
or mass) or NNS (noun, plural).

Rule 1. A LESION-NUMBER-EXPRESSION
must be a concatenation of COMPARATIVE,
NUMBER, and LESION-NOUN in this order,
or a concatenation of NUMBER and LESION-
NOUN in this order.

Rule 2. The lemma of LESION-NOUN must be
either cancer, lesion, mass, metastasis, nod-
ule, or tumor.

Rule 3. A LESION-NUMBER-EXPRESSION
must not appear immediately after a token
whose lowercase form is either figure, figures,
fig, figs, patient, case, day, sample, type, cate-
gory, group, grade, level, stage, rads, pirads,
birads, cin, score, likert, c, t, I, s, segment, gs,
suv, +, +1, +2, +3, +4, +5, mm, cm, mm2,
cm2, mm3, or cm3.

In our implementation, we first assigned POS
tags to all MedICaT captions using Berkeley Neu-
ral Parser (Stern et al., 2017; Kitaev and Klein,
2018; Kitaev et al., 2019). We then built a spaCy
rule-based matcher and applied it to all parsing
results.
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Figure 3: Distribution of the quantity of 424 of the 430
lesion numbers in the MedVTE hypotheses. Note that
the remaining six lesion numbers are excluded because
they appear immediately after a comparative expression
such as “at least” or “more than.”

B Dataset statistics

Of the 409 MedVTE premise-hypothesis pairs, 300
(73.3%) have radiological premise figures, twelve
(2.9%) have scopic premise figures, and the remain-
ing have other various types of premise figures in-
cluding histopathological images.

MedVTE contains 430 lesion numbers in total
because three of the 409 hypotheses (0.7%) contain
three lesion numbers, fifteen hypotheses (3.7%)
contain two lesion numbers, while the remaining
391 hypotheses (95.6%) contain one lesion number.

Six of the 430 lesion numbers (1.4%) include
comparative expressions, four of which are associ-
ated with “at least” and the others are accompanied
by “more than.” Figure 3 shows the distribution
of the remaining 424 lesion numbers. The most
frequent lesion number is two, occurring 223 times
in the dataset (52.6%). 398 lesion numbers (92.6%)
are between one and five, and fourteen lesion num-
bers (3.3%) are greater than ten.

C Details of labeling

C.1 Loose labels

Each MedVTE premise image consists of one or
more subfigures that are often excerpts of a vast
series of radiological, pathological, or endoscopic
images. Therefore, it must be considered that the
premise image may not reflect the entire patient
and may contain only a subset of the lesions that
are actually present, or conversely, the same lesion



MedICaT Figure / MedVTE Premise

MedVTE Hypothesis

left Iob‘e; black arrow, metastases}in right lobe).

(NI in left lobe and 5 lesions in right lobe were found (white arrow, metastases in

MedICaT Caption

Fig. 1. Initial abdominal ultrasonography and computed tomography. (ALt in
left lobe and 5 lesions in right lobe were found (white arrow, metastases in left lobe;
black arrow, metastases in right lobe).

: Sentence with lesion numbers

All propositions entail

v
Strict label: entailment
Loose label: entai‘ment

)

All lesion numbers entail

Figure 4: Another example of MedVTE. The four subfigures outlined in yellow apparently have six lesions. However,
the medical expert has determined that the yellow subfigures demonstrate five lesions and assigned entailment label
because it is explainable that the lesion numbered “3” repeatedly appears in the second and third subfigures at the

different levels.

may repeatedly appear across multiple subfigures
as in Figure 4. This phenomenon is prevalent not
only in the medical articles from which MedVTE
originates but also in the real-world clinical prac-
tice that we target for application.

We regard each hypothesis as a set of proposi-
tions. For each proposition addressing the lesion
number in the hypothesis sentence, the following
procedure was employed to determine the veracity
or falsity.

(a) If the medical expert determines that the
quantities are equal in the premise figure and the
hypothesis sentence, the proposition is supported.

(b) When the lesion number in the hypothesis
sentence apparently exceeds that in the premise
figure, the medical expert is requested to carefully
review the premise figure and determine if the gap
can be explained by the following reason:

* The original caption is correct, but the medical
expert initially missed some lesions due to
subtle image findings.

If so, the hypothesis is supported. Otherwise, the
loose label is neutral because it is impossible to
judge which of the following is happening:
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* The original caption is correct, but the premise
figure does not show all the lesions

* The original caption has overcounted the le-
sions.

(c) When the lesion number in the hypothesis
sentence appears to be smaller than the premise
figure, the medical expert is asked to examine the
premise figure again and determine which of the
following is the most convincing:

* The original caption is correct, but the medical
expert initially overcounted the lesions due to
equivocal image findings

* The original caption is correct, but the medical
expert initially overcounted the lesions due to
the same lesion repeatedly appearing across
multiple subfigures

* The original caption has undercounted the le-
sions.

In the first or second case, the hypothesis is sup-
ported. In the last case, the loose label is contradic-
tion.

C.2 Strict labels

When a hypothesis contains propositions that can-
not be judged true or false from the premise im-



age alone, we consider it out-of-figure information.
The following are examples of propositions that we
regard as out-of-figure information:

* Mention to other figures than the premise fig-
ure (e.g., “show no enhancement on arterial
phase images of MRI and on the arterial phase
of CT scan (not shown)”)

* Numerical values for elapsed time, such as
days, months, or years (e.g., “Axial contrast-
enhanced CT six weeks pre-RF ablation (a)
demonstrates two lesions”)

* Specific lesion size numbers (e.g., “The two
nodules were /.2 cm in diameter”).

If the hypothesis sentence includes out-of-figure
information, we set the strict label to neutral re-
gardless of the loose label. Otherwise, the strict
label is the same as the loose label.

D Model details

ViLT is pre-trained on MSCOCO (Lin et al.,
2014)+VG (Krishna et al., 2017)+CC (Sharma
et al., 2018)+SBU (Ordonez et al., 2011). FLAVA
is pre-trained on filtered YFCC100M (Thomee
et al, 2015)+CCI2M (Changpinyo et al,
2021)+WIT (Srinivasan et al.,, 2021)+Red-
Caps (Desai et al., 2021)+LN (Pont-Tuset et al.,
2020)+MSCOCO+VG+CC+SBU.

We basically adopted models and parameters im-
plemented in transformers”. We attached a 2-layer
classifier head ourselves for FLAVA since there was
no model implementation for classification tasks in
the library. Table 2 and Table 3 show hyperparame-
ters in ViLT and FLAVA models, respectively.

“https://huggingface.co/docs/transformers/v4.20.1/en/index
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Hyperparameter Value
Encoder

hidden size 768
number of heads 12
number of layers 12
intermediate size 3072
dropout probability 0
patch size 32 x 32
input image size 384 x 640
Classifier Head

hidden size 768
Others

text vocabulary size 30522
Training

epochs 3
gradient accumulation steps 3
per device batch size 48
learning rate 5e-05
AdamW weight decay 0
AdamW 0.9
AdamW [, 0.999

Table 2: Hyperparameters in ViLT



Hyperparameter Value
Image Encoder

hidden size 768
number of heads 12
intermediate size 3072
number of layers 12
dropout probability 0
patch size 16 x 16
input image size 224 x 224
Text Encoder

hidden size 768
number of heads 12
intermediate size 3072
number of layers 12
dropout probability 0
Multimodal Encoder

hidden size 768
number of heads 12
intermediate size 3072
number of layers 6
dropout probability 0
Classifier Head

hidden size 1536
Others

text vocabulary size 30522
image dVAE codebook size 8192
Training

epochs 3
gradient accumulation steps 3
per device batch size 24
learning rate 1e-05
learning rate schedule linear
warmup updates 2000
AdamW weight decay le-02
AdamW 3, 0.9
AdamW S, 0.999

Table 3: Hyperparameters in FLAVA
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Abstract

Valuable datasets that contain sensitive infor-
mation are not shared due to privacy and copy-
right concerns. This hinders progress in many
areas and prevents the use of machine learning
solutions to solve relevant tasks. One possible
solution is sharing models that are trained on
such datasets. However, this is also associated
with potential privacy risks due to data extrac-
tion attacks. In this work, we propose a solution
based on sharing parts of the model’s parame-
ters, and using a proxy dataset for complimen-
tary knowledge transfer. Our experiments show
encouraging results, and reduced risk to po-
tential training data identification attacks. We
present a viable solution to sharing knowledge
with data-disadvantaged parties, that do not
have the resources to produce high-quality data,
with reduced privacy risks to the sharing parties.
We make our code publicly available.'

1 Introduction

NLP research in many areas (e.g., healthcare) is
hindered by the unavailability of publicly-available
datasets. Even though such datasets might be avail-
able for some researchers, sharing them with the
community is problematic in many cases due to
privacy and copyright concerns (Liu et al., 2021).
De-identifying sensitive information in such
datasets is a potential option. However, depend-
ing on the nature of the data, the utility of the
data might be negatively affected (Jordon et al.,
2021) when de-identifying the data. Sharing a
model that is trained on the data instead of directly
sharing the data itself is another option (Lehman
et al., 2021). The shared model transfers knowl-
edge gained from raw data and is beneficial in many
cases (e.g., when an institute is interested in solving
the same task, but lacks enough data). However,
sharing the model is also associated with potential
re-identification risks (Carlini et al., 2021).

lhttps ://github.com/paulyoussef/ppkt/
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Instead of directly sharing models or data, data-
free knowledge distillation (DF-KD) aims to trans-
fer the knowledge from a large teacher model to
a smaller student model without relying on any
task-specific data, i.e., data that has been used to
train the teacher model. Instead, many approaches
make use of a proxy dataset (Krishna et al., 2020)
to facilitate the knowledge transfer.

In this work, we propose a solution to the prob-
lem of sharing knowledge between models in a
privacy-preserving manner. Our solution depends
on sharing parts of the model, and using a proxy
dataset for complementary knowledge transfer. Par-
tially sharing the model mitigates potential privacy
risks. Further training on a proxy dataset helps
compensating the loss caused by the absence of the
non-shared parts of the model.

We experiment on two datasets for text classifica-
tion from the clinical domain, AP (Gao et al., 2023)
for relation classification and MedNLI (Romanov
and Shivade, 2018) for natural language inference,
and show that our approach substantially improves
the performance of a student model trained only
on a proxy dataset. Additionally, we show that
the resulting model cannot be leveraged to reliably
identify the original training data.

T training on data
MedNLI|—> BN EZ e 180 —> M;‘%LI
AP labels

from MedNLI
with AP labels
frozen, teacher model is used
only for inference

Student

Figure 1: The process of using the proxy dataset,
MedNLLI, to indirectly train the student model on the
target task, AP. Left: MedNLI is labeled with AP la-
bels using a teacher model that was trained on AP be-
fore. Right: Training the student model with the proxy
dataset, i.e., MedNLI inputs and AP labels.

Proceedings of the 5th Clinical Natural Language Processing Workshop, pages 19-23
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2 Related Work

Knowledge distillation (KD). The goal of knowl-
edge distillation is to transfer knowledge from a
large teacher model to a student model of a smaller
size. Hinton et al. (2015) propose training the
student model such, that its output distribution
matches the output distribution of the teacher. In or-
der to distill knowledge from BERT (Devlin et al.,
2019) into a smaller transformer architecture, Sanh
et al. (2019) additionally use the masked language
modeling loss used to pre-train BERT and a cosine
embedding loss in order to make the hidden repre-
sentations from both models more similar on the
original pre-trainig corpus of BERT. Haidar et al.
(2022) randomly choose two intermediate layers
from the teacher and the student and train the stu-
dent’s layer to produce similar representations to
that of the teacher. In our method, we make use of
the teacher’s hard predictions, and do not assume
access to its outputs distribution.

Data-free knowledge distillation (DF-KD).
Even though the teacher’s training data can be used
in KD, the DF-KD setting assumes the unavailabil-
ity of such data. Lopes et al. (2017) aim to recon-
struct the teacher’s training set using the teacher’s
activation records on the same data. Rashid et al.
(2021) use an adversarial generator to generate out-
of-domain data, on which the teacher and student
disagree the most, and then use this data to train
the student. Krishna et al. (2020) show that it is
possible to extract a model using its predictions on
nonsensical data, but put no restrictions on the size
of the model. Our work assumes the availability
of a proxy dataset from a related task and that the
teacher and the student share the same architecture.

Data extraction from language models. Car-
lini et al. (2021) show that it is possible to extract
training data from GPT-2 (Radford et al., 2019).
Huang et al. (2022) experiment on GPT-Neo (Gao
et al., 2020) and show that it could leak sensitive
information, but the chances of extracting infor-
mation about a specific user are small because
of the model’s weak association abilities. Simi-
lar work that targets BERT (Vakili and Dalianis,
2021; Lehman et al., 2021) suggests that extracting
sensitive information from BERT is unlikely, but
robustness against more sophisticated attacks can-
not be guaranteed. Membership inference attacks,
that aim to identify whether certain data instances
have been used to train the model, show some suc-
cess against BERT (Shejwalkar et al., 2021). We
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conduct a membership inference attack, in order
to inspect if the student models we produce can be
used to identify the teacher’s training examples.

3 Problem Statement

Let 7" be a teacher model, trained for a specific task
target on training data D;,rge; and S be a student
model with the same architecture, but untrained.
We are interested in transferring the knowledge
captured by 7" on Dy ge¢ to S without providing S
any access to Dyqrget. Ideally, S cannot be used to
identify any data from target. S can be trained on
any data that does not come from the same distribu-
tion as Dygrger. We refer to such data as Dyyozy. T
can provide predictions on D)., based on what
it has learned on Dy4rget. We measure the perfor-
mance of both, 7" and .S, using a held-out test set
from target, which we refer to as D;Mget.

4 Method

Our method for transferring knowledge from 7" to
S without using any task-specific data, consists of
two parts: 1) partial parameter sharing, 2) finetun-
ing on a proxy dataset.

Partial parameter sharing. Since 7" and S have
the same architecture, we copy parameters from N
non-adjacent layers of 7', and use them directly in
the corresponding position in S, in order to facili-
tate knowledge transfer from 7" to S. We consider
sharing only non-adjacent layers from 7', since hav-
ing several consecutive layers in their initialized
state might result in representations of lower qual-
ity. We keep the parameters from 7' fixed during
the later finetuning step to avoid degrading to pa-
rameters of lower quality. Since the parameters
from T reflect a compressed version of the data,
we conjecture that partially sharing them provides
S only with a distorted and partial view of Dy get.

Finetuning on a proxy dataset. Sharing param-
eters in the first step only affects NV layers from .S,
the rest of the layers in S are kept in their state from
pre-training, and the task-specific parameters are
randomly initialized. In order to make these layers
contribute to the knowledge transfer as well, we
finetune the model using the proxy dataset Doz .
Note that D),y contains data that are not part
of target, but that are artificially labeled using 7.
Hence, D,,;.0.y can be unlabeled. This process is
depicted in Figure 1. We only use hard predictions
from 7', i.e., we only use the class with the highest



probability as label and do not use 7"s probability
distribution over all classes. We leave experiment-
ing with 7”s probability distribution over all classes
for future work. To train the student model, we use
the cross-entropy loss:

C

Lop ==Y yrelog(yse)
c=1

ey

where C is the number of classes, y;. € {0,1}
is the teacher’s prediction, indicating if the input
belongs to the c-th class or not, and y, . is the
students’ model probability for class c.

5 Experimental Setup

In this section, we describe the data and the experi-
ments we design to evaluate our proposed method
for knowledge transfer.

5.1 Data

We use two datasets in our experiments. The first
one, AP, acts as the target task, whose data should
be kept private. The second dataset, MedNLlI, is
larger and we use it as a proxy dataset to transfer
knowledge from the teacher model. Table 1 pro-
vides statistics on both datasets, and Table 2 shows
an example from each dataset.

The Assessment and Plan Relation Labeling
(AP) (Gao et al., 2023) dataset is based on clin-
ical notes from MIMIC-III v1.4 (Johnson et al.,
2016). Each instance consists of an assessment that
describes the current state of the patient and her ac-
tive health problems, a plan that handles a specific
problem, and a label that describes the relation be-
tween the assessment and the plan (direct, indirect,
neither or irrelevant). We set the training and test
sets of AP to be Dy4pget and D;mget respectively,
i.e., AP is our target task.

The Medical Natural Language Inference
(MedNLI) (Romanov and Shivade, 2018) is a
dataset for medical language inference. Each in-
stance consists of a premise, a hypothesis and a
label belonging to one of three classes (entailment,
neutral and contradiction) depending on whether
the hypothesis can be entailed from the premise or
not. The premise sentences are taken from MIMIC-
III v1.3 (Johnson et al., 2016), whereas the hypoth-
esis sentences were generated by clinicians. We set
MedNLI to be Dpyozy, 1.€., MedNLI is the proxy
dataset, that we label with the teacher, and use for
complementary knowledge transfer.
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Training Dev  Test len; len;
AP 4633 467 667 40 510
MedNLI 11232 1395 1422 20 5.8

Table 1: Dataset statistics. len; refers to the average
length of the i-th input in tokens. Note that we do
not use the test set of MedNLI, the evaluation is done
on AP’s test set. We report the size of the test set for
completeness.

AP
Input; 64M with EtOH cirrhosis, Afib, ad-
mit with upper GI bleed... Label:
Input; Anemia. Predominary acute blood —Direct
loss
MedNLI
Input; She has cough with sputum, occa- .
. Label:
sional blood streaks but no gross C
ontra-
blood. diction
Input; The patient has normal lungs

Table 2: Examples from AP and MedNLI

5.2 Target Task Performance

The goal of this experiment is to compare the per-
formance of the teacher model with the perfor-
mance of several student models:

* student-none: a student that depends only on
the proxy dataset, MedNLI, to learn the target
task.

 student-3: a student model with 3 non-
adjacent layers from the teacher. We select
the first 3 layers with even indices.

e student-6: the same as student-3, but with 6
layers instead of 3.

We use BERT base-cased (Devlin et al., 2019),
which consists of 12 encoder layers, as a base
model for both the teacher and the student. Note
that other domain-specific BERT-based models
(e.g., BioClinicalBERT (Alsentzer et al., 2019))
perform better on both tasks. However, these mod-
els are pre-trained on data from MIMIC, and we
wanted to avoid confounding our results by this
factor. We initially train the teacher model on the
AP training set for 3 epochs, with a learning rate of
5 x 1079, store a model checkpoint every 20 steps
and select the checkpoint with the highest Macro-
F1 on the validation set. Similarly, we finetune the
student model for 1 epoch using the proxy train
and validation sets after substituting some layers
(in the case of student-3 and student-6).



5.3 Training Data Identification

The goal of this experiment is to evaluate to what
extent the different student models can be used to
re-identify training data from the target task, AP,
compared to the teacher model.

We create a synthetic dataset of positives (real
training data from AP), and negatives (other data).
To keep the task challenging, we create negatives
by identifying medical entities in the positive exam-
ple, and replacing these by other randomly chosen
entities of the same type. We use a clinical NER
model (Zhang et al., 2021) to annotate the entities
of type: problem (e.g., diseases), treatment (e.g.,
medications), and test (e.g., diagnostic tests). We
restrict the number of replacements to 4 in each
instance (2 in each input part). Our final dataset
consists of 100 positive and 100 negative examples.

We evaluate the capability of the models to iden-
tify training data after finetuning on the proxy
dataset in case of the student models, and after
finetuning on the AP dataset in case of the teacher
model. We use the positive and negative examples
as input to all models, and extract their respective
representations of the [CLS] token from the last
layer. This representation is often used as an input
to a linear layer, which outputs the final predictions
in classification tasks in BERT.

After extracting the representations for the pos-
itive and negative examples, we train a logistic
regression model using 4-fold cross validation to
predict whether the provided representations consti-
tute real training data or not. Note, that this setting
assumes the availability of labeled data to train the
logistic regression model, i.e., access to original
training data of the model under attack. However,
this data should be difficult to acquire in practice.
We follow other authors (e.g., (Shejwalkar et al.,
2021)) in assuming the availability of such data.

6 Results and Discussion

The results for the experiments explained in Sec-
tions 5.2 and 5.3 are shown in Table 3. The results
show that the teacher model performs the best on
AP’s test set. This is not surprising, given that
the teacher is trained on data that is quite similar
to the test data. The gains in performance from
training only on the proxy dataset from MedNLI,
without sharing any parameters, are limited (see
student-none). This might be attributed to the fact
that the datasets are still different, even though they
come from similar tasks (e.g., AP’s inputs are much
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AP Performance Identification
(Macro-F1) (Accuracy)
majority 11.2 50.00
teacher 76.9 67.40
student-none 27.1 56.35
student-3 39.0 54.65
student-6 59.3 56.89

Table 3: Performance of all models on AP’s test set
(section 5.2), and the training data identification task
(section 5.3). Majority refers to a majority baseline.
The best performing model overall is bold. The best
performing among the student models is underlined.

longer than MedNLI’s, cf. Table 1). Grafting the
student models with parameters from the teacher
substantially improves the performance. This is
especially apparent as the number of shared layers
is increased to six.

However, the good performance of the teacher
model on AP makes it more susceptible to the train-
ing data identification attack. Indeed, the results in
the second column show that the representations
from the teacher model are more helpful in iden-
tifying the training data than the representations
extracted from the student models. The student
models in general perform poorly in identifying
the real training examples from AP, and their per-
formance is close to that of the majority baseline.
This suggests that sharing parameters with student
models is harmless, as the representations we ex-
tract from them cannot be reliably used to identify
the original training data of the teacher.

7 Conclusion

In this work, we presented an approach to tackle
knowledge transfer between two parties: a teacher,
that is trained on sensitive data, and a student
model, that lacks enough data to be trained, but
is interested in learning the same task. Our solution
depends on the teacher partially sharing some of its
parameters with the student, and providing it with
predictions on an unlabeled proxy dataset that is
different from the target dataset. Our experimental
results indicate that the proposed solution is ef-
fective in knowledge transfer, and associated with
reduced risks to potential training data identifica-
tion attacks. In future work, we will look into using
other model architectures, use more tasks for eval-
uation, take into account more advanced privacy
attacks and consider cross-lingual settings, where
the teacher and student use different languages.
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Abstract

Alzheimer’s Disease (AD) is a neurodegener-
ative disorder that affects cognitive abilities
and memory, especially in older adults. One
of the challenges of AD is that it can be dif-
ficult to diagnose in its early stages. How-
ever, recent research has shown that changes
in language, including speech decline and dif-
ficulty in processing information, can be im-
portant indicators of AD and may help with
early detection. Hence, the speech narratives
of the patients can be useful in diagnosing the
early stages of Alzheimer’s disease. While
the previous works have presented the poten-
tial of using speech narratives to diagnose AD
in high-resource languages, this work explores
the possibility of using a low-resourced lan-
guage, i.e., Hindi language, to diagnose AD.
In this paper, we present a dataset specifically
for analyzing AD in the Hindi language, along
with experimental results using various state-
of-the-art algorithms to assess the diagnostic
potential of speech narratives in Hindi. Our
analysis suggests that speech narratives in the
Hindi language have the potential to aid in the
diagnosis of AD. Our dataset and code are
made publicly available at https://github.
com/rkritesh210/DementiaBankHindi.

1 Introduction

Alzheimer’s Disease (AD) is the most typical kind
of dementia, characterized by a specific pattern of
cognitive and functional deterioration brought on
by aging that may eventually lead to death (Soria
Lopez et al., 2019). This condition is mostly seen
in adults over 60. Hampel et al. (2011) predicted
that by 2040, more than 80 million people would
be affected by dementia globally, up from an esti-
mated 24 million in 2001.

In the early stages of AD, it is common to
experience subtle language impairments such as
problems with word finding and comprehension,
the use of incorrect words, ambiguous referents,
loss of verbal fluency, speaking too much or too
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loudly, repeating ideas, straying from the topic,
which worsens in the moderate and severe stages
(Meghanani et al., 2021). This shows that the tem-
poral aspects of spontaneous speech are impacted
by this disease. With the advancement of tech-
nology, machine learning approaches have been
widely applied in the early diagnosis of AD uti-
lizing neuroimaging scans such as Magnetic Res-
onance Imaging (MRI) and Positron Emission To-
mography (PET) (Thapa et al., 2020b). However,
this technique for identifying AD patients from
Control Normal (CN) is limited to medical person-
nel (Thapa et al., 2020b). Szatloczki et al. (2015)
showed that linguistic analysis could be used to
identify AD more accurately than other types of
cognitive testing. The temporal features of spon-
taneous speech, such as speech pace, frequency,
and length of pauses, are sensitive detectors of the
early stage of the illness, allowing an 