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Abstract

Incorporating external knowledge, such as pre-
trained language models (PLMs), into neural
topic modeling has achieved great success in
recent years. However, employing PLMs for
topic modeling generally ignores the maximum
sequence length of PLMs and the interaction
between external knowledge and bag-of-words
(BOW). To this end, we propose a sentence-
aware encoder for neural topic modeling, which
adopts fine-grained sentence embeddings as
external knowledge to entirely utilize the se-
mantic information of input documents. We
introduce sentence-aware attention for docu-
ment representation, where BOW enables the
model to attend on topical sentences that con-
vey topic-related cues. Experiments on three
benchmark datasets show that our framework
outperforms other state-of-the-art neural topic
models in topic coherence. Further, we demon-
strate that the proposed approach can yield bet-
ter latent document-topic features through im-
provement on the document classification.

1 Introduction

Topic models have been widely used to identify
human-interpretable topics and learn text represen-
tations, which have been applied for various tasks
in Natural Language Processing (NLP) such as
information retrieval (Lu et al., 2011), summariza-
tion (Nguyen et al., 2021), and semantic similarity
detection (Peinelt et al., 2020). A typical topic
models is based on the latent Dirichlet allocation
(LDA) (Blei et al., 2003) and Bayesian inference.
However, to avoid the complex and expensive iter-
ative inference of conventional topic models, topic
modeling with the deep neural network has been
the leading research direction in this field (Miao
et al., 2016; Srivastava and Sutton, 2017; Ding
et al., 2018).

Neural topic models (NTMs) usually exploit
the BOW representation as input, disregarding the
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syntactic and semantic relationships among the
words in a document, thus leading to relatively
inferior quality of topics. Recently, pre-trained
language models (PLMs) (Kenton and Toutanova,
2019; Reimers and Gurevych, 2019) demonstrate
their strong ability to capture sentential coherence
by achieving state-of-the-art performance on many
natural language processing tasks. Therefore, sev-
eral approaches have been proposed to incorporate
external knowledge into topic models to address the
limitations of BOW. A typical method to take exter-
nal knowledge as additional features (Bianchi et al.,
2021; Jin et al., 2021) concentrates the outputs of
PLMs with BOW data. Another way (Hoyle et al.,
2020) is to distill the knowledge of the teacher
PLMs to generate a smoothed pseudo-document,
which guides the training of a student topic model.

However, there are still limitations to the above
approaches. Firstly, the document-level sequences
are too long to be modeled, since the token-level se-
quence in the context is usually considered as input
to the PLMs. Extracting the document-level seman-
tic embedding with PLMs as external knowledge
ignores the restriction on sequence length, which
loses massive semantic information from input text.
Secondly, the difference in learning objectives be-
tween NTMs and PLMs makes it challenging to
incorporate external knowledge. The encoder of
NTMs is designed to handle the sparse BOW data,
unable to take into account the dense contextual
document embedding from PLMs.

To address these limitations, we build upon
the framework of variational autoencoders (VAE)
(Kingma and Welling, 2013) and propose a
sentence-aware encoder for incorporating exter-
nal semantic knowledge into topic models. The
proposed approach integrates the advantages of
NTMs and PLMs as encoders. Specifically, the
encoder of the topic model is responsible for
processing document-level BOW data like most
NTMs, while the PLMs is used to encode sentence-
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Figure 1: Basic Architecture of SAE-NTM. The
sentence-aware encoder deals with the BOW data xi

and sentence sequences {si
1, · · · , si

m} of the ith docu-
ment, while variational inference reconstructs the BOW
data xrec

i from document representation di .

level semantic information as its original training
objective. Different from previous approaches,
our proposed framework considers cross-attention
(Vaswani et al., 2017) between the BOW data and
sentence embeddings, which leverages fine-grained
semantic information for topic discovery.

To summarize, the main contributions of this
paper are as followed: (1) We propose a novel
framework SAE-NTM: Sentences-Aware Encoder
for Neural Topic Modeling which leverages the
cross-attention for incorporating external semantic
knowledge in a sentence-aware manner. (2) Quanti-
tative and qualitative experiments demonstrate that
our proposed approach significantly outperforms
the existing state-of-the-art topic models in topic
coherence. (3) We show that the BOW-guided at-
tention yields practical latent document-topic fea-
tures, achieving better performance on the docu-
ment classification task.

2 Methodology

2.1 SAE: Sentence-Aware Encoder
In this section, we introduce the sentence-level se-
mantic information as external knowledge and pro-
pose a method to efficiently combine BOW data
with external knowledge for document representa-
tions, as shown in Figure 1.

Encoder for bag-of-words and sentence se-
quences. Neural topic models with variational au-
toencoders usually take high-dimensional, sparse
word counts xi as input and transform it into a low-
dimensional dense feature hi to fit the variational
autoencoders framework as formulated in Eq.1.

hi = Enc (xi) (1)

Where Enc : RV → RL is usually a multi-layer

perceptron (MLP) for the inference of the ith docu-
ment representation.

Complementary to the orderless BoW, the con-
text of the document carries more affluent and more
sophisticated semantic information. And it can
be represented as contextual embeddings by pre-
trained language models (e.g., BERT (Kenton and
Toutanova, 2019)) from large corpora, which have
a fine-grained ability to capture aspects of linguis-
tic context. In this paper, we employ sentence-
transformers (Reimers and Gurevych, 2019) to en-
code each sentence in the document as follows:

{
hi

1, · · · , hi
m

}
= Trans

({
si

1, · · · , si
m

})
(2)

where si
j is a sequence of tokens and hi

j is the aggre-
gated contextual embedding from the pre-trained
sentence-transformers for the jth sentence.

Sentence-aware Attention. The contextual em-
beddings

{
hi

1, · · · , hi
m

}
and BOW representation

hi jointly constitute the input of sentence-aware en-
coder. Then sentence-aware attention is employed
to accomplish the interaction of word counts and
semantic embeddings formulated in Eq.3.

di =

j=m∑

j=1

αi
jh

i
j

αi
j =

exp(score(hi, h
i
j))∑k=m

k=1 exp(score(hi, hi
k))

(3)

Where the representation di of the ith document
is a weighted sum of contextual embeddings{
hi

1, · · · , hi
m

}
and αi

j is the normalized attention
of the jth sentence. Typically, the scoring func-
tion score is scaled dot-product attention. Sentence
embeddings as external knowledge provide rich
textual information, while the BOW data guides
topic model in the assignment of attention on top-
ical sentences, which contributes to capturing the
co-occurrence patterns of the words.

2.2 Variational inference
Starting with the document representation, varia-
tional inference (Kingma and Welling, 2013) con-
sider Logistic-Normal distribution as the posterior
distribution q(z | x), whose mean µi and variance
σi vectors are separately derived from the docu-
ment representation through a linear layer. Then
the reparameterization trick in Eq.4 is used to esti-
mate the gradient.

zi = softmax (µi + σi · εi) (4)
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Method
K=50 K=200

20NG Wiki IMDb 20NG Wiki IMDb

W-LDA (Nan et al., 2019) 0.274 ± 0.012 0.492 ± 0.014 0.134 ± 0.003 0.159 ± 0.002 0.316 ± 0.007 0.090 ± 0.001
SCHOLAR (Chang et al., 2009) 0.322 ± 0.005 0.480 ± 0.009 0.166 ± 0.004 0.262 ± 0.003 0.416 ± 0.005 0.140 ± 0.002

CLNTM (Nguyen and Luu, 2021) 0.327 ± 0.002 0.486 ± 0.013 0.167 ± 0.002 0.267 ± 0.002 0.425 ± 0.003 0.144 ± 0.001
CTM (Bianchi et al., 2021) 0.329 ± 0.003 0.484 ± 0.016 0.176 ± 0.002 0.283 ± 0.005 0.432 ± 0.004 0.163 ± 0.004

SCHOLAR + BAT (Hoyle et al., 2020) 0.343 ± 0.006 0.501 ± 0.007 0.170 ± 0.004 0.301 ± 0.002 0.437 ± 0.003 0.160 ± 0.002

SAE-NTM (Ours) 0.352 ± 0.006 0.511 ± 0.011 0.196 ± 0.001 0.314 ± 0.002 0.472 ± 0.004 0.174 ± 0.002

Table 1: Results of average NPMI scores with 50 and 200 topics on three datasets. For each group of results, we
repeat the experiment five times with different random initialization and report the standard deviation.

where εi ∼ N (0, 1) denotes samples from the nor-
mal distribution and zi is the latent document-topic
vector. Next, it attempts to reconstruct the original
BOW data xi by modeling the words distributions
of topics ϕ as follows:

xrec
i ∼ Multi

(
softmax

(
ziϕ

T
)
, N

)
(5)

where ϕ ∈ RV ×K is the word-topic matrix and N
is a vector of document lengths.

Finally, SAE-NTM are trained by maximiz-
ing the Evidence Lower Bound (ELBO) of the
marginal likelihood of the BoW data:

L(x) = −Eq [log p(x | z)] + KL [q(z | x)∥p(z)] (6)

where log p(x | z), q(z | x) and p(z) are respec-
tively the reconstructed data likelihood, the poste-
rior distribution and prior Dirichlet distribution.

3 Experiments

In this section, we design empirical experiments to
answer the following questions of concern in topic
modeling. First, how effectively does SAE-NTM
perform quantitatively and qualitatively in terms
of topic quality? Second, how does SAE-NTM
perform in automated document-topic inference for
downstream tasks? Besides, more details about the
impact of external knowledge on topic modeling
can be found in Appendix A.

3.1 Experimental Settings
Datasets. We evaluate our proposed SAE-NTM
on three benchmark datasets, which differ signif-
icantly in the domain, vocabulary size, and docu-
ment length: 20Newsgroups (20NG, Lang, 1995)
1, Wikitext-103 (Wiki, Merity et al., 2016) 2, IMDb
movie reviews (IMDb, Maas et al., 2011) 3. For

1qwone.com/~jason/20Newsgroups
2s3.amazonaws.com/research.metamind.io/

wikitext/wikitext-103-v1
3ai.stanford.edu/Ëœamaas/data/sentiment

consistency with prior work, we adopt the same
preprocessing steps and train/dev/test split from
the original papers for 20NG (i.e., 48/12/40), Wiki
(i.e., 70/15/15), IMDb (i.e., 50/25/25).

Baselines. We compare our model with existing
state-of-the-art neural topic models: W-LDA (Nan
et al., 2019) is a neural model with wassestein
autoencoder, which approximates the Dirichlet
prior by minimizing Maximum Mean Discrepancy.
SCHOLAR (Card et al., 2018) is a VAE-based
neural topic model with a logistic normal prior
to facilitate approximate Bayesian inference and
provide a flexible way to incorporate document
metadata. SCHOLAR+BAT (Hoyle et al., 2020)
is a knowledge-distilled neural topic model where
a BERT-based autoencoder as a teacher provides
contextual knowledge for the student model. CTM
(Bianchi et al., 2021) is a combined topic model
with the incorporation of contextualized document
embeddings in neural topic models. CLNTM
(Nguyen and Luu, 2021) is a contrastive learning
version of the neural topic model through a word-
based sampling strategy.

3.2 Evaluation in topic coherence

Since topic models aim to discover a set of latent
topics that are meaningful and useful for humans
(Chang et al., 2009), we evaluate topic coherence
using the Normalized Mutual Pointwise Informa-
tion (NPMI) which is significantly correlated with
human judgments on topic quality (Aletras and
Stevenson, 2013; Lau et al., 2014). Specifically, we
first select the top 10 words under each topic gen-
erated by topic models, and then estimate NPMI
scores with reference co-occurrence counts from
the held-out corpus, e.g. the dev or test split.

As shown in Table 1, we report the results of
the average NPMI over 5 runs with different ran-
dom seeds for initialization for robustness. It can
be observed that our model yields the most coher-
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Dataset Model NPMI Topic Words

20NG
SCHOLAR 0.234 encryption enforcement privacy conversation industry manufacturer protect administration device

Our Model 0.434 encryption enforcement clipper agency wiretap privacy escrow protect security secure

Wiki
SCHOLAR 0.379 opera composer repertory theatre conductor libretto operatic painting orchestral painter

Our Model 0.632 cantata bach recitative oboe continuo soloist chorale viola soprano violin

IMDb
SCHOLAR 0.161 religious beliefs christian society christ views portray racist issues jesus

Our Model 0.333 christ christian religion church jesus religious bible faith god beliefs

Table 2: Some example topics on three datasets, where the italic words are less relevant to the topic.

ent topics across all baselines for three benchmark
datasets in NPMI scores. This demonstrates that
our method promotes the overall quality of gen-
erated topics. More importantly, our model not
only significantly outperforms the baseline without
external knowledge such as SCHOLAR, but also
surpasses other state-of-the-art neural topic models
that incorporate external knowledge, such as CTM,
SCHOLAR+BAT. It suggests that our approach is
more efficient than others for incorporating exter-
nal knowledge into neural topic models.

In addition to the quantitative evaluation, we
also randomly extract sample topics from three
datasets to gain an intuitive view on the quality of
generated topics, as shown in Table 2. Obviously,
the topic words generated by our model capture the
concept of topics in the document rather than the
baseline model. For example, it can be noticed that
in the 20NG dataset our words are closely related to
encryption (agency, wiretap, etc.), rather than some
common words (industry, manufacturer, etc.) from
SCHOLAR. The words generated by our model
in Wiki are more focused on cantata and opera,
while SCHOLAR drifts gradually away from the
music topic to paintings. Similarly in the IMDb
dataset, the topic words generated by our model
reflect religion-related themes, which is different
from SCHOLAR including off-topic words such as
views, racist, etc.

3.3 Document Classification

Since the latent vectors inferred by neural topic
models can be applied as text features (Nan et al.,
2019), we employ the downstream task of docu-
ment classification to compare the predictive perfor-
mance of the models in addition to the evaluation
of topic coherence. Specifically, we collect latent
document-topic features from the trained neural
topic models setting number of topics to 50 and use
these vectors as inputs to train a Random Forest
classifier on the training split separately.

Model 20NG IMDb

W-LDA 52.3 80.3
SCHOLAR 62.8 82.7

CLNTM 58.4 79.5
CTM 62.4 84.5

SCHOLAR + BAT 65.2 83.1

SAE-NTM (Ours) 66.1 85.9

Table 3: Test Accuracy between different topic models
on document classification.

We report classification accuracy on the test split
of 20NG and IMDb in Table 3. It is worth noting
that we aim to evaluate the predictive capability of
topic models by the performance in document clas-
sification, rather than training the model to obtain
higher accuracy. The document-topic features pro-
vided by our proposed model achieve best accuracy
for all the datasets with a significant improvement.
It demonstrates that the proposed sentence-aware
encoder not only discovers topics that are more
meaningful to humans, but also learns better latent
document features.

4 Conclusions

In this paper, we propose a Sentence-Aware En-
coder for Neural Topic Modeling framework: SAE-
NTM to incorporate external knowledge into neu-
ral topic models. The proposed method can cap-
ture document information by performing attention
on sequential sentences in a bag-of-words guided
manner. Extensive experiments have shown that
our framework can achieve state-of-the-art perfor-
mance in topic coherence and encode better latent
document-topic features. In the future, we would
like to explore the possibility of integrating our
approach with neural topic models built on other
frameworks, such as generative adversarial training
(Nan et al., 2019; Wang et al., 2020).
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Limitations

The proposed model with sentence-aware encoder
aims to efficiently incorporate external knowledge
and bag-of-words for topic modeling, which means
that in this work we are mainly interested in how
documents should be encoded for topic inference.
However, the decoder of topic models can also
be coupled with word embeddings through factor-
ization, such as embedded topic models (Dieng
et al., 2020). It is worth exploring how hierarchical
semantic embeddings can be employed for topic
modeling with our model.

In this paper, we do not conduct any fine-tuning
for the pre-trained language model. Our approach
reveals how the frozen pre-trained language model
can be effectively used to improve the performance
of the topic model with limited computational over-
head, given that the parameter size of the pre-
trained language model is much larger than that of
the topic model. Moreover, fine-tuning pre-trained
language models for topic modeling as an unsuper-
vised learning task (Mueller and Dredze, 2021) is
challenging.
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A Analysis on individual topics

To evaluate whether our improvements are mean-
ingful on individual topics, we directly compare
each of the aligned topics generated by the baseline
SCHOLAR without external knowledge and our
model. Follow previous works (Hoyle et al., 2020;
Nguyen and Luu, 2021), we align the topics by
using a variation of competitive linking to greed-
ily approximate the optimal weight of the bipartite
graph matching. And the weight of each link is
calculated based on the similarity between their
word distributions as measured Jenson-Shannon
(JS) divergence (Wong and You, 1985; Lin, 1991).
We iteratively select the topic pair with the lowest
score based on JS divergence, separate the two top-
ics from the topic list, and repeat until the rest JS
score exceeds a certain threshold.

Figure 2 shows the JS-divergences for aligned
topic pairs for three benchmark corpora. Based on
visual inspection, we choose the most aligned 44
topic pairs to conduct the comparison, since there
is no conceptual relationship between topic pairs

Figure 2: Jensen-Shannon divergence for aligned topic
pairs of SCHOLAR and our model.

beyond this point and employ the same threshold
across all three datasets for simplicity. Consider-
ing these aligned topic pairs conceptually related,
we explore the impact of external knowledge on
the baseline topic model on a topic-by-topic ba-
sis as shown in Figure 3. It can be observed that
the number of topics with high NPMI scores from
our model is apparently more than that of the base-
line model. This means that the overall promotion
achieved by our approach can be interpreted as
identifying the topic space generated by the base-
line models and in most cases, improving the co-
herence of individual topics.

Figure 3: The number of aligned topic pairs which our
model improves upon SCHOLAR model.
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