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Preface

Welcome to the 4th Workshop on Computational Approaches to Discourse, CODI!

CODI provides a venue to bring together researchers working on all aspects of discourse in Computatio-
nal Linguistics and NLP. Our aim is to provide a venue for the entire discourse processing community
where we can present and exchange our theories, algorithms, software, datasets, and tools.

The workshop consists of invited talks, contributed papers, extended abstracts, and ACL Findings pre-
sentations. We received paper submissions that span a wide range of topics, addressing issues related
to discourse representation and parsing, reference and coreference resolution, summarization, dialogue,
pragmatics, applications, and more. As the workshop is hybrid this year, papers are presented live either
in person or remotely and discussed during live Q&A sessions.

We are pleased that CODI 2023 features the third edition of the DISRPT (DIScourse Relation Parsing
and Treebanking) shared task on Discourse Segmentation, Connective and Relation Identification across
Formalisms. As we hope that the next CODI workshops will also feature shared tasks and other special
events, the workshop also includes a discussion on future shared tasks, special sessions on discourse
representation and parsing, coreference resolution, and multilingual discourse processing and machine
translation.

We thank our invited speakers, Yufang Hou, IBM Research Ireland and adjunct senior lecturer and co-
supervisor at UKP Lab-TU Darmstadt, who works on referential discourse modeling, argument mining,
and scholarly document processing; and Giuseppe Carenini, University of British Columbia, known for
his work on discourse parsing, summarization, and generation. We would also like to thank our reviewers
for their thoughtful and instructive comments. They helped us to prepare an excellent and inclusive wo-
rkshop program. Finally we would like to thank the ACL 2023 workshop chairs Eduardo Blanco, Yang
Feng, and Annie Louis who organized the ACL workshops program.

The CODI Organizers,

Chloé Braud, Christian Hardmeier, Junyi Jessy Li, Sharid Loáiciga, Michael Strube, and Amir Zeldes
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Grünewald, Maira Indrikova, Felix Hildebrand and Annemarie Friedrich

A Side-by-side Comparison of Transformers for Implicit Discourse Relation
Classification
Bruce W. Lee, Bongseok Yang and Jason Lee

A Weakly-Supervised Learning Approach to the Identification of Alternative
Lexicalizations in Shallow Discourse Parsing
René Knaebel

Exploiting Knowledge about Discourse Relations for Implicit Discourse Relation
Classification
Nobel Varghese, Frances Yung, Kaveri Anuranjana and Vera Demberg

The distribution of discourse relations within and across turns in spontaneous
conversation
S. Magalí López Cortez and Cassandra L. Jacobs

15:20 - 17:00 Coffee and Poster Session

Chinese-DiMLex: A Lexicon of Chinese Discourse Connectives
Shujun Wan, Peter Bourgonje, Hongling Xiao, Clara Wan Ching Ho and Manfred
Stede

vii



Friday, July 14, 2023 (continued)

Discourse Structure Extraction from Pre-Trained and Fine-Tuned Language
Models in Dialogues
Chuyuan Li, Patrick Huber, Wen Xiao, Maxime Amblard, Chloé Braud and
Giuseppe Carenini

Discourse Analysis via Questions and Answers: Parsing Dependency Structures
of Questions Under Discussion
Wei-jen Ko, Yating Wu, Cutter Dalton, Dananjay Srinivas, Greg Durrett and
Junyi Jessy Li

SWiPE: A Dataset for Document-Level Simplification of Wikipedia Pages
Philippe Laban, Jesse Vig, Wojciech Kryscinski, Shafiq Joty, Caiming Xiong and
Chien-sheng Wu

Replicate and Compare with Humans: LLMs Represent Partial Semantic
Knowledge in Pronoun Interpretation
Suet-ying Lam, Qingcheng Zeng, Kexun Zhang, Chenyu You and Rob Voigt

Context-Aware Document Simplification
Liam Cripwell, Jol Legrand and Claire Gardent

An Email Dataset for Analyzing Large-Group Decision-Making
Mladen Karan, Prashant Khare, Ravi Shekhar, Stephen Mcquistin, Colin Perkins,
Ignacio Castro, Gareth Tyson, Patrick Healey and Matthew Purver

GUMSum: Multi-Genre Data and Evaluation for English Abstractive
Summarization
Yang Janet Liu and Amir Zeldes

An Integrated Approach for Political Bias Prediction and Explanation Based on
Discursive Structure
Nicolas Devatine, Philippe Muller and Chloé Braud

2 ∗ n is better than n2: Decomposing Event Coreference Resolution into Two
Tractable Problems
Shafiuddin Rehan Ahmed, Abhijnan Nath, James H. Martin and Nikhil
Krishnaswamy

Imagination is All You Need! Curved Contrastive Learning for Abstract Sequence
Modeling Utilized on Long Short-Term Dialogue Planning
Justus-jonas Erker, Stefan Schaffer and Gerasimos Spanakis

17:00 - 17:30 Closing Remarks and Awards

viii



Friday, July 14, 2023 (continued)

ix



Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023), pages 1–15
July 13-14, 2023 ©2023 Association for Computational Linguistics

MuLMS-AZ: An Argumentative Zoning Dataset
for the Materials Science Domain

Timo Pierre Schrader1,6 Teresa Bürkle2 Sophie Henning1,3 Sherry Tan4 Matteo Finco2

Stefan Grünewald1,5 Maira Indrikova2 Felix Hildebrand2 Annemarie Friedrich6

1Bosch Center for Artificial Intelligence, Renningen, Germany
2Robert Bosch GmbH, Stuttgart, Germany 3LMU Munich, Germany 4TU Darmstadt, Germany

5University of Stuttgart, Germany 6University of Augsburg, Germany
timo.schrader|teresa.buerkle|sophie.henning@de.bosch.com

annemarie.friedrich@informatik.uni-augsburg.de

Abstract

Scientific publications follow conventionalized
rhetorical structures. Classifying the Argu-
mentative Zone (AZ), e.g., identifying whether
a sentence states a MOTIVATION, a RESULT
or BACKGROUND information, has been pro-
posed to improve processing of scholarly doc-
uments. In this work, we adapt and extend
this idea to the domain of materials science re-
search. We present and release a new dataset of
50 manually annotated research articles. The
dataset spans seven sub-topics and is annotated
with a materials-science focused multi-label
annotation scheme for AZ. We detail corpus
statistics and demonstrate high inter-annotator
agreement. Our computational experiments
show that using domain-specific pre-trained
transformer-based text encoders is key to high
classification performance. We also find that
AZ categories from existing datasets in other
domains are transferable to varying degrees.

1 Introduction

In academic writing, it is custom to adhere to a
rhetorical argumentation structure to convince read-
ers of the relevance of the work to the field (Swales,
1990). For example, authors typically first indi-
cate a gap in prior work before stating the goal of
their own research. Argumentative Zoning (AZ) is
a natural language processing (NLP) task in which
sentences are classified according to their argumen-
tative roles with varying granularity (Teufel et al.,
1999, 2009). AZ information can then be used
for summarization (Teufel and Moens, 2002; El-
Ebshihy et al., 2020), improved citation indexing
(Teufel, 2006), or writing assistance (Feltrim et al.,
2006).

Manually annotated AZ datasets (Teufel et al.,
1999; Fisas et al., 2016; Soldatova and Liakata,
2007) only exist for few domains and employ dif-
fering annotation schemes. The resulting models
are not directly applicable to our domain of in-
terest, materials science research, which presents

Label Count Label Count

MOTIVATION 363 EXPLANATION 603
BACKGROUND 3155 RESULTS 2953
- PRIORWORK 1824 CONCLUSION 680
EXPERIMENT 2579 HEADING 702
- PREP. 962 CAPTION 485
- CHARACT. 1347 METADATA 210

Table 1: MuLMS-AZ label counts (multi-label).

a challenging domain for current NLP methods
(e.g., Mysore et al., 2019; Friedrich et al., 2020;
O’Gorman et al., 2021). In this paper, we present
MuLMS-AZ, the first dataset annotated for AZ in
this domain. Working together with domain ex-
perts, we derive a hierarchical multi-label annota-
tion scheme (see Table 1). Our scheme includes
domain-specific labels such as descriptions of the
materials’ PREPARATION and CHARACTERIZA-
TION, which are crucial distinctions also for NLP
applications from the domain experts’ view.

This resource paper makes the following con-
tributions:

• We present a dataset of 50 scientific articles
(more than 10,000 sentences) in the domain of
materials science manually annotated by domain
experts with a hierarchical fine-grained annota-
tion scheme for AZ with high agreement. The
corpus will be publicly released.1

• We apply several neural models to our dataset
that will serve as strong baselines for future work
using our new benchmark. We find (a) that using
domain-specific pre-trained transformers is key
to a successful model, (b) that multi-task learning
with existing AZ datasets leads to small benefits,
and (c) that the effectiveness of transfer learning
of materials science AZ labels from other corpora
differs by label.

1https://github.com/boschresearch/mulms-az-codi2023
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2 Related Work

In this section, we describe related work on AZ.
AZ Datasets. Table 2 shows the statistics of

several related datasets. Three larger-scale datasets
manually annotated with AZ information are the
AZ-CL corpus (Teufel et al., 1999; Teufel and
Moens, 1999), consisting of computational linguis-
tics papers, the Dr. Inventor Multi-Layer Scien-
tific Corpus (DRI, Fisas et al., 2016, 2015), featur-
ing computer graphics papers, and, closest to our
domain, the ART corpus (Soldatova and Liakata,
2007), covering topics in physical chemistry and
biochemistry. Appendix E explains these datasets
in more detail. Teufel et al. (2009) also apply and
adapt the annotation scheme of the AZ-CL corpus
to the chemistry domain. Accuosto et al. (2021)
label sentences with argumentation-related cate-
gories (e.g., proposal, means, observation). Mak-
ing use of sentence-wise author-provided keywords,
a dataset of about 388k abstracts with silver stan-
dard rhetorical role annotations has been derived
from PubMed/MEDLINE (de Moura and Feltrim,
2018).

Modeling. AZ has been modeled as a sentence
classification task using maximum entropy models
(Teufel and Kan, 2009), SVMs, and CRFs (Guo
et al., 2011) leveraging a variety of word, grammat-
ical, heuristic, and discourse features (Guo et al.,
2013). Ensemble-based classifiers have also been
shown to be effective (Badie et al., 2018; Asadi
et al., 2019). LSTM-based models relying on
word embeddings have been applied to AZ and
to the fundamentally very similar task of assigning
zones to sentences in job ads (Liu, 2017; de Moura
and Feltrim, 2018; Gnehm and Clematide, 2020).
BERT-style (Devlin et al., 2019) models work well
for AZ (Mo et al., 2020; Brack et al., 2022). Multi-
task training has been found to be beneficial for
these models both in-domain (Lauscher et al., 2018)
as well as cross-domain (Brack et al., 2021).

Datasets in the Materials Science Domain.
Several datasets targeting the domain of materi-
als science research have recently been released.
Mysore et al. (2019) annotate paragraphs describ-
ing synthesis procedures with graph structures cap-
turing relations and typed arguments. Friedrich
et al. (2020) mark similar graph structures corre-
sponding to experiment information in 45 open-
access publications. Several works and datasets
address named entity recognition in the domain
(Yamaguchi et al., 2020; O’Gorman et al., 2021).

AZ-CL ART DRI MuLMS-AZ

# docs 80 225 40 50
# sents 12818 34995 10784 10186
# labels 7 11 10 12

Table 2: Manually annotated AZ corpora.

3 Data Sources and Annotated Corpus

In this section, we present our new dataset.
Source of Texts and Preprocessing. We select

50 scientific articles licensed under CC-BY from
seven sub-areas of materials science: electrolysis,
graphene, polymer electrolyte fuel cell (PEMFC),
solid oxide fuel cell (SOFC), polymers, semicon-
ductors, and steel. The four SOFC papers were se-
lected from the SOFC-Exp corpus (Friedrich et al.,
2020). 11 papers were selected from the OA-STM
corpus2 and classified into the above subject areas
by a domain expert. The majority of the papers
were found via PubMed3 and DOAJ4 using queries
prepared by a domain expert. For the OA-STM
data, we use the sentence segmentation provided
with the corpus, which has been created using GE-
NIA tools (Tsuruoka and Tsujii, 2005). For the
remaining texts, we rely on the sentence segmen-
tation provided by INCEpTION v21.0 (Klie et al.,
2018) with some manual fixes.

Annotation Scheme. AZs are functional sen-
tence types, i.e., they capture the rhetorical func-
tion of a sentence. Together with several domain
experts, we design a hierarchical scheme tailored
to the materials science domain as shown in Ta-
ble 3. In addition, we provide ABSTRACT, HEAD-
ING, METADATA, CAPTION, FIGURE/TABLE an-
notations for structural information. We assume a
multi-label setting in which annotators may assign
any number of labels to a sentence. Our detailed
guidelines are available with our dataset.

Corpus Statistics. Documents are rather long
(on average 203.7 sentences per document with a
standard deviation of ±73.2). There is a tendency
towards long sentences (28.7 tokens per sentence
on average), but with high variation of ±17.9 due
to, e.g., short headings. Table 1 shows how often
each AZ label occurs. When ignoring tags for struc-
tural information 8133 sentences have exactly one
AZ label (or the AZ label and its supertype), 1056
sentences have two labels, and 11 sentences have 3

2https://github.com/elsevierlabs/OA-STM-Corpus
3https://pubmed.ncbi.nlm.nih.gov/
4https://doaj.org/
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Label Description Example

MOTIVATION aims/motivation of the study In this study, we perform a systematic analysis of ...
BACKGROUND textbook-like technical background The method is based on the Kelvin equation.
- PRIORWORK specific prior work relevant to current study Irmawati et al. has concluded that ...
EXPERIMENT description of the experiment We evaluate PtCo nanoparticle catalyst ...
- PREPARATION steps describing the preparation of samples The mixture was subjected to stirring for 60 minutes.
- CHARACT. characterizations and characterization Ni foam surface coverage of the WO3 thin film and its

techniques of the involved materials homogeneity were analyzed by energy–dispersive X-ray
spectroscopy (EDS).

EXPLANATION statements (hypotheses or assumptions) In our calculation, all Pt loadings were considered
relevant to results or experimental settings to be electrochemically active.

RESULTS details on experimental results The hydrogen adsorption/desorption peak is at about 0.2V.
CONCLUSION conclusions and take-aways This result indicated that ...

Table 3: Content-based MuLMS-AZ Argumentative Zoning sentence labels.

labels. Labels are similarly distributed across data
splits (see Appendix D).

Inter-Annotator Agreement. Our entire dataset
has been annotated by a single annotator, a gradu-
ate student of materials science, who was also in-
volved in the design of the annotation scheme. We
compare the annotations of this main annotator to
those of another annotator who holds a Master’s de-
gree in materials science and a PhD in engineering.
The agreement study is performed on 5 documents
(357 sentences). Due to the multi-label scenario,
following Krippendorff (1980) we measure κ (Co-
hen, 1960) for each label separately, comparing
whether each annotator used a particular label on
an instance or not (see Table 4). Our annotators
achieve “substantial” agreement (Landis and Koch,
1977) on most labels, “perfect” agreement on iden-
tifying HEADINGs (see also Appendix D). Lower,
though still “moderate”, agreement on MOTIVA-
TION, EXPLANATION and CONCLUSION can in
part be explained by their lower frequency which
makes it generally harder to obtain high κ-values.
Intuitively, they also have a more difficult nature
compared to the other tags, e.g., we observe dis-
agreements regarding what constitutes a MOTIVA-
TION or an EXPLANATION versus what is purely
reporting BACKGROUND. The full confusion ma-
trix and a discussion of agreement on subtags are
given in Appendix D; a discussion of multi-label
examples can be found in Appendix F.

Our scores are in the same ballpark as those
reported by Teufel et al. (1999) on a similar annota-
tion task. For their 7-way task, they report κ scores
around 0.71-0.75, with differences between cate-
gories in one-vs-all measurements ranging from
about 0.49 to 0.78. In sum, we conclude that agree-
ment on AZ is satisfactory in our dataset.

AZ Label κ AZ Label κ

HEADING 0.89 METADATA 0.76
MOTIVATION 0.44 BACKGROUND 0.75
CONCLUSION 0.55 EXPERIMENT 0.78
EXPLANATION 0.39 RESULTS 0.70

Table 4: IAA for AZ on 357 sentences.

4 Modeling

We model AZ as a multi-label classification prob-
lem, using BERT (Devlin et al., 2019) as the un-
derlying text encoder. We also test domain-specific
pre-trained variants of BERT. SciBERT (Beltagy
et al., 2019) has been pre-trained on articles in
the scientific domain. MatSciBERT (Gupta et al.,
2022) is a version of SciBERT further pre-trained
on materials science articles. We use the CLS em-
bedding as input to a linear layer, transform logits
using a sigmoid function and choose labels if their
respective score exceeds 0.5. For multi-task experi-
ments with other datasets, we use a single shared
language model and one linear output layer per
dataset. For hyperparameters, see Appendix A.

As shown in Table 1, the dataset suffers from
strong class imbalance. Classifiers tend to under-
perform on minority labels (Johnson and Khosh-
goftaar, 2019). To address this problem, we apply
the multi-label random oversampling (ML-ROS,
Charte et al., 2015) algorithm during training. The
main idea behind ML-ROS is to dynamically du-
plicate instances of minority classes while taking
the multi-label nature of the problem into account.
In a nutshell, the algorithm performs several over-
sampling iterations, keeping track of the imbalance
ratios associated with each label and choosing in-
stances that carry minority labels until a predefined
number of additional samples have been chosen.
Details are given in Appendix B.
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Method LM mic.-F1 mac.-F1

No Oversampling BERT 72.6±1.0 65.5±0.7

MatSciBERT 76.3±0.7 70.1±0.7

SciBERT 76.2±0.9 70.2±0.6

ML-ROS SciBERT 76.7±0.7 70.6±0.9

+ MultiTask ART SciBERT 75.0±0.9 68.9±1.1

+ MultiTask AZ-CL SciBERT 77.2±0.3 71.1±0.5

human agreement* 78.7 74.9

Table 5: AZ classification results on MuLMS-AZ test
set. *Not directly comparable: computed on documents
from agreement study (see Appendix D).

5 Experimental Results

We here detail our experimental results.
Settings. We split our corpus into train, dev, and

test sets of 36, 7, and 7 documents. For all experi-
ments and for hyperparameter tuning, we always
train five models. The training data is split into
five folds. Similar to cross-validation, we train on
four folds and use the fifth fold for model selection
(cf. van der Goot, 2021), repeating this process five
times (also for hyperparameter tuning). The dev
set is only used for tuning, and we report scores for
the five models on test. In this setting, deviations
are naturally higher than when reporting results
for the same training data. For hyperparameters
and implementation details, see Appendix A. To
evaluate our experiments, we use hierarchical preci-
sion, recall, and F1 (Silla and Freitas, 2011). These
scores operate on the sets of labels per instance,
always including the respective supertypes of gold
or predicted labels.

Results. Table 5 shows the performance of our
neural models on MuLMS-AZ. Overall, the cate-
gories can be learned well, approaching our esti-
mate of human agreement. SciBERT clearly out-
performs BERT, i.e., using domain-specific embed-
dings is a clear advantage. However, MatSciBERT
does not add upon SciBERT. We hence conduct
the remaining experiments using SciBERT. Using
ML-ROS results in minor increases for most labels
(see also Appendix G). When multi-task learning
with the AZ-CL dataset (using 40% of its samples),
further increases are observed. It is worth noting
that multi-task training with ART does not result
in increases although the chemistry domain should
be much closer to our domain. This might indicate
that despite the domain discrepancy, AZ annota-
tions in AZ-CL are more compatible with ours.

As a first step to explaining what part of rhetori-

Training data PM Label P R

PM, AZ-CL, ART, DRI OBJECTIVE 36.1 28.3
PM, AZ-CL, ART, DRI BACKGROUND 84.2 40.0
PM, ART, DRI METHOD 58.1 74.7
PM, ART, DRI RESULT 82.4 30.9
PM, ART, DRI CONCLUSION 43.5 29.9
MuLMS-AZ OBJECTIVE 56.8 54.3
MuLMS-AZ BACKGROUND 82.1 78.8
MuLMS-AZ METHOD 79.9 78.2
MuLMS-AZ RESULT 82.1 83.2
MuLMS-AZ CONCLUSION 43.5* 29.9*

Table 6: Results for transfer learning experiment. Preci-
sion and recall on MuLMS-AZ test set. *not a typo.

cal information can be induced based only on data
from other corpora, we perform a transfer learning
experiment. We carefully manually map the AZ la-
bels of the various datasets (see Appendix E) to the
coarse-grained categories used by PubMed (PM).
Using these mapped labels, we train binary classi-
fiers that aim to detect the presence of a particular
PM label. As training data, we use ART, DRI, and
a selection of documents from the PM dataset by
de Moura and Feltrim (2018) that were published
in materials science journals (see Appendix C). We
add AZ-CL to the training data only if an unam-
biguous mapping of its categories to the PM label
in question is possible. Here, we use the dev set of
MuLMS-AZ for model selection and hyperparame-
ter tuning. Results for running the resulting classi-
fiers on MuLMS-AZ are reported in Table 6. For
BACKGROUND and RESULTS, we observe a high
precision, which indicates that similar rhetorical
elements may be used. OBJECTIVE and METHOD

seem to differ most across datasets as they are likely
very domain- and problem-specific. When train-
ing with mapped labels on the entire MuLMS-AZ,
we observe much higher recall scores across all
label groups, again indicating the usefulness of our
in-domain training data.

6 Conclusion and Outlook

We have presented a new AZ corpus in the field
of materials science annotated by domain experts
with high agreement. Our experimental results
demonstrate that strong classifiers can be learned
on the data and that AZ labels can be transferred
from related datasets only to a limited extent.

Our new dataset opens up new research opportu-
nities on cross-domain AZ, class imbalance scenar-
ios, and integrating AZ information in information
extraction tasks in materials science.
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Limitations

This resource paper describes the dataset in detail,
providing strong baselines and first initial cross-
domain experiments. It does not aim to provide
an extensive set of experiments on cross-domain
argumentative zoning yet.

The entire dataset is only singly-annotated. The
agreement study was performed on complete docu-
ments and hence has only limited data for several
labels. Due to the limited funding of the project,
we could double-annotate the entire dataset.

Finally, we only test one model class (BERT-
based transformers). A potential next step is to
test a bigger variety of models and embeddings.
Because AZ labels are interdependent within a doc-
ument, especially document-level models or CRF-
based models are promising methods to try. We
have also tested only one method (multi-label ran-
dom oversampling) to deal with the strong class
imbalance in the dataset. We have not yet tested
further such methods (Henning et al., 2023) or data
augmentation methods.

Ethical Considerations

We took care of potential license issue of the data
underlying our dataset by exclusively selecting
open-access articles published under CC BY.

The main annotator was paid above the mini-
mum wage of our country in the context of a full-
time internship. The annotator was aware of the
goal of the study and consents to the public release
of the data. The remaining domain experts partici-
pated on a voluntary basis due to their interest in
the topic.
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Appendix

A Hyperparameters

We implement all our models using PyTorch. We
use AdamW (Loshchilov and Hutter, 2019) as the
optimizer for all our models and set the batch size
to 16/32 depending on what works best and GPU
restrictions. The learning rate stays constant after
a linear warmup phase. We set a dropout rate to
0.1 for the linear layer that takes the contextualized
embeddings that are produced by BERT as input.
Early stopping is applied if the micro-F1 score has
not improved for more than 3 epochs. Binary cross
entropy is the loss function for the MuLMS-AZ out-
put layer, whereas cross entropy is the loss function
used for optimizing the multi-task output heads cor-
responding to the other AZ datasets. Table 7 lists
the various learning rates found during grid search.
We tested different learning rates between 1e-4 and
1e-7. A refinement of the grid was done after an ini-
tial search, which almost always leads to a second
search area within the range of 1e-6 to 9e-6. When
using ML-ROS, we oversample by 20%. Training
was performed on a single Nvidia A100 GPU or
alternatively V100 GPU.

Method LM Learning Rate

No Oversampling BERT 3e-6
MatSciBERT 8e-6
SciBERT 3e-6

ML-ROS SciBERT 2e-6
+ MT (+PM) SciBERT 7e-6
+ MT (+ART) SciBERT 2e-6
+ MT (+AZ-CL) SciBERT 2e-6
+ MT (+DRI) SciBERT 1e-6
+ MT (+ART+AZ+DRI) SciBERT 8e-6
Data Augm. (+PM) SciBERT 8e-6

Table 7: Learning rates of the different model reported
in Table 12

B Multi-Label Random Oversampling
(ML-ROS) Algorithm

Figure 1 details our adaption of the multi-label ran-
dom oversampling (ML-ROS) algorithm originally
proposed by Charte et al. (2015). In the initializa-
tion (lines 3-7), for each label, all the instances that
carry a particular label are collected in what Charte
et al. call a bag. The main part of the algorithm
(lines 10-24) does the following: For each label y,
the Imbalance Ratio per label (IRLbl), which is
the ratio between the count of the most frequent

label and the count of y, is calculated:

IRLbl(y) =
maxy′∈L

∑|D|
i=1 h(y

′, Yi)∑|D|
i=1 h(y, Yi)

D is the dataset, L is the label set, Yi is the set
of labels assigned to the i-th sample and h is an
indicator function evaluating if y ∈ Yi. Hence,
the larger the value, the less frequently y occurs
compared to the most frequent label.

The per-label values are then used to determine
the mean imbalance ratio (MeanIR):

MeanIR =
1

|L|
∑

y′∈L
IRLbl(y′)

For each of the labels with an imbalance ratio
exceeding the current MeanIR, a random instance
of this label is duplicated.

The main part is repeated until the pre-specified
size of the oversampled dataset is reached. Our
implementation differs from Charte et al. in that
we update meanIR in each iteration step and also
oversample labels originally not being a minority
label when their IRLbl exceeds MeanIR at the
beginning of an iteration step.

C List of Materials Science Journals

We used the list of materials-science related jour-
nals collected on Wikipedia to filter for abstracts in
the PubMed Medline corpus published in journals.5

D Further Corpus Statistics for
MuLMS-AZ

Table 8 gives the counts of sentences carrying a par-
ticular AZ label. Distributions are similar across
data splits. Table 8 also lists counts for ABSTRACT,
which we decide to exclude from our modeling
experiments because including it resulted in per-
formance decreases due to confusion with other
labels. Locating the abstract in a document can
usually be solved in rule-based ways as abstracts of
publications are commonly available in a machine-
readable format.

During annotation, we introduced two subtypes
of EXPLANATION, HYPOTHESIS and ASSUMP-
TION, distinguishing between scientific hypotheses
and assumptions made by the author in cases where
often choices are possible. As the overall counts

5https://en.wikipedia.org/w/index.php?title=List_of_materials_
science_journals&oldid=1078212543
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1 I n p u t s : < D a t a s e t > D, < P e r c e n t a g e > P
2 O u t p u t s : Oversampled d a t a s e t
3 samplesToDuplicate <−− |D|/100 ∗ P # P % s i z e i n c r e m e n t
4 L <−− l a b e l s I n D a t a s e t (D ) # Obta in t h e f u l l s e t o f l a b e l s
5 f o r each label in L do # Bags o f samples f o r each l a b e l
6 Baglabel <−− g e t S a m p l e s P e r L a b e l ( label )
7 end f o r
8

9 whi le samplesToDuplicate > 0 do # Loop d u p l i c a t i n g i n s t a n c e s
10 MeanIR <−− c a l c u l a t e M e a n I R (D,L )
11 # Gather m i n o r i t y bags ( bag : a l l i n s t a n c e s o f a g i v e n l a b e l )
12 minBags = [ ]
13 f o r each label in L do
14 IRLbllabel <−− c a l c u l a t e I R p e r L a b e l (D, label )
15 i f IRLbllabel > MeanIR t h e n
16 minBags += Baglabel
17 end i f
18 end f o r
19 # D u p l i c a t e a random sample from each m i n o r i t y bag
20 f o r each minBagi in minBags do
21 x <−− random (1, |minBagi| )
22 d u p l i c a t e S a m p l e (minBagi, x )
23 −− samplesToDuplicate
24 end f o r
25 end whi le

Figure 1: Pseudocode for adapted (dynamic) ML-ROS algorithm.

and agreement were low, we decided to only use
the supertype EXPLANATION in all experiments.

Figure 2a shows the label coincidence matrix
between the two annotators in the inter-annotator
agreement study, i.e., how often each pair of labels
co-occurred on an instance. For all labels except
MOTIVATION, the majority of coincidences occur
on the diagonal. RESULTS is the label most mixed
up with others, possibly because these sentences
often are long and also contain interpretative infor-
mation of the other rhetorical types.

Figure 2a breaks this information down the level
including subtypes. CHARACTERIZATION and
PREPARATION are rarely confused by the domain
experts. Similarly, BACKGROUND and PRIOR-
WORK are reliably distinguished.

Agreement on sub-labels. Our agreement study
contained only 12 CAPTION instances. Data
inspection showed that the additional (not the
main) annotator neglected to use this tag where
appropriate, using only content-related tags on
these instances. There were also not enough
instances of the subtypes PREPARATION and
EXPERIMENT_CHARACTERIZATION to measure
agreement. On identifying the subtype BACK-
GROUND_PRIORWORK, annotators achieve a κ
of 0.8, with (minor) disagreements mainly with
regard to using BACKGROUND or its subtype.

Label total train dev test

MOTIVATION 363 273 44 46
BACKGROUND 3155 2423 440 292
-PRIORWORK 1824 1387 265 172
EXPERIMENT 2579 1896 394 289
-CHARACTERIZATION 1347 982 200 165
-PREPARATION 962 705 146 111
EXPLANATION 603 430 91 82
RESULTS 2953 2146 440 367
CONCLUSION 680 507 106 67

ABSTRACT 269 190 28 51
CAPTION 485 309 91 85
HEADING 702 536 96 70
METADATA 210 142 40 28

Table 8: Label counts on the complete dataset and
on data split subsets. Multi-label counts: Number of
sentences in which the label is present. Due to multi-
labeling, the sum of these columns exceeds the total
amount of sentences. For hierarchical labels, the super-
label count includes all sub-label counts.

Agreement on HEADING. As it should be
straightforward to identify headings, we looked
at the 6 cases that one annotator labeled as HEAD-
ING but not the other. We found 4 cases to result
from broken formatting. One METADATA sentence
was wrongly labeled HEADING, and the remain-
ing HEADING sentence was missed by the other
annotator.
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(a) Coincidence matrix for coarse AZ labels.
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Figure 2: Coincidence matrices of inter-annotator agreement study for AZ labels on 357 sentences.

Precision Recall F1 support

micro avg. 77.3 80.0 78.7
macro avg. 75.0 76.1 74.9

HEADING 100.0 81.2 89.7 32
METADATA 75.0 81.8 78.3 11
MOTIVATION 50.0 44.4 47.1 18
BACKGROUND 77.0 89.5 82.8 105
-PRIORWORK 77.9 90.9 83.9 66
EXPERIMENT 80.0 84.5 82.2 71
-PREPARATION 92.6 73.5 82.0 34
CHARACTERIZATION 61.7 78.4 69.0 37
RESULTS 85.7 70.2 77.2 94
CONCLUSION 50.0 66.7 57.1 18

Table 9: Human agreement computed in terms of hierar-
chical precision, recall, and F1.

Human “upper bound”. In order to provide a
rough estimate of how humans would perform on
the classification task, we use the data from the
agreement study to compute hierarchical precision,
recall, and F1 scores. Due to insufficient data for
the remaining labels, we only compute the scores
over the following labels: HEADING, METADATA,
MOTIVATION, BACKGROUND, PRIORWORK, EX-
PERIMENT, PREPARATION, CHARACTERIZATION,
RESULTS, and CONCLUSION. Table 9 reports de-
tailed scores per label. Scores have been computed
using scikit-learn6.

6https://scikit-learn.org/stable

E Description and Comparison of AZ
Datasets.

In this section, we provide a detailed description
and comparison of existing AZ datasets. The vari-
ous corpora try to capture very similar information.
However, each corpus defines its set of labels in a
slightly different way. Table 10 lists the various la-
bels used in the datasets and groups labels used for
the same or very similar purpose. Table 11 shows
the label distributions of the corpora.

AZ-CL corpus. The Argumentative Zoning (AZ,
Teufel et al., 1999; Teufel and Moens, 1999) cor-
pus7 consists of 80 manually annotated open-access
computational linguistics research articles. Sen-
tences are marked according to their argumentative
zone or rhetorical function as one of the following
classes: AIM, BACKGROUND, BASIS, CONTRAST,
OTHER, OWN or TEXT. Inter-annotator agreement
is reported as substantial (κ = 0.71). The distribu-
tion of classes is quite skewed towards OTHER and
OWN.

ART corpus. The ART corpus8 (Soldatova and
Liakata, 2007) covers topics in physical chem-
istry and biochemistry. Articles are annotated
according to the CISP/CoreSC annotation scheme
(Liakata and Soldatova, 2008). Sentences are

7https://github.com/WING-NUS/RAZ
8https://www.aber.ac.uk/en/cs/research/cb/projects/art/art-corpus/
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PubMed AZ-CL ART DRI MuLMS-AZ Description

OBJECTIVE AIM HYPOTHESIS CHALLENGE MOTIVATION A sentence describing the research
MOTIVATION target, goal, aim or the motivation
GOAL for the research.

BACKGROUND BACKGROUND BACKGROUND BACKGROUND BACKGROUND A statement concerning the knowledge
CONTRAST PRIORWORK domain or previous related work.
BASIS

METHOD OWN OBJECT, APPROACH EXPERIMENT A sentence describing the research
METHOD PREPARATION procedure, models used, or observations
MODEL CHARACTERIZ. made during the research.
EXPERIMENT EXPLANATION
OBSERVATION

RESULT OWN RESULT OUTCOME RESULTS A sentence describing the study findings,
EXPLANATION effects, consequences, and/or analysis of

the results.

CONCLUSION OWN CONCLUSION OUTCOME CONCLUSION A statement concerning the support or
FUTUREWORK rejection of the hypothesis or suggestions

of future research.

– TEXT – SENTENCE – Example sentences, broken sentences, etc.
OTHER UNSPECIFIED

Table 10: AZ Corpus Zones Mapping and Descriptions. Compare to Table 3.

labeled with one of the categories HYPOTHE-
SIS, MOTIVATION, GOAL OF INVESTIGATION,
BACKGROUND, OBJECT OF INVESTIGATION, RE-
SEARCH METHOD, MODEL, EXPERIMENT, OB-
SERVATION, RESULT or CONCLUSION. The anno-
tation scheme also defines subcategories for some
of these. The corpus has been annotated by domain
experts. In a preliminary study, κ was measured as
0.55, however, for the final corpus, only the anno-
tators that had the highest average agreement were
selected. Hence, the agreement in the final corpus
is expected to be higher.

DRI corpus. The Dr. Inventor Multi-Layer Sci-
entific Corpus9 (DRI, Fisas et al., 2016, 2015),
contains 40 scientific articles taken from the do-
main of computer graphics. Each of the 10,784
sentences was annotated with one of the rhetori-
cal categories: CHALLENGE, BACKGROUND, AP-
PROACH, OUTCOME or FUTUREWORK. They have
also included two other categories SENTENCE for
sentences that are characterized by segmentation
or character encoding errors and UNSPECIFIED for
sentences where identification is not possible. Also
to note was the possibility to annotate a combi-
nation of two different categories as seen in the
example of: OUTCOME_CONTRIBUTION, CHAL-
LENGE_GOAL and CHALLENGE_HYPOTHESIS.
Manual annotation reaches a κ value of 0.66.

9http://sempub.taln.upf.edu/dricorpus

PubMed corpus. The PubMed corpus10

(de Moura and Feltrim, 2018) contains abstracts of
papers in the biomedical domain extracted from
PUBMED/MEDLINE. The collected abstracts
were written in English and annotated with
predefined section names by their authors; based
on the mapping provided by the U.S. National
Library of Medicine (NLM), the section names
were collapsed into five rhetorical roles: BACK-
GROUND, OBJECTIVE, METHODS, RESULTS,
and CONCLUSIONS. The abstracts that did not
contain the five mentioned rhetorical roles were
removed from the dataset with the resulting corpus
containing close to 5 million sentences. The
dataset is not particularly challenging: a simple
CRF model achieves an F-score of 93.75, an
LSTM-based model achieves 94.77 according to
de Moura and Feltrim (2018).

F Examples

In this section, we present and discuss several ex-
amples from our dataset.

F.1 Example Sentences

• MOTIVATION: Therefore, it is highly desir-
able to develop an innovative technology to
raise the mass activity of Ir-based OER cata-
lysts to the targeted level.

10https://github.com/dead/rhetorical-structure-pubmed-abstracts
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Dataset Label Count

AZ-CL OWN 8624
OTHER 2019
BACKGROUND 789
CONTRAST 600
AIM 313
BASIS 246
TEXT 227

ART RESULT 7373
BACKGROUND 6657
OBSERVATION 4659
METHOD 3751
MODEL 3456
CONCLUSION 3083
EXPERIMENT 2841
OBJECT 1190
HYPOTHESIS 656
GOAL 548
MOTIVATION 466

DRI APPROACH 5038
BACKGROUND 1760
SENTENCE 1247
OUTCOME 1175
UNSPECIFIED 759
CHALLENGE 351
OUTCOME_CONTRIBUTION 219
FUTUREWORK 136
CHALLENGE_HYPOTHESIS 7

MatSci PubMed RESULTS 1282
OBJECTIVE 1264
METHODS 1198
CONCLUSION 380
BACKGROUND 60

Table 11: Label counts for the different AZ corpora.

• BACKGROUND: For photocatalytic water
splitting using photoelectrochemical cells
(PECs), the charge carriers are created from
the photovoltaic effect close to the catalytic
site.

• PRIORWORK: Proton exchange membrane
(PEM) electrolysis, which occurs in acidic
electrolytes (pH 0–7), has better efficiency
and enhanced ramping capability over other
types of electrolysis [7].

• EXPERIMENT: In order to find an optimum ef-
ficiency of the PV–electrolysis, different com-
binations of the electrolyzer with A-CIGS-
based thin film solar cell modules with dif-
ferent band gaps of the cell were examined.

• PREPARATION: Pre-sputtering was per-
formed for 5 min in argon plasma in order
to remove surface impurities.

• CHARACTERIZATION: The current density-
potential (j–V) characteristics of the A-CIGS

cells were recorded under simulated AM 1.5G
sunlight in a set-up with a halogen lamp
(ELH).

• EXPLANATION: A possible explanation for
the superior ECSA-specific activity in the 3D
WP-structured catalysts is efficient removal of
oxygen bubbles from the catalyst layer.

• RESULTS: The load curves were similar for
the electrolyzers with different WO3 thin films
and the lowest potential needed for 10 mA
cm-2 in the overall reaction was 1.77 V.

• CONCLUSION: The Cu-N- rGO demonstrated
superior catalytic activity to the counterpart
N-rGO, and enhanced durability compared to
commercial Pt/C.

Structural tags are used, for example, in the fol-
lowing cases.

• HEADING: 4. Discussion and concluding re-
marks

• METADATA: This research was funded by
Hubei Superior and Distinctive Discipline
Group of “Mechatronics and Automobiles”
(No.XKQ2019009).

• CAPTION: Figure 8. Enlarged view of the
shaded portion of Figure 7.

F.2 Multi-Label Examples
In contrast to earlier works on AZ, our approach to
labeling AZ in materials science publications uses
a multi-label approach. In this section, we discuss
some multi-label examples.

• BACKGROUND, PRIORWORK, RESULTS:
This indicates that the HER follows a rate-
determining Volmer or Heyrovsky step for dif-
ferent sputtering conditions without any order
[40,41]. In this example, a result obtained
in the current paper confirms a result known
from prior work.

• EXPERIMENT, CHARACTERIZATION, RE-
SULTS, EXPLANATION: Attributing this en-
thalpy release exclusively to the removal
of grain boundaries in stage B, a specific
grain boundary energy(2)γ=Hρ3dini-1-dfin-
1=0.85±0.08Jm-2is estimated using the ini-
tial and final crystallite diameters of stage B,
as given above (dini=222nm, dfin=764nm),

12



as well as the Cu bulk value of 8.92gcm-3
for the mass density ρ. The first subordinate
clause of this sentence (Attributing ... stage
B) is an EXPLANATION. The remainder of the
sentence states a CHARACTERIZATION.

• BACKGROUND, PRIORWORK, RESULTS,
CONCLUSION: Furthermore, the fatigue life
decreased approximately by more than 12%
when the pre-corroded time was doubled,
and the fatigue life decreased approximately
by more than 11% when the applied stress
level was doubled, indicating that both pre-
corroded time and applied stress level can sig-
nificantly affect the fatigue life of specimens,
which shows a good agreement with the pre-
vious works [37,38]. This example illustrates
a case where our simplification of labeling
entire sentences comes to its limits: The first
part of the sentence (Furthermore ... was dou-
bled) reports RESULTS while the second part
draws a CONCLUSION drawing connections
to specific PRIORWORK.

G Detailed Results

In this section, we provide detailed results for the
experiments presented in the main part of the paper.

Table 13 (no oversampling and ML-ROS) and
Table 14 (multi-task AZ-CL) show the results in
terms of precision, recall and (hierarchical) F1 for
each label individually. We report the results on
both dev and test of the specific model that per-
formed best on dev compared to all other models.

First, we compare the difference between no
oversampling at all and when using ML-ROS. As
shown in Table 1, MOTIVATION, METADATA, and
CAPTION are the least frequent labels in our dataset.
Except for METADATA on the test set, there is al-
ways an increase in terms of F1-score when apply-
ing ML-ROS on minority labels during training.
The biggest increase of 5.8 happened for MOTIVA-
TION on the test set. Furthermore, there is also an
improvement of 1.2 points on dev and 2.5 points on
test in terms of F1-score for EXPLANATION, which
is fourth in the list of rarest AZ labels.

During our experimentation, we observed that
ML-ROS tends to be especially helpful for models
that show strong performance on majority labels,
but not on minority labels. Other models with dif-
ferent hyperparameters achieve even better scores
on minority labels without oversampling; however,
they tend to have worse overall performance.

Method LM mic.-F1 mac.-F1

No Oversampling BERT 72.6±1.0 65.5±0.7

MatSciBERT 76.3±0.7 70.1±0.7

SciBERT 76.2±0.9 70.2±0.6

ML-ROS SciBERT 76.7±0.7 70.6±0.9

+ MT (+PM) SciBERT 76.5±0.4 69.5±0.5

+ MT (+ART) SciBERT 75.0±0.9 68.9±1.1

+ MT (+AZ-CL) SciBERT 77.2±0.3 71.1±0.5

+ MT (+DRI) SciBERT 76.6±0.3 70.5±0.4

+ MT (+ART+AZ+DRI) SciBERT 76.4±0.6 70.2±0.5

Data Augm. (+PM) SciBERT 77.1±0.8 70.8±1.3

human agreement* 78.7 74.9

Table 12: Results on MuLMS-AZ test set, hierarchical
micro/macro F1: MT=Multi-Task models, *not directly
comparable.

Next, we describe the effects of multi-task
training with the AZ-CL dataset. We also apply
ML-ROS to MuLMS-AZ in our multi-task exper-
iments. Both micro-F1 and macro-F1 increase
by 0.5 points in terms of micro- and macro-F1
when using multi-tasking instead of ML-ROS only.
Most of the per-label F1-scores increased when us-
ing multi-tasking, interestingly with notable differ-
ences for CHARACTERIZATION (4.8) and META-
DATA (5.6). We conclude that multi-tasking with
AZ-CL helps supporting common majority labels
even though the domain of this dataset is clearly
different from ours.

In contrast, multi-task learning with the other
datasets consistently resulted in decreases of per-
formance. The chemistry domain is intuitively clos-
est to that of materials science, hence, we would
have expected ART to be a good additional dataset
in multi-task learning. Brack et al. (2022) provide
some insights into cross-domain learning of AZ
categories using datasets from biomedicine, chem-
istry, and computer graphics. Our MuLMS-AZ,
alongside AZ-CL, opens up new research opportu-
nities.

In addition, we perform a data augmentation
experiment using AZ data from scientific abstracts
of the PubMed Medline corpus11, filtering for ab-
stracts that were published in journals related to the
materials science domain (see Appendix C). We
map the four PubMed AZ labels BACKGROUND,
OBJECTIVE, RESULTS, and CONCLUSIONS to our
four AZ labels BACKGROUND, MOTIVATION, RE-
SULTS and CONCLUSION. Augmenting with data
from the PubMed Medline dataset also helps to

11https://www.nlm.nih.gov/databases/download/pubmed_medline.
html
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achieve better performance. However, the micro-
F1 score is 0.1 lower and the macro-F1 score is
0.3 lower compared to the MT (+AZ-CL) model.
On the other hand, training is much more time-
efficient since a low augmentation percentage of
10% is sufficient to get good results.
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Label dev test

P R H. F1 P R H. F1 Count
SciBERT, no oversampling
MOTIVATION 65.5 46.8 54.4 68.5 36.5 47.6 363
BACKGROUND 89.2 80.0 84.3 85.0 76.6 80.6 3155
-PRIORWORK 97.0 84.5 90.3 92.9 67.9 78.4 1824
EXPERIMENT 82.1 85.8 83.9 80.6 82.6 81.6 2579
-CHARACTERIZATION 72.0 68.9 70.3 75.8 67.3 71.1 962
-PREPARATION 65.2 65.1 65.0 78.6 69.7 73.7 1347
EXPLANATION 46.3 33.0 38.4 55.0 35.9 43.4 603
RESULTS 75.0 84.6 79.5 79.9 85.9 82.8 2953
CONCLUSION 56.7 55.3 56.0 42.4 43.0 42.6 680

CAPTION 92.4 75.2 82.9 80.9 68.9 74.4 485
HEADING 84.8 97.9 90.9 87.4 96.6 91.7 702
METADATA 93.1 68.0 78.6 78.6 72.9 75.2 210

Average 76.6 70.4 72.9 75.5 67.0 70.2

SciBERT, ML-ROS
MOTIVATION 56.3 55.9 55.9 72.9 43.0 53.4 363
BACKGROUND 82.2 84.8 83.5 79.7 84.2 81.9 3155
-PRIORWORK 96.0 84.5 89.9 90.5 71.3 79.7 1824
EXPERIMENT 85.1 83.2 84.1 81.1 81.7 81.4 2579
-CHARACTERIZATION 73.3 67.3 70.1 73.2 67.5 70.2 962
-PREPARATION 69.4 63.4 66.3 73.8 69.5 71.5 1347
EXPLANATION 45.7 35.2 39.6 53.4 40.2 45.9 603
RESULTS 77.6 83.4 80.4 83.6 83.8 83.7 2953
CONCLUSION 60.6 44.5 51.3 46.8 35.2 40.1 680

CAPTION 91.7 79.6 85.2 77.9 73.6 75.7 485
HEADING 85.4 97.5 91.1 90.6 96.3 93.4 702
METADATA 89.3 70.5 78.8 61.9 80.0 69.8 210

Average 76.1 70.8 73.0 73.8 68.9 70.6

Table 13: Per label scores on dev and test of MuLMS-AZ in terms of precision, recall, and hierarchical F1. Bold:
best result for label. P, R, and F1 scores are averages over the P, R, F1 scores of 5 folds each.

Label dev test

P R H. F1 P R H. F1

MOTIVATION 62.7 54.1 58.0 71.2 43.9 54.3
BACKGROUND 85.6 82.1 83.8 80.9 81.6 81.2
-PRIORWORK 95.4 84.2 89.4 93.7 68.8 79.3
EXPERIMENT 83.6 82.8 83.2 83.1 83.0 83.0
-CHARACTERIZATION 73.7 65.9 69.3 77.4 73.0 75.0
-PREPARATION 69.4 55.6 61.7 79.4 67.2 72.8
EXPLANATION 42.6 35.8 38.8 51.2 35.9 41.7
RESULTS 76.6 84.4 80.3 81.5 85.1 83.2
CONCLUSION 61.8 49.6 55.0 41.0 32.8 36.4

CAPTION 90.5 77.6 83.5 79.2 76.2 77.7
HEADING 84.7 97.7 90.7 88.9 97.4 92.9
METADATA 84.3 72.0 77.6 70.6 81.4 75.4

Table 14: Per label scores on dev and test in terms of precision, recall, and hierarchical F1 using multi-task learning
with the AZ-CL dataset, SciBERT, ML-ROS.
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Abstract

Though discourse parsing can help multiple
NLP fields, there has been no wide language
model search done on implicit discourse re-
lation classification. This hinders researchers
from fully utilizing public-available models in
discourse analysis. This work is a straightfor-
ward, fine-tuned discourse performance com-
parison of seven pre-trained language mod-
els. We use PDTB-3, a popular discourse re-
lation annotated dataset. Through our model
search, we raise SOTA to 0.671 ACC and ob-
tain novel observations. Some are contrary to
what has been reported before (Shi and Dem-
berg, 2019b), that sentence-level pre-training
objectives (NSP, SBO, SOP) generally fail to
produce the best performing model for implicit
discourse relation classification. Counterintu-
itively, similar-sized PLMs with MLM and full
attention led to better performance.

1 Introduction

An utterance has multiple dimensions of meaning.
Discourse relation classification identifies one such
dimension: the coherence relation between clauses
or sentences arising from low-level textual cues
(Zhao and Webber, 2022; Webber et al., 2019).
This makes the task important to several NLP fields,
including multi-party dialogue analysis (Li et al.,
2022), social media postings analysis (Siskou et al.,
2022), and student literary writing analysis (Fiacco
et al., 2022). A discourse relation is often marked
with explicit connectives such as but, because, and.
Consider the following example:

Although Philip Morris typically tries
to defend the rights of smokers, ["this
has nothing to do with cigarettes, nor
will it ever," the spokesman says]Arg1.
[But]Conn [some anti-smoking activists
disagree]Arg2, expressing anger... →
Comparison.Contrast

The explicit connective, Conn (But), is informa-
tive. Hence, it is fairly easy to know that the two
arguments, Arg1 and Arg2, are compared, likely
in a contrasting relationship rather than similarity.
This task is often referred to as explicit discourse
relation classification. Pitler and Nenkova (2009)
achieves a 94.15% accuracy (4-way) with Naive
Bayes.

Implicit discourse relation classification, on the
other hand, aims to classify discourse relationships
in cases without an explicit connective. It has re-
ceived constant attention (Li et al., 2022) since the
release of Penn Discourse Tree Bank 2.0 (PDTB-2)
(Prasad et al., 2008). Consider the following:

["Last year we probably bought one
out of every three new deals,]Arg1,"
he says. "[This year, at best, it’s
in one in every five or six.]Arg2" →
Comparison.Contrast

Without an explicit connective, Conn, discourse
relation classification only relies on low-level se-
mantic cues from the arguments, Arg1 and Arg2.
Such "implicit" discourse relation classification is
very challenging as it requires a language model
to conceptualize the unstated goal the speaker is
trying to achieve, not only the literal content (Shi
and Demberg, 2019b; Sileo et al., 2019).

With XLNetlarge (Yang et al., 2019) achieving
∼60% accuracy (Kim et al., 2020), pre-trained lan-
guage models showed promising improvements
from the past studies: Maximum-Entropy Learn-
ing (∼40% F1) (Lin et al., 2014), Adversarial Net-
work (∼46% ACC) (Qin et al., 2017), Seq2Seq +
Memory Network (∼48% ACC) (Shi and Demberg,
2019a). Implicit discourse relation classification
gives relatively small textual information for a lan-
guage model to infer from. Thus, pre-training large
text helps establish typical relations within/across
clauses and sentences (Shi and Demberg, 2019b).
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Configurations ALBERTlarge BARTlarge BigBird-R. DeBERTalarge Longformerlarge RoBERTalarge SpanBERTlarge

Release 2019 2020 2020 2020 2020 2019 2020
Parameters 17M 406M - 350M 435M 340M 340M
Hidden 1024 1024 - 1024 1024 1024 1024
Layers 24 (Enc) 24 (Enc+Dec)∗ - 24 (Enc) 24 (Enc) 24 (Enc) 24 (Enc)
Attention Heads 16 16 - 16 16 16 16
Self-Attention Full Full Block-Sparse Full∗∗ Global+Window Full Full
Max Seq. Length 512 512 4096 512 4096 512 512
Pre-train Obj. MLM & SOP TI & SS - MLM MLM MLM MLM & SBO

Table 1: Tested language models and their varying configurations. ∗: BART follows the original encoder-decoder
architecture, 12 layers allocated for each. ∗∗: DeBERTa uses disentangled attention. MLM: masked language
modelling. SOP: sentence order prediction. SBO: span boundary objective. TI: text infilling. SS: sentence shuffling.

Pre-trained language models, like BERT (De-
vlin et al., 2018), follow transformer-type (Vaswani
et al., 2017) architecture and have only been re-
cently introduced into implicit discourse relation
classification (Kishimoto et al., 2020). To the best
of our knowledge, BERT and XLNet are the only
pre-trained language models (fine-tuned and) eval-
uated for implicit discourse relation classification
on PDTB-3 (Kim et al., 2020). However, language
models vary in architecture, training objective, data,
etc.

Instead of performing a focused study on a single
model, we fine-tune seven state-of-the-art (SOTA)
language models (§2). Our wider approach brings
weaknesses (§5) (as we ignore some model-specific
characteristics), but it allows the bird’s-eye view
of several downstream performances in PDTB-3
(§3) (Webber et al., 2019) and raises SOTA (∼67%
ACC) on Kim et al. (2020)’s evaluation protocol.
By contrasting performances, we show that certain
language model characteristics can benefit implicit
discourse relation classification.

Additionally, we take the best-performing lan-
guage model and check if the "full-sentence(s)"
setup gives better performance (§3.4). As we elab-
orate further in the following sections, our sanity
checks on PDTB-3 hint that some argument an-
notations are questionable in terms of consistency
and coverage. Hence, implicit discourse relation
classification accuracy might improve by simply
training the language model with a full sentence(s)
instead of human-annotated argument spans (Arg1
and Arg2). We evaluate this idea toward the end.

2 Background

The pre-train and fine-tune paradigm have been
led by the remarkable downstream task perfor-
mances of pre-trained language models (Kalyan
et al., 2021; Devlin et al., 2018). For several NLP
tasks, a pre-trained language model could have

likely done a fine job at learning syntax, seman-
tics, and world knowledge – given enough data and
model size (Wang et al., 2019).

A pre-trained language model’s competence in
discourse was questionable until Shi and Demberg
(2019b) proposed that BERT’s pre-training objec-
tive can benefit implicit discourse relation classifi-
cation. However, Iter et al. (2020) hints that BERT
is not the language model best suited to the task.

Implicit discourse relation classification is an ac-
tive area of research (Kurfalı, 2022; Zhao and Web-
ber, 2022; Kurfalı and Östling, 2021b; Knaebel,
2021; Munir et al., 2021; Kurfalı and Östling,
2021a; Kishimoto et al., 2020; Bourgonje and
Stede, 2019; Shi and Demberg, 2019b; Bai and
Zhao, 2018; Dai and Huang, 2018; Rutherford
et al., 2017). However, there has been no wide-
range model study on implicit discourse relation
classification, limiting a researcher’s scope of
model choice. This issue is further complicated
by the fact that discourse task performances do not
always correlate with popular semantics-based nat-
ural language understanding (NLU) scores, such
as GLUE (Sileo et al., 2019). Thus, it is difficult
to predict which language model can perform well
without a dedicated empirical exploration.

With the a version update to Penn Discourse
Tree Bank (PDTB-3) (Webber et al., 2019) and the
correspondingly updated evaluation method (Kim
et al., 2020), we fine-tune seven language models
to implicit discourse relation classification.

The chosen language models are: RoBERTalarge
(Liu et al., 2019), ALBERTlarge (Lan et al., 2019),
BigBird-RoBERTalarge (Zaheer et al., 2020),
BARTlarge (Lewis et al., 2020), Longformerlarge
(Beltagy et al., 2020), SpanBERTlarge (Joshi et al.,
2020), DeBERTalarge (He et al., 2020a). These
models are selected with diversity in mind, espe-
cially in terms of input sequence length, attention
type, and pre-train objectives. These models fol-
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ALBERTlarge BARTlarge BigBird-R. DeBERTalarge Longformerlarge RoBERTalarge SpanBERTlarge

Hyperparameters

Learning Rate 5e-6 5e-6 5e-6 2e-6 5e-6 2e-6 5e-6

a: Argument Spans

Accuracy 0.565 0.657 0.649 0.671 0.668 0.670 0.627
Variance 2.53e-4 2.15e-4 4.02e-4 2.70e-4 2.15e-4 3.32e-4 1.78e-4

b: Full Sentence(s)

Accuracy 0.534 0.629 0.620 0.634 0.627 0.617 0.598
Variance 2.27e-4 4.28e-4 2.79e-4 3.75e-4 4.18e-4 3.62e-4 2.84e-4

Table 2: Language model performances (test set) on Level-2 14-way implicit discourse relation classification.

low the popular transformer architecture (Vaswani
et al., 2017), and we will not review each model in
detail. A brief comparison is shown in Table 1.

3 Experiments

3.1 Data Preparation

We obtained the official PDTB-3 data from the Lin-
guistic Data Consortium1. PDTB-3 is a large-scale
resource of annotated discourse relations and their
arguments over the 1 million words Wall Street
Journal Corpus (Marcus et al., 1993). From a pub-
lic repository2, we retrieved the corresponding eval-
uation script (Kim et al., 2020). We describe some
characteristics of the evaluation protocol below.

Cross-validation is used on the section level to
preserve paragraph and document structures. Cross-
validation likely solves label sparsity issue (Shi and
Demberg, 2017). The 25 sections of PDTB-3 are
divided into 12 folds with 2 development, 2 test,
and 21 training sections in each fold. The sliding
window of two sections is used, creating 12 folds.

Label set is composed of 14 senses on L2 dis-
course relations (see Appendix B). Only the senses
with ≥100 instances are used. This is to produce
results that are in align with Kim et al. (2020). This
alignment is crucial as we directly compared our
results against fine-tuend BERT from Kim et al.
(2020), which is trained with next sentence predic-
tion (NSP) objective. Multiply-annotated labels
become separate training instances.

3.2 Fine-Tuning

To ensure reproducibility, we only take pre-trained
language models from the now ubiquitous Hugging-
face (Wolf et al., 2019) transformers library.
Fine-tuning was done with PyTorch (Paszke et al.,
2019) and our scripts are publicly available.

1www.ldc.upenn.edu
2github.com/najoungkim/pdtb3

During fine-tuning, each training instance is a
concatenation of two arguments (= sequence of to-
kens in Arg1 and Arg2). BERT-type models carry
special tokens ([CLS], [SEP], [EOS]) for segmen-
tation: [CLS], Arg11 ... Arg1N , [SEP], Arg21 ...
Arg2M , [EOS]. Depending on the model, these spe-
cial tokens are modified or completely removed.

As for hyperparameter searches, we mostly fo-
cus on the learning rate. We use the popular
AdamW optimizer with a linear scheduler (no
warm-up steps). As for the learning rate, we start
from 2e-5, a value commonly used for text clas-
sification since Sun et al. (2019). We test lower
learning rates of 2e-6 and 5e-6; we find that 5e-6
(which is slightly lower than what is usually used
in sequence classification) performs best for almost
all models. The batch size is 8 and the max input
length is set at 256.

Lastly, for each experiment step (i.e. BART on
fold 1), we train for 10 epochs with an early stop.
The training stops if the current epoch’s valida-
tion loss (see development set §3.1) did not de-
crease from the previous epoch. Model training
time, GPU, language model repository address, and
other details on hyperparameters are in Appendix
C.

3.3 Evaluation and Observations

In Table 2-a, we report the mean test set accuracy of
12 folds along with variance. This is in alignment
with what was recommended by Kim et al. (2020).
Development set performances are given in Table 3
to facilitate reproducibility. For multiply-annotated
labels (also discussed in §3.1), the model only has
to get one label correct. We reach some surprising
observations, which we share below.

1) Sentence-level pre-train objectives are not
necessary to create best-performing models.
This is contrary to Shi and Demberg (2019b),
which proposed that NSP helps implicit discourse

18



ALBERTlarge BARTlarge BigBird-R. DeBERTalarge Longformerlarge RoBERTalarge SpanBERTlarge

a: Argument Spans

Accuracy 0.566 0.663 0.653 0.673 0.669 0.670 0.629
Variance 2.94e-4 1.33e-4 1.62e-4 2.47e-4 1.68e-4 1.01e-4 2.03e-4

b: Full Sentence(s)

Accuracy 0.567 0.660 0.645 0.656 0.661 0.652 0.639
Variance 3.92e-4 4.59e-4 3.50e-4 1.85e-4 2.56e-4 4.10e-4 3.45e-4

Table 3: Language model performances (dev set) on Level-2 14-way implicit discourse relation classification.

relation classification after conducting an ablation
study on BERT. Their finding was intuitive as well
because implicit discourse relation classification
aims to find the relationship between two argument
spans.

But in a more general scope, the necessity of
NSP has been questioned multiple times (Yang
et al., 2019; Lample and Conneau, 2019). In other
words, NSP – or any other sentence-level pre-train
objective for that matter – could have been only
helpful in some specific ablation study of BERT-
type models but not in other cases (Liu et al., 2019).
We obtain supporting results in Table 2-a, where
language models with sentence-level objectives per-
formed worse than MLM-only models given simi-
lar model sizes (ALBERT is an exception).

2) Long-document modifications (mostly done
by altering attention schemes of an existing
model) decrease the original model performance.
At first, we postulated that long-document models
could lead to performance increases because they
can learn long-span discourse relations during pre-
training. But using sparse or block attention mech-
anisms eventually led to a performance decrease.

The decrease is clearly demonstrated by BigBird-
RoBERTalarge and Longformerlarge. Both models
start from the existing RoBERTalarge checkpoint
and modify it to process longer sequences. Such
modifications achieved performance increases in
other NLP tasks like question-answering, corefer-
ence resolution, and some cases of sequence clas-
sification. But implicit discourse relation classifi-
cation, which requires the model’s understanding
of dense discourse relations hidden within a few
tokens, long-document modification is a drawback.

3) The simplest combination of MLM and full
attention is best suited for implicit discourse re-
lation classification. We are making this argument
within the scope of what we have tested. We be-
lieve that MLM and full attention (e.g., RoBERTa,
DeBERTa) work best because the model has to
make inferences based on a relatively small num-
ber of tokens. Hence, trivial textual cues should

not be risked being overlooked. MLM, with full at-
tention, forces every token to attend to every other
and learn the token-specific relations, likely to lose
the least textual cues and nuances.

3.4 Train Full Sentence or Argument Span?
Following the aforementioned observations, we
postulated that fine-tuning language models using
full sentence(s) could further improve classifica-
tion accuracy. By full sentence(s), we refer to the
sentence(s) (usually up to two) that the annotated
argument spans appeared. We had two reasons for
our postulation: 1. textual cues that hint at under-
lying discourse relation could be spread through-
out the sentence(s), 2. argument span annotation
is sometimes inconsistent, especially at punctua-
tion marks, unnecessarily confusing the language
model. Implicit discourse relation classification
has rarely been tested using the full sentence.

We built an argument matcher to find the source
sentence of each annotated argument span. For
inter-sentential relations, we only considered ar-
gument spans that came from two adjacent source
sentences. We share the test set results in Table 2-b.
The results bring us to our fourth observation.

4) As input, concatenating argument spans
generally perform better than full sentence(s).
Opposed to our postulation, using full sentence(s)
as input decreased performance on the test set.
Though we see mixed results on the development
set in Table 3, training full sentences as input gen-
erally decrease performance. But when it comes
to implicit discourse sense classification from the
raw text (that means in practical, end-to-end ap-
plications), the benefits of using argument spans
must be weighed against the low accuracies (50%
∼ 60%) of the available argument extractors.

4 Conclusion

Researchers often build or modify a neural network
to improve task performance. While such effort is
essential, this paper shows that SOTA can also be
raised through extensive search and application of
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existing resources. Through a side-by-side compar-
ison of seven PLMs, we also make handy obser-
vations on pre-training objectives, long-document
modifications, and full-sentence setups. Though
some might consider these phenomena rather ex-
pected, nothing is scientifically conclusive until an
analysis is performed at an adequate scale. We
hope that our report helps researchers working to-
wards discourse understanding, and we continue to
discuss the missing details in the appendices.
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A “Full sentence(s)” Experiment

A.1 What Makes the Experiment Important?
This section is a continuation of §3.4. Here, we
discuss implicit discourse relation classification
from raw sentence(s), which we believe is the best
practical example of real-world applications of the
related fields. Such an end-to-end concept has
been popularized through CoNLL-2016 (Xue et al.,
2016) and CoNLL-2015 (Xue et al., 2015), and
most systems develop a separate argument span
identification model. Then, the identified argument
spans would be fed to the discourse relation classi-
fication model for sense prediction (refer to exam-
ples given in §1) (He et al., 2020b).

Such a double-step process makes sense. Indeed,
feeding the exact argument spans (that only contain
the tokens that imply a certain discourse sense) will
increase sense prediction performance.

But the problem arises because identifying argu-
ment spans from raw sentence(s) is a low accuracy
operation (Knaebel, 2021). A wrong span identi-
fication eventually leads to error propagation, pro-
viding a discourse relation classification model that
lacks textual information. We give a theoretical
error propagation example and conduct a simple
experiment to prove our point.

A.2 Theoretical Example of Error
Propagation

—–
1. A set of two raw sentences is given.

"Last year we probably bought one out of ev-
ery three new deals," he says. "This year, at
best, it’s in one in every five or six."

—–
2. Where correct argument spans are as below.

["Last year we probably bought one out of ev-
ery three new deals,]Arg1" he says. "[This
year, at best, it’s in one in every five or
six.]Arg2"

—–
3. But an argument span identification model
often makes wrong predictions (best system (?)
at CoNLL-2016 scores 52.02 F1, for exact span
match).

["Last year we probably bought one]Arg1 out
of every three new deals," he says. "This year,
at best, [it’s in one in every five or six.]Arg2"

—–
4. Now, compare the amount of textual information
passed over to the implicit discourse relation classi-
fication model, under three setups. Note that setup
1 cannot be used in real-world settings because it
requires PDTB-3’s gold annotations.

Setup 1) PDTB-3 (with gold annotations)

Last year we probably bought one out of every
three new deals This year, at best, it’s in one
in every five or six.

Setup 2) A low accuracy argument span model

Last year we probably bought one it’s in one
in every five or six.
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Fine-tuned PLM
Argument Span

ACC F1

BERTlarge 0.912 0.742

Table 4: BERT’s performance (12-folds test set) on
PDTB-3’s argument spans.

Setup 3) Full sentence(s)

"Last year we probably bought one out of ev-
ery three new deals," he says. "This year, at
best, it’s in one in every five or six."

A.3 Experiment on Error Propagation

Though not all tokens are valuable under a full sen-
tence(s) setup, we can notice that it is a foolproof
way to input all meaningful tokens. Table 4 re-
ports the classification performance of BERTlarge,
which was trained to identify argument spans us-
ing PDTB-3. Our argument span scoring scheme
approximately matches CoNLL-16’s partial scor-
ing scheme, essentially a relaxed version of conlle-
val. That means we consider a prediction correct if
more than 70% of argument span tokens are identi-
fied. For implicit discourse relation classification,
a sense prediction is correct if it matches any of the
multiply-annotated senses.

BERT’s 0.912 ACC score implies that the model
could correctly identify at least 70% of the gold
argument span tokens more than 9 out of 10 times.
Nonetheless, error propagation detrimentally af-
fected implicit discourse relation classification per-
formance in Table 5. This empirically proves our
ideas in Appendix A.1.

Fine-tuned PLM
Implicit Sense

ACC F1

DeBERTalarge 0.670 0.671
with error propagation 0.476 0.491
full sentence(s) 0.634 0.637

Table 5: DeBERTa performances (12-fold test set) on
PDTB-3’s Level-2 14-way implicit discourse relation
classification, but under three different pipeline setups.

B 14-way Label Set

C More on Fine-tuning Set Up

We ran all our experiments on a single NVIDIA
Tesla V100 GPU. Model train time and repositories
are listed below. Training times below suppose no

Label Counts

Comparison.Concession 1494
Comparison.Contrast 983
Contingency.Cause 5785
Contingency.Cause+Belief 202
Contingency.Condition 199
Contingency.Purpose 1373
Expansion.Conjunction 4386
Expansion.Equivalence 336
Expansion.Instantiation 1533
Expansion.Level-of-detail 3361
Expansion.Manner 739
Expansion.Substitution 450
Temporal.Asynchronous 1289
Temporal.Synchronous 539

Table 6: Counts of 14-way implicit discourse senses.

early stop. The performances reported in Table 2
are obtained with early stop.
ALBERTlarge

- huggingface.co/albert-large-v1
- ∼2.4 days, for 12 folds × 10 epochs

BARTlarge

- huggingface.co/facebook/bart-large
- ∼3.6 days, for 12 folds × 10 epochs

BigBird-RoBERTalarge
- huggingface.co/google/bigbird-roberta-large
- ∼3.2 days, for 12 folds × 10 epochs

DeBERTalarge
- huggingface.co/microsoft/deberta-large
- ∼4.6 days, for 12 folds × 10 epochs

Longformerlarge
- huggingface.co/allenai/longformer-large-4096
- ∼11 days, for 12 folds × 10 epochs

RoBERTalarge
- huggingface.co/roberta-large
- ∼2.9 days, for 12 folds × 10 epochs

SpanBERTlarge

- .../SpanBERT/spanbert-large-cased
- ∼2.9 days, for 12 folds × 10 epochs
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Abstract

Entity coreference resolution is an important
research problem with many applications, in-
cluding information extraction and question an-
swering. Coreference resolution for English
has been studied extensively. However, there
is relatively little work for other languages. A
problem that frequently occurs when working
with a non-English language is the scarcity
of annotated training data. To overcome this
challenge, we design a simple but effective
ensemble-based framework that combines vari-
ous transfer learning (TL) techniques. We first
train several models using different TL meth-
ods. Then, during inference, we compute the
unweighted average scores of the models’ pre-
dictions to extract the final set of predicted clus-
ters. Furthermore, we also propose a low-cost
TL method that bootstraps coreference resolu-
tion models by utilizing Wikipedia anchor texts.
Leveraging the idea that the coreferential links
naturally exist between anchor texts pointing
to the same article, our method builds a size-
able distantly-supervised dataset for the target
language that consists of tens of thousands of
documents. We can pre-train a model on the
pseudo-labeled dataset before finetuning it on
the final target dataset. Experimental results
on two benchmark datasets, OntoNotes and Se-
mEval, confirm the effectiveness of our meth-
ods. Our best ensembles consistently outper-
form the baseline approach of simple training
by up to 7.68% in the F1 score. These ensem-
bles also achieve new state-of-the-art results for
three languages: Arabic, Dutch, and Spanish1.

1 Introduction

Within-document entity coreference resolution is
the process of clustering entity mentions in a docu-
ment that refer to the same entities (Ji et al., 2005;
Luo and Zitouni, 2005; Ng, 2010, 2017). It is an
important research problem, with applications in
various downstream tasks such as entity linking

1Data and code will be made available upon publication.

(Ling et al., 2015; Kundu et al., 2018), question an-
swering (Dhingra et al., 2018), and dialog systems
(Gao et al., 2019). Researchers have recently pro-
posed many neural methods for coreference resolu-
tion, ranging from span-based end-to-end models
(Lee et al., 2017, 2018) to formulating the task as
a question answering problem (Wu et al., 2020b).
Given enough annotated training data, deep neural
networks can learn to extract useful features au-
tomatically. As a result, on English benchmarks
with abundant labeled training documents, the men-
tioned neural methods consistently outperform pre-
vious handcrafted feature-based techniques (Raghu-
nathan et al., 2010; Lee et al., 2013), achieving new
state-of-the-art (SOTA) results.

Compared to the amount of research on English
coreference resolution, there is relatively little work
for other languages. A problem that frequently oc-
curs when working with a non-English language is
the scarcity of annotated training data. For example,
the benchmark OntoNotes dataset contains about
eight times more documents in English than in Ara-
bic (Pradhan et al., 2012). Some recent studies aim
to overcome this challenge by applying standard
cross-lingual transfer learning (TL) methods such
as continued training or joint training (Kundu et al.,
2018; Pražák et al., 2021). In continued training, a
model pretrained on a source dataset is further fine-
tuned on a (typically smaller) target dataset (Xia
and Van Durme, 2021). In joint training, a model
is trained on the concatenation of the source and
target datasets (Min, 2021). The mentioned studies
only use one transfer method at a time, and they
do not explore how to combine multiple TL tech-
niques effectively. This can be sub-optimal since
different learning methods can be complementary
(Liu et al., 2019; Li et al., 2021). For example,
our experimental results to be discussed later show
that continued training and joint training are highly
complementary. Furthermore, a disadvantage of
using a cross-lingual transfer method is the require-
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Figure 1: An overview of our framework. We first train several coreference resolution models using different TL
approaches. During inference, we use a simple unweighted averaging method to combine the models’ predictions.

ment of a labeled coreference resolution dataset in
some source language (usually English).

In this work, we propose an effective ensemble-
based framework for combining various TL tech-
niques. We first train several coreference models
using different TL methods. During inference, we
compute the unweighted average scores of the mod-
els’ predictions to extract the final set of mention
clusters. We also propose a low-cost TL method
that bootstraps coreference models without using a
labeled dataset in some source language. The basic
idea is that the coreference relation often holds be-
tween anchor texts pointing to the same Wikipedia
article. Based on this observation, our TL method
builds a sizable distantly-supervised dataset for the
target language from Wikipedia. We can then pre-
train a model on the pseudo-labeled dataset before
finetuning it on the final target dataset. Experimen-
tal results on two datasets, OntoNotes and SemEval
(Recasens et al., 2010), confirm the effectiveness of
our proposed methods. Our best ensembles outper-
form the baseline approach of simple training by
up to 7.68% absolute gain in the F1 score. These
ensembles also achieve new SOTA results for three
languages: Arabic, Dutch, and Spanish.

In summary, our main contributions include:
• We introduce an ensemble-based framework

that combines various TL methods effectively.
• We design a new TL method that leverages

Wikipedia to bootstrap coreference models.
• Extensive experimental results show that our

proposed methods are highly effective and
provide useful insights into entity coreference
resolution for non-English languages.

2 Methods

Figure 1 shows an overview of our framework. Dur-
ing the training stage, we train several coreference
resolution models using various TL approaches.
For simplicity, we use the same span-based archi-
tecture (Section 2.1) for every model to be trained.
However, starting from the same architecture, us-
ing different learning methods typically results in
models with different parameters. In this work, our
framework uses two types of TL methods: (a) cross-
lingual TL approaches (Section 2.2) and (b) our
newly proposed Wikipedia-based approach (Sec-
tion 2.3). The cross-lingual TL methods require
a labeled coreference resolution dataset in some
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source language, but our Wikipedia-based method
does not have that limitation. Our framework is
general as it can work with other learning methods
(e.g., self-distillation). During inference, we use a
simple unweighted averaging method to combine
the trained models’ predictions (Section 2.4).

2.1 Span-based End-to-End Coreference
Resolution

In this work, the architecture of every model is
based on the popular span-based e2e-coref model
(Lee et al., 2017). Given an input document con-
sisting of n tokens, our model first forms a contex-
tualized representation for each input token using a
multilingual Transformer encoder such as XLM-R
(Conneau et al., 2020). Let X = (x1, ..., xn) be the
output of the encoder. For each candidate span i,
we define its representation gi as:

gi = [xSTART(i), xEND(i), x̂i, ϕ(si)] (1)

where START(i) and END(i) denote the start and
end indices of span i respectively. x̂i is an attention-
weighted sum of the token representations in the
span (Lee et al., 2017). ϕ(si) is a feature vector
encoding the size of the span.

To maintain tractability, we only consider spans
with up to L tokens. The value of L is selected
empirically and set to be 30. All the span represen-
tations are fed into a mention scorer sm(.):

sm(i) = FFNNm(gi) (2)

where FFNNm is a feedforward neural network
with ReLU activations. Intuitively, sm(i) indicates
whether span i is indeed an entity mention.

After scoring the spans using FFNNm, we only
keep spans with high mention scores2. We denote
the set of the unpruned spans as S. Then, for each
remaining span i ∈ S, the model predicts a distri-
bution P̂ (j) over its antecedents3

j ∈ Y (i):

P̂ (j) = exp (s(i, j))
∑k∈Y (i) exp (s(i, k))

s(i, j) = FFNNs([gi, gj , gi ◦ gj , ϕ(i, j)])
(3)

where Y (i) = {ϵ, 1, ..., i− 1} is a set consisting of
a dummy antecedent ϵ and all spans that precede i.
The dummy antecedent ϵ represents two possible

2We describe the exact filtering criteria in Section 3.1.
3All spans are ordered based on their start indices. Spans

with the same start index are ordered by their end indices.

cases: (1) the span i is not an entity mention, or
(2) the span i is an entity mention, but it is not
coreferential with any remaining preceding span.
FFNNs is a feedforward network, and ◦ is element-
wise multiplication. ϕ(i, j) encodes the distance
between the two spans i and j. Finally, note that
s(i, ϵ) is fixed to be 0.

Given a labeled document D and a model with
parameters θ, we define the mention detection loss:

Ldetect(θ,D) = −
1∣S∣ ∑

i∈S
Ldetect(θ, i)

Ldetect(θ, i) = yi log ŷi + (1 − yi) log (1 − ŷi)
where ŷi = sigmoid(sm(i)), and yi = 1 if and
only if span i is in one of the gold-standard mention
clusters. In addition, we also want to maximize the
marginal log-likelihood of all correct antecedents
implied by the gold-standard clustering:

Lcluster(θ,D) = − log∏
i∈S

∑
ŷ∈Y (i)∩GOLD(i) P̂ (ŷ)

where GOLD(i) are gold antecedents for span i.
P̂ (ŷ) is calculated using Equation 3. Our final loss
combines mention detection and clustering:

L(θ,D) = Ldetect(θ,D) + Lcluster(θ,D) (4)

2.2 Cross-Lingual Transfer Learning
Inspired by previous studies (Xia and Van Durme,
2021; Min, 2021; Pražák et al., 2021), we investi-
gate two different cross-lingual transfer learning
methods: continued training and joint training.
Both methods assume the existence of a labeled
dataset in some source language. In this work, we
use the English OntoNotes dataset (Pradhan et al.,
2012) as the source dataset, as it contains nearly
3,500 annotated documents (Table 1).

Continued Training. We first train a coreference
resolution model on the source dataset until con-
vergence. After that, we further finetune the pre-
trained model on a target dataset. More formally,
let M(f, θ0) denote an optimization procedure for
f with initial guess θ0. This optimization proce-
dure can, for example, be the application of some
stochastic gradient descent algorithm. Also, let S
be the set of all training documents in the source
dataset, and let T denote the set of all training doc-
uments in the target dataset. Then, the first stage of
continued training can be described as:

θ̂1 = M( ∑
D∈S

L(θ,D), θ̂0) (5)
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es.wikipedia.org/wiki/Tigres_de_la_UANL

An excerpt from
es.wikipedia.org/wiki/Marco_Ruben

Figure 2: Since the hyperlinks of Tigre de México and Tigres UANL point to the same Wikipedia page, a person who
does not know Spanish can still guess that the two mentions are likely to be coreferential. In fact, the two mentions
both refer to Tigres UANL, a Mexican professional football club.

where θ̂0 is randomly initialized. Then, the second
stage can be described using Equation 6:

θ̂2 = M( ∑
D∈T

L(θ,D), θ̂1) (6)

Here, θ̂2 is the parameter set of the final model.

Joint Training. We combine both the source and
target datasets to train a model. More specifically,
using the same notations as above, we can describe
joint training by the following equation:

θ̂1 = M( ∑
D∈T∪S

L(θ,D), θ̂0) (7)

where θ̂0 is randomly initialized, and θ̂1 is the pa-
rameter set of the final model.

2.3 Bootstrapping using Wikipedia
Hyperlinks

While cross-lingual methods such as continued
training and joint training are conceptually simple
and typically effective (Huang et al., 2020), they
require the existence of a labeled dataset in some
source language. To overcome this limitation, we
propose an inexpensive TL method that bootstraps
coreference models by utilizing Wikipedia anchor
texts. The basic idea is that two anchor texts point-
ing to the same Wikipedia page are likely corefer-
ential (See Figure 2 for an example). Our method
builds a large distantly-supervised dataset W for

the target language by leveraging this observation:

W = {D1, D2, ..., Dm} (8)

where Di is a text document constructed from some
Wikipedia page written in the target language. The
number of mentions in Di is the same as the num-
ber of anchor texts in the text portion of the original
Wikipedia article. We consider two mentions in Di

to be coreferential if and only if their corresponding
anchor texts point to the same article.

After constructing W, we follow a two-step pro-
cess similar to the continued training approach. We
first train a conference resolution model on W un-
til convergence. Then, we finetune the pre-trained
model on the final target dataset.

Compared to a manually-labeled dataset, W has
several disadvantages. Not all entity mentions are
exhaustively marked in Wikipedia documents. For
example, in Spanish Wikipedia, pronouns are typi-
cally not annotated. Nevertheless, since Wikipedia
is one of the largest multilingual repositories for
information, W is generally large (see Table 1 for
some statistics), and it contains documents on var-
ious topics. As such, W can still provide some
useful distant supervision signals, and so it can
serve as a source dataset in the TL process.

2.4 Ensemble-Based Coreference Resolution
During the training stage, we train three different
coreference resolution models using the TL ap-
proaches described above. At test time, we use a
simple unweighted averaging method to combine
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the models’ predictions. More specifically, for a
candidate span i with no more than L tokens, we
compute its mention score as follows:

sm,ensemble(i) = (sm,1(i) + sm,2(i) + sm,3(i))
3

(9)
where sm,1(i), sm,2(i), and sm,3(i) are the men-
tion scores produced by the three trained models
separately (refer to Equation 2). Intuitively, these
scores indicate whether span i is an entity mention.

Similar to the process described in Section 2.1,
after scoring every span whose length is no more
than L using Equation 9, we only keep spans with
high mention scores4. Then, for each remaining
span i, we predict a distribution over its antecedents
j ∈ Y (i) as follows:

P̂ensemble(j) = exp (sensemble(i, j))
∑k∈Y (i) exp (sensemble(i, k))

sensemble(i, j) = s1(i, j) + s2(i, j) + s3(i, j)
3

(10)

where s1(i, j), s2(i, j), and s3(i, j) are the pair-
wise scores produced by the trained models sepa-
rately (Eq. 3). We fix sensemble(i, ϵ) to be 0.

After computing the antecedent distribution for
each remaining span, we can extract the final set of
mention clusters. Note that while we consider only
three individual TL methods in this work, Equation
9 and Equation 10 can easily be extended for the
case when we use more TL methods.

3 Experiments

3.1 Data and Experiments Setup
Evaluation metrics Following prior work (Prad-
han et al., 2012), we evaluate coreference using
the average F1 between B3 (Bagga and Baldwin,
1998), MUC (Vilain et al., 1995), and CEAFϕ4

(Luo, 2005). We refer to this metric as AVG.

Datasets Table 1 shows the basic statistics of all
the datasets we used in this work. When using a
cross-lingual TL method, we use the English por-
tion of OntoNotes (Pradhan et al., 2012) as the
source dataset. We explore three target datasets:
OntoNotes Arabic (Pradhan et al., 2012), SemEval
Dutch (Recasens et al., 2010), and SemEval Span-
ish(Recasens et al., 2010). These datasets contain
data in three different languages.

4We describe the exact filtering criteria in Section 3.1.

Dataset Training Dev Test

Source Datasets
OntoNotes English 2,802 343 348
Wikipedia-based Arabic Dataset 64,850 250 250
Wikipedia-based Dutch Dataset 46,715 250 250
Wikipedia-based Spanish Dataset 104,520 250 250

Target Datasets
OntoNotes Arabic 359 44 44
SemEval Dutch 145 23 72
SemEval Spanish 875 140 168

Table 1: Number of documents for each of the datasets.

OntoNotes does not annotate singleton mentions
(i.e., noun phrases not involved in any coreference
chain). It only has annotations for non-singleton
mentions. SemEval has annotations for singletons.

Wikipedia-based Dataset Construction To con-
struct a distantly-supervised dataset, we first down-
load a complete Wikipedia dump in the target lan-
guage. We then extract clean text and hyperlinks
from the dump using WikiExtractor5. For each pre-
processed article, we cluster its anchor texts based
on the destinations of their hyperlinks. We also fil-
ter out articles with too few coreference links (e.g.,
articles that only have singleton mentions).

General Hyperparameters We use two different
learning rates, one for the lower pretrained Trans-
former encoder and one for the upper layers. For
every setting, the lower learning rate is 1e-5, the
upper learning rate is 1e-4, and the span length
limit L is 30. The number of training/pre-training
epochs is set to be 25 in most cases. When pre-
training a model on a Wikipedia-based dataset, the
number of epochs is 5. When fine-tuning a model
already pre-trained on Dutch Wikipedia or Span-
ish Wikipedia, the number of epochs is 50. Dur-
ing each training/pre-training process, we pick the
checkpoint which achieves the best AVG score on
the appropriate dev set as the final checkpoint.

Transformer Encoders When the target dataset
is OntoNotes Arabic, we use GigaBERT (Lan et al.,
2020) as the Transformer encoder. GigaBERT is
an English-Arabic bilingual language model pre-
trained from the English and Arabic Gigaword cor-
pora. When the target dataset is SemEval Dutch or
SemEval Spanish, we use the multilingual XLM-
RoBERTa (XLM-R) Transformer model (Conneau
et al., 2020). More specifically, we use the base
version of XLM-R (i.e., xlm-roberta-base).

5
https://tinyurl.com/wikiextractor

28

https://tinyurl.com/wikiextractor


Arabic Dutch Spanish
Baselines
◆ Previous SOTA (Table 3) 64.55 55.40 51.30
◆ Baseline Approach (trained using the target dataset) 63.70 52.81 72.18
Individual Transfer/Pretraining Methods (Sections 2.2 and 2.3)
■ Continued Training 64.96 58.90 74.05
■ Joint Training 65.50 58.76 73.53
■ Wikipedia Pre-Training 63.78 53.15 73.35
Ensembles (Section 2.4)
⧫ Three models, each trained using the baseline approach 64.70 54.44 73.35
⧫ Baseline Approach ⊕ Wikipedia Pre-Training 65.75 55.25 74.19
⧫ Joint Training ⊕ Wikipedia Pre-Training 66.63 58.18 74.82
⧫ Continued Training ⊕ Wikipedia Pre-Training 66.24 57.88 75.43
⧫ Continued Training ⊕ Joint Training 65.79 60.49 74.93
⧫ Continued Training ⊕ Joint Training ⊕ Wikipedia Pre-Training 66.72 59.66 75.62
Oracle-Guided Ensembles (Section 3.3.1)
◇ Continued Training ⊕ Joint Training ⊕ Wikipedia Pre-Training 77.53 75.19 83.12

Table 2: Overall F1 (in %) on OntoNotes Arabic, SemEval Dutch, and SemEval Spanish.

Dataset Prior Work Approach Prev. Score Our Best

OntoNotes Arabic (Min, 2021) GigaBERT + C2F + Joint Training 64.55 66.72
SemEval Dutch (Xia and Van Durme, 2021) XLM-R + ICoref + Continued Training 55.40 60.49
SemEval Spanish (Xia and Van Durme, 2021) XLM-R + ICoref + Continued Training 51.30 75.62

Table 3: Test F1 (in %) on the target datasets and the previous SOTA on each dataset (to the best of our knowledge).

Span Pruning As described in Section 2.1, after
computing a mention score for each span whose
length is not more than L, we only keep spans
with high scores. More specifically, when working
with a dataset from OntoNotes (e.g., OntoNotes
Arabic), we only keep up to λn spans with the
highest mention scores (Lee et al., 2017). The
value of λ is selected empirically and set to be 0.18.
When working with any other dataset, we keep
every span that has a positive mention score.

3.2 Overall Results

Table 2 shows the overall performance of different
approaches. Our baseline approach is to simply
train a model with the architecture described in
Section 2.1 using only the target dataset of inter-
est. Overall, the performance of a model trained
using the baseline approach is positively correlated
with the size of the corresponding target dataset,
which is expected. A surprising finding is that our
baseline approach already outperforms the previ-
ous SOTA method for SemEval Spanish (Xia and

Van Durme, 2021) by 20.98% in the F1 score. We
speculate that the previous SOTA model for Se-
mEval Spanish is severely undertrained.

Table 2 also shows the results of using different
TL methods individually. Each of the TL methods
can help improve the coreference resolution perfor-
mance. While continued training seems to be the
most effective approach, it requires the existence of
a source dataset (OntoNotes English in this case).
On the other hand, our newly proposed Wikipedia-
based method can help improve the performance
without relying on any labeled source dataset.

Finally, Table 2 also shows the results of using
different combinations of learning approaches. Our
simple unweighted averaging method is effective
across almost all model combinations. In partic-
ular, by combining all of the three TL methods
discussed previously, we can outperform the previ-
ous SOTA methods by large margins. In addition,
even without using any labeled source dataset, the
combination [Baseline Approach ⊕ Wikipedia Pre-
Training] can still outperform the previous SOTA
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Approaches AVG

Baseline Approach 40.10
Wikipedia Pre-Training 42.67
Baseline Approach ⊕ Wikipedia Pre-Training 45.28

Table 4: Test F-score (in %) of various approaches on
OntoNotes Arabic when we restrict the size of the gold
Arabic training dataset to only 10 documents.

methods for Arabic and Spanish. This further con-
firms the usefulness of our Wikipedia-based TL
method. Lastly, combining three models trained
using the same baseline approach leads to smaller
gains than combining the three TL methods. This is
expected as ensemble methods typically work best
when the individual learners are diverse (Krogh
and Vedelsby, 1994; Melville and Mooney, 2003).

3.3 Analysis

3.3.1 How optimal is our simple unweighted
averaging method?

Our averaging approach is equivalent to linear in-
terpolation with equal weights. To analyze the op-
timality of our method, we compare it to the “best
possible” interpolation method.

More specifically, we assume that there is an
oracle that can tell us which model in an ensem-
ble gives the most accurate prediction for a par-
ticular latent variable. Then, for example, sup-
pose we want to score a span i using an ensem-
ble of three models. If i is an entity mention,
the oracle will tell us that the model that returns
the highest mention score for i is the most ac-
curate. Thus, we can set the score for i to be
max (sm,1(i), sm,2(i), sm,3(i)). Following the
same logic, if i is not an entity mention, we will
set its score to be min (sm,1(i), sm,2(i), sm,3(i)).
The same idea can be applied to compute the link-
ing score sensemble(i, j) between i and j.

In Table 2, we see a considerable gap between
the performance of our simple averaging method
and the oracle-guided interpolation method. There-
fore, a promising future direction is to experiment
with a more context-dependent ensemble method.
Nevertheless, our averaging method is simple, and
it does not require any further parameter tuning
to combine a set of existing models. Finally, the
performance of each oracle-guided ensemble is
far from perfect, implying that improving the un-
derlying architecture of each model can also be a
worthwhile effort.

... el director del centro, Anna Mas, asegurar que el acto
pretender “rechazar el agresión y concienciar a el alumno
del incremento de este ataque”. el director recordar otro
dos agresión “por llevar hierro dental o el pelo largo”. en
mucho ocasión se producir asalto a niño, y el alumno,
añadir Mas, “ver como algo normal que les parir por el
calle y les quitar el poco dinero que llevar encima” ...
... Het vakblad Hormones and Behavior beschrijven hoe
het voldoend zijn dat mannelijk muis een vleug vrouw
roken om hen weinig bang te maken van kat en wezel ...

Table 5: Examples of mention clusters that were cor-
rectly predicted by our ensembles. Blue spans represent
coreferential mentions. The first example is in Spanish.
The second example is in Dutch.

3.3.2 How effective is our framework in
extremely low-resource settings?

We conduct experiments on OntoNotes Arabic
where we assume that the training dataset for Ara-
bic only has 10 documents and that we do not have
any source dataset (Table 4). In this setting, our
ensemble substantially outperforms the baseline
approach by up to 5.18% in the F1 score.

3.3.3 Qualitative Analysis
We provide some qualitative analyses to demon-
strate the strengths of our ensembles in Table 5.

In the first example, the three highlighted men-
tions refer to Anna Mas, the director of a center.
Our model trained using joint training merged this
cluster with a different cluster that refers to a dif-
ferent entity (not shown in the example because of
space constraints). In contrast, our models trained
using other TL methods did not make that error. As
a result, our best ensemble for Spanish predicted
the correct cluster for Anna Mas.

The second example is in Dutch. Here, man-
nelijk muis can be translated as male mouses, while
hen can be translated as them. Our model trained
using continued training failed to extract the men-
tion mannelijk muis. Nevertheless, in the end, our
ensemble for Dutch was able to extract the mention
and correctly link it to the pronoun hen.

4 Related Work

4.1 Entity Coreference Resolution
Recently, neural models for entity coreference res-
olution have shown superior performance over ap-
proaches using hand-crafted features. Lee et al.
(2017) proposed the first end-to-end neural corefer-
ence resolution model named e2e-coref. The model
uses a bi-directional LSTM and a head-finding at-
tention mechanism to learn mention representations
and calculate mention and antecedent scores. Lee
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et al. (2018) extended the e2e-coref model by in-
troducing a coarse-to-fine pruning mechanism and
a higher-order inference mechanism. The model
uses ELMo representations (Peters et al., 2018) in-
stead of traditional word embeddings. The model
is typically referred to as the c2f-coref model.

Almost all recent studies on entity coreference
resolution are influenced by the design of c2f-coref.
Joshi et al. (2019) built the c2f-coref system on
top of BERT representations (Devlin et al., 2019).
Fei et al. (2019) transformed c2f-coref into a pol-
icy gradient model that can optimize coreference
evaluation metrics directly. Xu and Choi (2020)
studied in depth the higher-order inference (HOI)
mechanism of c2f-coref. The authors concluded
that given a high-performing encoder such as Span-
BERT (Joshi et al., 2020), the impact of HOI is
negative to marginal. Another line of work aims
to simplify and/or reduce the computational com-
plexity of c2f-coref (Xia et al., 2020; Kirstain et al.,
2021; Lai et al., 2021; Dobrovolskii, 2021).

The studies mentioned above only trained and
evaluated models using English datasets such as
OntoNotes English (Pradhan et al., 2012) and the
GAP dataset (Webster et al., 2018). On the other
hand, there is significantly less work on corefer-
ence resolution for other languages. For example,
while e2e-coref was introduced in 2017, the first
neural coreference resolver for Arabic was only
recently proposed in 2020 (Aloraini et al., 2020).
For Dutch, many existing systems are still using
rule-based (van Cranenburgh, 2019) or traditional
learning-based approaches (Hendrickx et al., 2008;
De Clercq et al., 2011). Recently, Poot and van
Cranenburgh (2020) evaluated the performance of
c2f-coref on Dutch datasets of two different do-
mains: literary novels and news/Wikipedia text.

While our models’ architecture is based on e2e-
coref (Section 2.1), we go beyond just applying the
models to a non-English language in this work. We
propose new TL approaches that can take advan-
tage of existing source datasets and Wikipedia to
improve the final performance.

4.2 Transfer Learning for Coreference
Resolution

Compared to English datasets, the size of a corefer-
ence resolution dataset for a non-English language
is typically smaller. Several recent studies aim
to overcome this challenge by applying standard
cross-lingual TL methods such as continued train-

ing or joint training (Kundu et al., 2018; Xia and
Van Durme, 2021; Pražák et al., 2021; Min, 2021).
These studies only use one transfer method at a
time, and they do not explore how to combine mul-
tiple TL techniques effectively. Our experimental
results (Section 3.2) show that combining various
TL techniques can substantially improve the final
coreference resolution performance.

A closely related work by Yang et al. (2012)
proposed an adaptive ensemble method to adapt
coreference resolution across domains. Their study
did not explicitly focus on improving coreference
resolution for non-English languages. In addition,
they experimented with the settings where gold
standard mentions are assumed to be provided. We
do not make that assumption. Each of our models
does both mention extraction and linking.

4.3 Leveraging Wikipedia for Coreference
Resolution

There have been studies on leveraging Wikipedia
for coreference resolution. Eirew et al. (2021) re-
cently created a large-scale cross-document event
coreference dataset from English Wikipedia. For
cross-document entity coreference, Singh et al.
(2012) created Wikilinks by finding hyperlinks to
English Wikipedia from a web crawl and using an-
chor text as mentions. Different from these studies,
we focus on within-document entity coreference
resolution. In addition, we explore coreference res-
olution for languages beyond English in this work.

Many previous studies leveraged Wikipedia for
related tasks such as name tagging (Alotaibi and
Lee, 2012; Nothman et al., 2013; Althobaiti et al.,
2014) and entity linking (Pan et al., 2017; Wu et al.,
2020a; Cao et al., 2021). We leave the extension of
our methods to these tasks for future research.

5 Conclusions and Future Work

In this work, we propose an ensemble-based frame-
work that combines various TL techniques. We
also introduce a low-cost Wikipedia-based TL ap-
proach that does not require any labeled source
dataset. Our approaches are highly effective, as
our best ensembles achieve new SOTA results for
three different languages. An interesting future
direction is to explore the use of model compres-
sion techniques (Hinton et al., 2015; Han et al.,
2016; Lai et al., 2020) to reduce the computational
complexity of our ensembles.
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6 Limitations

Multilingual language models such as XLM-R
(Conneau et al., 2020) and GigaBERT (Lan et al.,
2020) are typically pre-trained on large amounts of
unlabeled text crawled from the Web. Since these
models are optimized to capture the statistical prop-
erties of the training data, they tend to pick up on
and amplify social stereotypes present in the data
(Kurita et al., 2019). Since our coreference resolu-
tion models use such pre-trained language models,
they may also exhibit social biases present on the
Web. Identifying and mitigating social biases in
neural models is an active area of research (Zhao
et al., 2018; Sheng et al., 2021; Gupta et al., 2022).
In the future, we plan to work on removing social
biases from coreference resolution models.

Furthermore, while our proposed methods are
highly effective, the performance of our best en-
sembles is still far from perfect. On OntoNotes
Arabic, our best system only achieves an F1 score
of 66.72%. Such performance may not be accept-
able for some downstream tasks (e.g., information
extraction from critical clinical notes).

Finally, even though Wikipedia is available in
more than 300 languages, there are still very few
Wikipedia pages for some very rare languages. Our
proposed methods are likely to be less effective for
such rare languages.
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In this section, we present the reproducibility infor-
mation of our paper.

Implementation Dependencies Libraries Py-
torch 1.11.0 (Paszke et al., 2019), Transformers
4.17.0 (Wolf et al., 2020), SentencePiece 0.1.96
(Kudo and Richardson, 2018), PyTorch Metric
Learning (Musgrave et al., 2020).

Computing Infrastructure The experiments
were conducted on a server with Intel(R) Xeon(R)
Gold 5120 CPU @ 2.20GHz and NVIDIA Tesla
V100 GPUs. GPU memory is 16G.

Number of Model Parameters When the target
dataset is OntoNotes Arabic, we use GigaBERT
(Lan et al., 2020) as the Transformer encoder. Gi-
gaBERT has about 125M parameters.

When the target dataset is SemEval Dutch or
SemEval Spanish, we use the base version of XLM-
R (i.e., xlm-roberta-base) (Conneau et al., 2020).
xlm-roberta-base has about 278M parameters.

Hyperparameters The information about the hy-
perparameters is available in the main paper.
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Expected Validation Performance We report
the validation performance of the ensemble [Con-
tinued Training ⊕ Joint Training ⊕ Wikipedia Pre-
Training].

The validation F1 score of the ensemble for Ara-
bic coreference resolution is 66.60%. The total
time needed for the evaluation is about 1 minute
and 19 seconds.

The validation F1 score of the ensemble for
Dutch coreference resolution is 57.81%. The total
time needed for the evaluation is about 20 seconds.

The validation F1 score of the ensemble for
Spanish coreference resolution is 75.73%. The to-
tal time needed for the evaluation is about 1 minute
and 42 seconds.
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Abstract
The extended structural context has made sci-
entific paper summarization a challenging task.
This paper proposes CHANGES, a contrastive
hierarchical graph neural network for extrac-
tive scientific paper summarization. CHANGES
represents a scientific paper with a hierarchical
discourse graph and learns effective sentence
representations with dedicated designed hierar-
chical graph information aggregation. We also
propose a graph contrastive learning module to
learn global theme-aware sentence representa-
tions. Extensive experiments on the PubMed
and arXiv benchmark datasets prove the effec-
tiveness of CHANGES and the importance of
capturing hierarchical structure information in
modeling scientific papers.

1 Introduction

Extractive document summarization aims to ex-
tract the most salient sentences from the original
document and form the summary as an aggregate
of these sentences. Compared to abstractive sum-
marization approaches that suffer from hallucina-
tion generation problems (Kryściński et al., 2019;
Zhang et al., 2022b), summaries generated in an
extractive manner are more fluent, faithful, and
grammatically accurate, but may lack coherence
across sentences. Recent advances in deep neural
networks and pre-trained language models (Devlin
et al., 2018; Lewis et al., 2019) have led to sig-
nificant progress in single document summariza-
tion (Nallapati et al., 2016a; Narayan et al., 2018;
Liu and Lapata, 2019; Zhong et al., 2020). How-
ever, these methods mainly focus on short docu-
ments like news articles in CNN/DailyMail (Her-
mann et al., 2015) and New York Times (Sandhaus,
2008), and struggle when dealing with relatively
long documents such as scientific papers.

The challenges of lengthy scientific paper sum-
marization lie in several aspects. First, the extended
input context hinders cross-sentence relation mod-
eling, the critical step of extractive summarization

(Wang et al., 2020). Thus, sequential models like
RNN are incapable of capturing the long-distance
dependency between sentences, and hard to dif-
ferentiate salient sentences from others. Further-
more, scientific papers tend to cover diverse topics
and contain rich hierarchical discourse structure
information. The internal hierarchy structure, like
sections, paragraphs, sentences, and words, is too
complex for sequential models to capture. Scien-
tific papers generally follow a standard discourse
structure of problem definition, methodology, ex-
periments and analysis, and conclusions (Xiao and
Carenini, 2019). Moreover, the lengthy input con-
text also makes the widely adopted self-attention
Transformer-based models (Vaswani et al., 2017)
inapplicable. The input length of a scientific paper
can range from 2000 to 7, 000 words, which ex-
ceeds the input limit of the Transformer due to the
quadratic computation complexity of self-attention.
Thus, sparse Transformer models like BigBird (Za-
heer et al., 2020) and Longformer (Beltagy et al.,
2020) are proposed.

Recently, researchers have also turned to graph
neural networks (GNN) as an alternative approach.
Graph neural networks have been demonstrated to
be effective at tasks with rich relational structure
and can preserve global structure information (Yao
et al., 2019; Xu et al., 2019; Zhang and Zhang,
2020). By representing a document as a graph,
GNNs update and learn sentence representations
by message passing, and turn extractive summa-
rization into a node classification problem. Among
all attempts, one popular way is to construct cross-
sentence similarity graphs (Erkan and Radev, 2004;
Zheng and Lapata, 2019), which uses sentence rep-
resentation cosine similarity as edge weights to
model cross-sentence semantic relations. Xu et al.
(2019) proposed using Rhetorical Structure The-
ory (RST) trees and coreference mentions to cap-
ture cross-sentence discourse relations. Wang et al.
(2020) proposed constructing a word-document het-
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erogeneous graph by using words as the intermedi-
ary between sentences. Despite their success, how
to construct an effective graph to capture the hier-
archical structure for academic papers remains an
open question.

To address the above challenges, we propose
CHANGES (Contrastive HierArchical Graph neu-
ral network for Extractive Summarization), a hi-
erarchical graph neural network model to fully
exploit the section structure of scientific papers.
CHANGES first constructs a sentence-section hi-
erarchical graph for a scientific paper, and then
learns hierarchical sentence representations by ded-
icated designed information aggregation with itera-
tive intra-section and inter-section message passing.
Inspired by recent advances in contrastive learning
(Liu and Liu, 2021; Chen et al., 2020), we also pro-
pose a graph contrastive learning module to learn
global theme-aware sentence representations and
provide fine-grained discriminative information.
The local sentence and global section representa-
tions are then fused for salient sentence prediction.
We validate CHANGES with extensive experiments
and analyses on two scientific paper summariza-
tion datasets. Experimental results demonstrate the
effectiveness of our proposed method. Our main
contributions are as follows:

• We propose a hierarchical graph-based model
for long scientific paper extractive summa-
rization. Our method utilizes the hierarchical
discourse of scientific documents and learns
effective sentence representations with itera-
tive intra-section and inter-section sentence
message passing.

• We propose a plug-and-play graph contrastive
module to provide fine-grained discriminative
information. The graph contrastive module
learns global theme-aware sentence represen-
tations by pulling semantically salient neigh-
bors together and pushing apart unimportant
sentences. Note that the module could be
added to any extractive summarization sys-
tem.

• We validate our proposed model on two bench-
mark datasets (arXiv and PubMed), and the
experimental results demonstrate its effective-
ness over strong baselines.

2 Related Work

2.1 Extractive Summarization on Scientific
Papers

Despite the superior performance on news summa-
rization by recent neural network models (Zhou
et al., 2018; Zhang et al., 2023a,b; Fonseca et al.,
2022) and pre-trained language models (Liu and
Lapata, 2019; Lewis et al., 2019), progress in long
document summarization such as scientific papers
is still limited.

Traditional approaches to summarize scientific
articles rely on supervised machine learning algo-
rithms such as LSTM (Collins et al., 2017) with
surface features such as sentence position, and sec-
tion categories. Recently, Xiao and Carenini (2019)
proposed a neural-based method by incorporating
both the global context of the whole document and
the local context within the current topic with an
encoder-decoder model. Ju et al. (2021) designed
an unsupervised extractive approach to summarize
long scientific documents based on the Informa-
tion Bottleneck principle. Dong et al. (2020) pro-
posed an unsupervised ranking model by incorpo-
rating two-level hierarchical graph representation
and asymmetrical positional cues to determine sen-
tence importance. Recent works also apply pre-
trained sparse language models like Longformer
for modeling long documents (Beltagy et al., 2020;
Ruan et al., 2022; Cho et al., 2022).

2.2 Graph-based Summarization
Graph models have been widely applied to extrac-
tive summarization due to the capability of mod-
eling cross-sentence relations within a document.
The sparsity nature of graph structure also brings
scalability and flexibility, making it a good fit for
long documents. Graph neural networks’ mem-
ory costs are generally linear with regard to the
input size compared to the quadratic self-attention
mechanism.

Researchers have explored supervised graph neu-
ral network methods for summarization (Cui and
Hu, 2021; Jia et al., 2020; Huang and Kurohashi,
2021; Xie et al., 2022; Phan et al., 2022). Yasunaga
et al. (2017) first proposed to use Graph Convo-
lutional Network (GCN) on the approximate dis-
course graph. Xu et al. (2019) then applied GCN on
structural discourse graphs based on RST trees and
coreference mentions. Recently, Wang et al. (2020)
proposed constructing a word-document heteroge-
neous graph by using words as the intermediary
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Figure 1: The overall model architecture of CHANGES. We first construct a hierarchical graph for an input document,
and then learn representations with a graph contrastive module and hierarchical graph layers. The concatenation
representations of sentence node and its section node will be fused for summary sentence selection.

between sentences. Zhang et al. (2022a) proposed
to use hypergraph to capture the high-order sen-
tence relations within the document. Our paper
follows the series of work but incorporates hierar-
chical graphs for scientific paper discourse struc-
ture modeling and graph contrastive learning for
theme-aware sentence representation learning.

3 Method

Given a document D = {s1, s2, ..., sn} with n sen-
tences and m sections, we first represent it as a
hierarchical graph and formulate extractive sum-
marization as a node labeling task. The objective
is to predict labels yi ∈ (0, 1) for all sentences,
where yi = 1 and yi = 0 represent whether the i-th
sentence should be included in the summary or not,
respectively.

The overall model architecture of CHANGES is
shown in Figure 1. CHANGES consists of two mod-
ules: a graph contrastive learning module to learn
global theme-aware sentence representations and
a hierarchical graph layer module to learn hier-
archical graph node representations with iterative
message passing. The learned sentence node and
section node representations will be used as indica-
tors for salient sentence selection.

3.1 Graph Construction

Given an academic paper D, we first construct a
hierarchical graph G = (V, E), where V stands for
the node set and E represents edges between nodes.
In order to utilize the sentence-section hierarchical
structure of academic papers, the undirected hier-
archical graph G contains both sentence nodes and
section nodes, defined by V = Vsen ∪ Vsec, where
each sentence node vseni ∈ Vsen represents a sen-
tence si in the document D and vsecj ∈ Vsec repre-
sents one section in the document. The edge con-
nection of G is defined as E = Esen ∪Esec ∪Ecross,
where Esen denotes the connection between sen-
tence nodes within the same section, Esec denotes
the connection between section nodes, and Ecross
denotes the cross-connection between a sentence
node and its corresponding section node. Note that
we also add a special section supernode vD that
represents the whole document D. An illustration
of the hierarchical graph is shown in Figure 2.

Edge Connection Unlike prior work (Zheng and
Lapata, 2019; Dong et al., 2020) that uses cosine
similarity of sentence semantic representations as
edge weights, we construct unweighted hierarchi-
cal graphs to disentangle structural information
(adjacency matrix A) from semantic information
(node representation H). In other words, connected
nodes have weight 1, and disconnected nodes have
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weight 0 in the adjacency matrix A.
Formally, sentence-level edge eseni,j connects

sentence nodes vseni and vsenj if they are within
the same section, aiming to aggregate local intra-
section information. All section nodes are fully
connected by section-level edges esecp,q , aiming to
aggregate global inter-section information. The
cross-level edge ecrossi,p connects the sentence
node vseni to its corresponding section node vsecp ,
which allow message passing between sentence-
level and section-level nodes.

In a hierarchical graph, a sentence node could
only directly interact with local neighbor nodes
within the same section, and indirectly interact with
sentence nodes of other sections via section-level
node connections.

Figure 2: An illustration of a hierarchical graph for a
long input document with rich discourse structures.

Node Representation We adopt BERT (Bidirec-
tional Encoder Representations from Transform-
ers) (Devlin et al., 2018) as sentence encoder
to embed the semantic meanings of sentences
{s1, s2, ..., sn} as initial node representations X =
{x1,x2, ...,xn}. Note that BERT here is only used
for initial sentence embedding, but is not updated
during the training process to reduce model com-
puting cost and increase efficiency.

In addition to the semantic representation of sen-
tences, we also inject positional encoding following
Transformer (Vaswani et al., 2017) to preserve the
sequential order information. We apply the hierar-
chical position embedding by (Ruan et al., 2022)
to model sentence positions accompanying our hi-
erarchical graph. Specifically, the position of each
sentence si can be represented as two parts: its
corresponding section index pseci , and its sentence
index within section pseni . Formally, the hierarchi-
cal position embedding (HPE) of sentence si can
be calculated as:

HPE(si) = PE(pseci ) + PE(pseni ), (1)

where PE(·) refers to the position encoding func-

tion in (Vaswani et al., 2017):

PE(pos, 2i) = sin(pos/100002i/d), (2)

PE(pos, 2i+ 1) = cos(pos/100002i/d). (3)

Overall, we can get the initial sentence node repre-
sentations H0

sen = {h0
sen1

,h0
sen2

, ...,h0
senn

}, with
vector h0

i ∈ Rd defined as:

h0
i = xi + HPE(si), (4)

where d is the dimension of the node embedding.
The initial section node representation h0

secj ∈ Rd

for the j-th section is the mean of its connected
sentences embeddings, and the document node rep-
resentation h0

doc ∈ Rd is the mean of all section
node embeddings.

3.2 Graph Contrastive Module

After constructing the hierarchical graph with ad-
jacency matrix A and node representation H0

sen ∈
R

n×d, we apply a graph contrastive learning (GCL)
module to capture global context information. Mo-
tivated by the principal idea that a good sum-
mary sentence should be more semantically similar
to the source document than the unqualified sen-
tences (Radev et al., 2004; Zhong et al., 2020), our
GCL module updates sentence representations us-
ing Graph Attention Network (Veličković et al.,
2017) with a contrastive objective to learn the
global theme-aware sentence representations. Note
that the module could be added to any extractive
summarization system.

Graph Attention Network Given a constructed
graph G = (V, E) with node representations H and
adjacent matrix A, a GAT layer updates a node vi
with representation hi by:

eij = LeakyReLU (Wa [Winhi∥Winhj ]) ,

αij =
exp (eij)∑
l∈Ni

exp (eil)
,

h′
i = σ


∑

j∈Ni

αijWvhj


 ,

(5)
where Ni denotes the 1-hop neighbors of node vi,
αij denotes the attention weight between nodes hi

and hj , Win,Wa,Wv are trainable weight matri-
ces, and ∥ denotes concatenation operation.

40



The above single-head graph attention is further
extended to multi-head attention, where T indepen-
dent attention mechanisms are conducted and their
outputs are concatenated as:

h′
i = ∥Tt=1σ


∑

j∈Ni

αt
ijW

k
hhj


 (6)

Contrastive Loss Contrastive learning aims to
learn effective representation by pulling semanti-
cally close neighbors together and pushing apart
non-neighbors (Marelli et al., 2014). Recent works
have demonstrated contrastive learning to be ef-
fective in high-order representation learning (Chen
et al., 2020; Gao et al., 2021). Thus, we optimize
our GCL module in a contrastive manner with the
following contrastive loss. The goal of contrastive
learning is to learn theme-aware sentence embed-
ding by pulling semantically salient neighbors to-
gether and pushing apart less salient sentences. The
contrastive loss is formally defined as:

Lc = − log
exp(sim((h′

D,h
′
i)/τ)∑n

j=1 exp(sim(h′
D,h

′
j)/τ)

, (7)

where h′
D is the document node embedding, h′

i is
the updated representaion of sentence si , and τ is
the temperature factor.

After passing through the GCL module, the
learned global theme-aware sentence embeddings
Hc

sen = {hc
sen1

,hc
sen2

, ...,hc
senn

} ∈ R
n×d are

then passed to the hierarchical graph layer mod-
ule.

3.3 Hierarchical Graph Layer
To exploit the sentence structure of academic pa-
pers, CHANGES then updates sentence and section
node representations with hierarchical graph layers
in an iterative manner.

The hierarchical graph layer first updates sen-
tence embeddings with the local neighbor sen-
tences within the same section with GAT for intra-
section message passing, then update section nodes
with sentence nodes for cross-level information ag-
gregation to exploit the hierarchical structure of
academic papers. Next, inter-section message pass-
ing allow global context information interaction.
Finally, the sentence nodes are updated based on
their corresponding section node, fusing both local
and global context information.

Formally, each iteration contains four update
processes: one intra-section message passing,

Arxiv PubMed
# train 201,427 112,291

# validation 6,431 6,402
# test 6,436 6,449

avg. word/doc 4,938 3,016
avg. word/summary 203 220

avg. sent./doc 205 140
avg. sent./summary 5 6

Table 1: Statistics of PubMed and Arxiv datasets.

one sentence-to-section aggregation, one inter-
section message passing, and finally one section-
to-sentence aggregation. For the l-th iteration, the
process can be represented as:

H′
sen = GAT(Hl

sen)

H′
sec = GAT(H′

sen)

Hl+1
sec = GAT(H′

sec)

Hl+1
sen = σ(Wb[H

′
sen∥Hl+1

sec ])

(8)

where H′
sen,H

′
sec denotes the intermediate

representations of sentence and section nodes,
Hl+1

sen ,H
l+1
sec denotes the updated sentence and sec-

tion node representations, and [H′
sen∥Hl+1

sec ] de-
notes the concatenation of intermediate sentence
node representation and its corresponding updated
section node representation.

In this way, CHANGES updates and learns
hierarchy-aware sentence embeddings through the
hierarchical graph layers.

3.4 Optimization

After passing L hierarchical graph layers, we ob-
tain the final sentence node representations HL

sen =
{hL

sen1
,hL

sen2
, ...,hL

senn
} ∈ Rn×d. We then add a

multi-layer perceptron (MLP) followed by a sig-
moid activation function to indicate the confidence
scores for extracting each sentence in the summary.

Formally, the predicted confidence score ŷi to
extract a sentence si in section secj as a summary
sentence is:

zi = LeakyReLU(Wo1[h
L
seni

∥hL
secj ]), (9)

ŷi = sigmoid(Wo2zi), (10)

where Wo1,Wo2 are both trainable parameters,
and [hL

seni
∥hL

secj ] denote the concatenation of sen-
tence embedding and its corresponding section em-
bedding. During the inference phase, we will select
the k sentences with the highest predicted confi-
dence scores as the extractive summary for the
input long document.
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Since the extractive ground truth labels for long
documents are highly imbalanced, we optimize
hierarchical graph layers using weighted cross en-
tropy loss following (Xiao and Carenini, 2019) as:

Ls = − 1

NNd

N∑

d=1

Nd∑

i=1

(η · yi log ŷi + (1− yi) log(1− ŷi)),

(11)

where N denotes the number of training instances
in the training set, Nd denotes the number of sen-
tences in the document, η = #negative

#positive denote the
ratio of the number of negative and positive sen-
tences in the document, and yi represent the ground-
truth of sentence i.

Training Loss Overall, we optimize CHANGES

in an end-to-end manner, by optimizing the graph
contrastive module and hierarchical graph layers
simultaneously.

The overall training loss of CHANGES is:

L = Ls + λLc, (12)

where λ is a re-scale hyperparameter and Lc de-
notes the contrastive loss in Equation 7.

4 Experiment

4.1 Experiment Setup

Dataset To validate the effectiveness of
CHANGES, we conduct extensive experiments
on two benchmark datasets: arXiv and PubMed
(Cohan et al., 2018). The arXiv dataset contains
papers in scientific domains, while the PubMed
dataset contains scientific papers from the biomed-
ical domain. These two benchmark datasets are
widely adopted in long document summarization
research and we use the original train, validation,
and testing splits as in (Cohan et al., 2018). The
detailed statistics of datasets are shown in Table 1.

Evaluation Following the common setting, we
use ROUGE F-scores (Lin, 2004) as the automatic
evaluation metrics. Specifically, we report the
ROUGE-1/2 scores to measure summary informa-
tiveness and ROUGE-L scores to measure sum-
mary fluency. Following prior work (Liu and Lap-
ata, 2019; Nallapati et al., 2016b), we also construct
extractive ground truth labels (ORACLE) for train-
ing by greedily optimizing the ROUGE score on
gold-reference abstracts.

4.2 Implementation Details

We use the publicly released BERT-base 1 (Devlin
et al., 2018) as the sentence encoder. The BERT
encoder is only used to generate initial sentence
embeddings, but is not updated during training to
improve model efficiency. We adopt the Graph
Attention Network 2 (Veličković et al., 2017) im-
plementation with 8 attention heads and 2 stack
layers for graph message passing. The hidden size
of our model is set to 2048.

Our model is trained with the Adam optimizer
(Loshchilov and Hutter, 2017) with a learning rate
of 0.0001 and a dropout rate of 0.1. We train our
model on a single RTX A6000 GPU for 10 epochs
and validate after each epoch using ROUGE-1 F-
score. We employ early stopping to select the
best model for a patient duration of 3 epochs. We
searched the training loss re-scale factor λ in the
range of 0 to 1 with 0.1 step size and got the best
value of 0.5.

4.3 Baseline Methods

We perform a systematic comparison with recent
approaches in both extractive and abstractive sum-
marization for completeness. We keep the same
train/validation/test splitting in all the experiments
and report ROUGE scores from the original papers
if available, or scores from (Xiao and Carenini,
2019) otherwise. Specifically, we compare with
the following strong baseline approaches:
Unsupervised methods: LEAD method that se-
lects the first few sentences as a summary, SumBa-
sic (Vanderwende et al., 2007), graph-based un-
supervised models LexRank (Erkan and Radev,
2004), PACSUM (Zheng and Lapata, 2019) and
HIPORANK (Dong et al., 2020).
Neural extractive models: encoder-decoder based
model Cheng&Lapata (Cheng and Lapata, 2016)
and SummaRuNNer (Nallapati et al., 2016a); lo-
cal and global context model ExtSum-LG (Xiao
and Carenini, 2019) and its variants ExtSum-
LG+RdLoss/MMR (Xiao and Carenini, 2020);
language model-based methods SentCLF and
SentPTR (Subramanian et al., 2019).
Neural abstractive models: pointer network gen-
eration model PGN (See et al., 2017), hierarchical
attention generation model DiscourseAware (Co-
han et al., 2018), and transformer-based generation
model TLM-I+E (Subramanian et al., 2019).

1https://github.com/google-research/bert
2https://github.com/PetarV-/GAT
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PubMed ArXiv

Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Oracle(15k tok.) 53.04 29.08 48.31 53.58 26.19 47.76
Lead-10 38.59 13.05 34.81 37.37 10.85 33.17

LexRank (2004) 39.19 13.89 34.59 33.85 10.73 28.99
SumBasic (2007) 37.15 11.36 33.43 29.47 6.95 26.30
PACSUM (2019) 39.79 14.00 36.09 38.57 10.93 34.33

HIPORANK (2021) 43.58 17.00 39.31 39.34 12.56 34.89

Cheng&Lapata (2016) 43.89 18.53 30.17 42.24 15.97 27.88
SummaRuNNer (2016) 43.89 18.78 30.36 42.81 16.52 28.23

ExtSum-LG (2019) 44.85 19.70 31.43 43.62 17.36 29.14
SentCLF (2020) 45.01 19.91 41.16 34.01 8.71 30.41
SentPTR (2020) 43.30 17.92 39.47 42.32 15.63 38.06

ExtSum-LG + RdLoss (2021) 45.30 20.42 40.95 44.01 17.79 39.09
ExtSum-LG + MMR (2021) 45.39 20.37 40.99 43.87 17.50 38.97

PGN (2017) 35.86 10.22 29.69 32.06 9.04 25.16
DiscourseAware (2018) 38.93 15.37 35.21 35.80 11.05 31.80

TLM-I+E (2020) 42.13 16.27 39.21 41.62 14.69 38.03

CHANGES (ours) 46.43 21.17 41.58 45.61 18.02 40.06

Table 2: ROUGE F1 results on PubMed and Arxiv datasets. We keep the same train/validation/test splitting in all
the experiments and report ROUGE scores from the original papers if available, or scores from (Xiao and Carenini,
2019) otherwise.

4.4 Experiment Results

Table 2 shows the performance comparison of
CHANGES and all baseline methods on both
PubMed and arXiv datasets. The first blocks
include the extractive ground truth ORACLE,
position-based sentence selection method LEAD,
and other unsupervised baseline approaches. The
second block covers state-of-the-art supervised ex-
tractive neural baselines, and the third block covers
the supervised abstractive baselines.

According to the results, HIPORANK (Dong
et al., 2020) achieves state-of-the-art performance
for graph-based unsupervised methods. Compared
to PACSUM (Zheng and Lapata, 2019), the only
difference is that HIPORANK incorporates section
structural information for degree centrality calcu-
lation. The performance gain demonstrates the
significance of capturing the hierarchical structure
of academic papers when modeling cross-sentence
relations.

Interestingly, the LEAD approach performs
far better when summarizing short news like
CNN/DailyMail (Hermann et al., 2015) and New
York Times (Sandhaus, 2008) than summarizing
academic papers, as shown in Table 2. The results
show that the distribution of ground truth sentences
in academic papers is more even. In other words,
academic papers have less positional bias than news
articles.

We also notice that the neural extractive models

tend to outperform the neural abstractive methods
in general, possibly because the extended context
is more challenging for generative models during
decoding. ExtSum-LG (Xiao and Carenini, 2019)
is a benchmarked extractive method with section
information by incorporating both the global con-
text of the whole document and the local context
within the current topic. We argue that CHANGES

could better model the complex sentence structural
information with the hierarchical graph than the
LSTM-minus in ExtSum-LG.

According to the experimental results, our model
CHANGES outperforms all baseline approaches sig-
nificantly in terms of ROUGE F1 scores on both
PubMed and arXiv datasets. The performance
improvements demonstrate the usefulness of the
global theme-aware representations from the graph
contrastive learning module and the hierarchical
graph structure for identifying the salient sentences.

5 Analysis

5.1 Ablation Study

We first analyze the influence of different compo-
nents of CHANGES in Table 3. Here the second row
’w/o Contra’ means we remove the GCL module
and do not update the theme-aware sentence embed-
dings. The third row ’w/o Hierarchical’ denotes
that we only use the theme-aware sentence em-
bedding for prediction without hierarchical graph
layers. As shown in the table, removing either
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(a) ArXiv (b) PubMed

Figure 3: ROUGE-1,2 performance of CHANGES for test papers with different section numbers.

(a) ArXiv (b) PubMed

Figure 4: ROUGE-1 performance of ExtSum-LG, CHANGES, ORACLE for test papers with different lengths.

Model ROUGE-1 ROUGE-2 ROUGE-L
PubMed

CHANGES 46.43 21.17 41.58
w/o GCL 43.91 18.57 40.01

w/o Hierarchical 43.76 18.30 39.88
arXiv

CHANGES 45.61 18.02 40.06
w/o GCL 44.47 16.58 38.87

w/o Hierarchical 44.72 16.79 39.10

Table 3: Ablation study results of removing components
of CHANGES on PubMed and arXiv datasets.

component causes a significant model performance
drop, which indicates that modeling sequential or-
der information, semantic information, and hierar-
chical structural information are all necessary for
academic paper summarization.

Interestingly, the theme-aware sentence embed-
dings and the hierarchy structure-aware sentence
embeddings are almost equally critical to sentence
salience modeling. The finding indicates the impor-
tance of modeling cross-sentence relations from
both semantic and discourse structural perspec-
tives.

5.2 Performance Analysis

We also analyze the sensitivity of CHANGES to
section structure and length of academic papers.
As shown in Figure 3, we see a performance drop
trending when the number of sections increases.
This is likely because the complex section structure
hinders the inter-section sentence interactions. The
model performance on the arXiv dataset is more
stable compared to the PubMed dataset although
documents in the arXiv dataset are relatively longer.
We notice the same trend in Figure 4, model perfor-
mance is also more stable on arXiv datasets across
different document lengths. We argue this may im-
ply that our model is more fit for longer documents
that have richer discourse structures.

Regarding the document length, we see a steady
performance gain when comparing to benchmark
baseline methods ExtSum-LG on both datasets as
shown in Figure 4. We also see as the document
length increases, the performance gap between
CHANGES and extractive summary performance
ceiling ORACLE becomes smaller. The finding
also verifies that CHANGES is especially effective
and fit for long academic papers modeling.
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6 Conclusion

In this paper, we propose CHANGES, a contrastive
hierarchical graph-based model for scientific pa-
per extractive summarization. CHANGES first
leans global theme-aware sentence representations
by graph contrastive learning module. Moreover,
CHANGES incorporates the sentence-section hier-
archical structure by separating intra-section and
inter-section message passing and aggregating both
global and local information for effective sentence
embedding. Automatic evaluation on the PubMed
and arXiv benchmark datasets proves the effective-
ness of CHANGES and the importance of capturing
both semantic and discourse structure information
in modeling scientific papers.

In spite of the strong zero-shot performance
of large language models like ChatGPT on vari-
ous downstream tasks, long document modeling
is still a challenging problem in the LLM era.
Transformer-based GPT-like systems still suffer
from the attention computing complexity problem
and will benefit from effective and efficient model-
ing of long documents.

Limitations

In spite of the strong performance of CHANGES, its
design still has the following limitations. First,
CHANGES only extracts the sentence-section-
document hierarchical structure of academic pa-
pers. We believe the model performance could be
further improved by incorporating document hi-
erarchy of different granularity like dependency
parsing trees and Rhetorical structure theory trees.
We leave this for future work. In addition, we only
focus on single academic paper summarization in
this work. Academic papers generally contain a
large amount of domain knowledge, thus introduc-
ing domain knowledge from peer papers or citation
networks should further boost model performance.

Acknowledgment

This work is supported by NSF through grants
IIS-1763365 and IIS-2106972. We also thank the
anonymous reviewers for their helpful feedback.

References
Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. arXiv
preprint arXiv:1603.07252.

Sangwoo Cho, Kaiqiang Song, Xiaoyang Wang, Fei
Liu, and Dong Yu. 2022. Toward unifying text seg-
mentation and long document summarization. arXiv
preprint arXiv:2210.16422.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents.
arXiv preprint arXiv:1804.05685.

Ed Collins, Isabelle Augenstein, and Sebastian Riedel.
2017. A supervised approach to extractive sum-
marisation of scientific papers. arXiv preprint
arXiv:1706.03946.

Peng Cui and Le Hu. 2021. Topic-guided abstrac-
tive multi-document summarization. arXiv preprint
arXiv:2110.11207.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Yue Dong, Andrei Mircea, and Jackie CK Cheung.
2020. Discourse-aware unsupervised summariza-
tion of long scientific documents. arXiv preprint
arXiv:2005.00513.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text sum-
marization. Journal of artificial intelligence research,
22:457–479.

Marcio Fonseca, Yftah Ziser, and Shay B Cohen. 2022.
Factorizing content and budget decisions in abstrac-
tive summarization of long documents by sampling
summary views. arXiv preprint arXiv:2205.12486.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in neural information
processing systems, pages 1693–1701.

45



Yin Jou Huang and Sadao Kurohashi. 2021. Extrac-
tive summarization considering discourse and coref-
erence relations based on heterogeneous graph. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3046–3052.

Ruipeng Jia, Yanan Cao, Hengzhu Tang, Fang Fang,
Cong Cao, and Shi Wang. 2020. Neural extractive
summarization with hierarchical attentive heteroge-
neous graph network. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3622–3631.

Jiaxin Ju, Ming Liu, Huan Yee Koh, Yuan Jin, Lan
Du, and Shirui Pan. 2021. Leveraging information
bottleneck for scientific document summarization.
arXiv preprint arXiv:2110.01280.
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Abstract

Structural information is known to be impor-
tant in resolving coreferential relations. We
directly embed discourse structure information
(subsection, paragraph and text location) in a
transformer-based Dutch event coreference res-
olution model in order to more explicitly pro-
vide it with structural information. Results re-
veal that integrating this type of knowledge
leads to a significant improvement in CONLL
F1 for within-document settings (+ 8.6%) and
a minor improvement for cross-document set-
tings (+ 1.1%).

1 Introduction

Large Language models (LLMs) and transformer-
based architectures have significantly changed the
domain of Natural Language Processing (NLP)
in recent years. Through pre-training and fine-
tuning masked language models (MLMs) such as
BERT (Devlin et al., 2018), state-of-the-art results
can be obtained for tasks requiring deep semantic
or syntactic knowledge such as readability assess-
ment (Imperial, 2021), syntactic parsing (He and
Choi, 2019) and conversational question-answering
(Staliūnaitė and Iacobacci, 2020). However, de-
spite their apparent dominance over other methods,
transformer-based language models are still not the
‘one-size-fits-all’ solution for a subset of NLP tasks.
In particular, discourse-based tasks such as Event
Coreference Resolution (ECR) still pose a major
challenge. Within ECR, the goal is to determine
whether or not two textual events refer to the same
real-life or fictional event, as is the case in Exam-
ples 1 and 2

1. Frankrijk Verslaat België in de halve finales
van de FIFA wereldbeker voetbal EN: France
beats Belgium in the semi-final of the FIFA
world cup.

2. België verliest halve finale EN: Belgium loses
semi-final.

Understanding that these two Examples, which
have been sourced from a Dutch newspaper article,
refer in fact to the same real-world occurrence is
straightforward for human readers. Tasks like these
typically require understanding of long-distance
semantic relationships and dependencies within a
given text, or even across multiple texts. While
human readers can take advantage of both their ex-
tensive extra-linguistic knowledge and structural
awareness of the text, AI algorithms typically do
not possess such skills. For transformer-based lan-
guage models in particular long-distance semantic
dependencies throughout texts might pose a partic-
ular problem. Because MLM pre-training is typi-
cally limited to the immediate (sentence) context,
the model is unable to learn these dependencies.
Additionally, while models such as ALBERT (Lan
et al., 2019) have tried to explicitly integrate tex-
tual and discourse structure in transformer-based
architectures, these models still tend to focus on
immediate local context and not on the discourse
as a whole.

These limitations pose significant problems for
ECR. Recent work has indicated that the correct
classification of coreferential links between events
in BERT-based models is primarily dependent
on the outward lexical similarity of those events
(De Langhe et al., 2023b). While logical in prin-
ciple, this is highly problematic in cases such as
Example 3 and Example 4, as there exist many in-
stances in which two events are lexically similar,
but that do not corefer.

3. De Franse president Macron ontmoette de
Amerikaanse president voor de eerste keer
vandaag EN: The French president Macron
met with the American president for the first
time today

4. Frans President Sarkozy ontmoette de
Amerikaanse president EN: French President
Sarkozy met de American president
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Vice versa, non-similar event mentions are not
necessarily not in a coreferential relation. Al-
though the latter cases are more exceptional, the
overall sparseness of ECR results makes that
the bulk of training data often consists of simi-
lar, but not-coreferring event mentions. Overall,
transformer-based approaches have made signifi-
cant strides within the field of ECR (Joshi et al.,
2020). Nonetheless, the over-reliance on lexi-
cal similarity between event mentions might im-
pede further improvement. Interestingly, earlier
feature-based studies have shown that integrating
certain structural features, such as the proximity
of two events in a given text can have a positive
effect (Lu and Ng, 2018). We aim to improve
an existing Dutch transformer-based ECR model
(De Langhe et al., 2022b) by enriching it with struc-
tural discourse-level information. The goal of this
paper is two-fold. First, it is our ambition to il-
lustrate that concepts rooted in general linguistic
theory and fundamental to our own understand-
ing of coreferential relations can also improve the
performance of LLMs on this task. Second, we
wish to address the gap between ECR studies in
the English language domain and those in lower-
resourced languages. Currently, there exists very
little data or available research for languages other
than English. In our experiments we show that
including discourse-level information leads to a
significant and consistent improvement for within-
document ECR models. We also note minor im-
provements in cross-document contexts.

2 Related Work

There exist two important model paradigms within
the domain of ECR. First, mention-ranking ap-
proaches focus on finding all possible antecedents
for a given event and on generating a ranking of
those antecedents based on the likelihood of coref-
erence with the event in question. In Lu and Ng
(2017a) a feature-based probabilistic model was
used for within-document ECR. The authors show
that lexical features such as full or partial overlap
of events and cosine similarity between event men-
tions are among the most important information
sources of the model. In addition, they revealed
that distance-based features such as the number
of sentences between two events also have a no-
ticeable positive effect on the classifier’s perfor-
mance. A second and more important series of
models are mention-pair approaches. This method

generates all possible event pairs and reduces the
classification to a binary decision (coreferring or
not-coreferring) between each event pair. Earlier
models within this paradigm were entirely feature-
based and relied on a series of lexical, structural
and logical constraining features. A large variety
of classical machine learning algorithms has been
tested using the mention-pair paradigm such as de-
cision trees (Cybulska and Vossen, 2015), support
vector machines (Chen et al., 2015) and standard
deep neural networks (Nguyen et al., 2016). More
recent work has focused on the use of LLMs and
transformer encoders (Cattan et al., 2021a,b), with
span-based architectures attaining the best overall
results (Joshi et al., 2020; Lu and Ng, 2021). It has
to be noted that mention-pair approaches relying on
LLMs suffer most from the limitations discussed
in Section 1. Therefore, recent studies have at-
tempted, with some success, to integrate insights
regarding discourse coherence (Held et al., 2021)
and domain-specific document discourse informa-
tion (Choubey et al., 2020) into existing pipelines.
Research for comparatively lower-resourced lan-
guages has generally followed the paradigms and
methods described above and has focused on lan-
guages such as Chinese (Mitamura et al., 2015),
Arabic (NIST, 2005) and Dutch (Minard et al.,
2016).

3 Experimental setup

3.1 Data

Figure 1: News article structure in the ENCORE dataset

Our data consists of a subset of the Dutch EN-
CORE corpus (De Langhe et al., 2022a), which
in its totality consists of 15,407 annotated events
spread over 1,015 documents that were sourced
from a collection of Dutch (Flemish) newspaper ar-
ticles. Coreferential relations between events were
annotated at both the within- and cross-document
level. For the research presented in this paper a
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Figure 2: Visualisation of BERT’s input embeddings with added discourse-level paragraph embeddings. Event 1
(The Great War) is found in paragraph 3 of the document, while potential antecedent Event 2 (The First World War)
is found in the first paragraph of the document

subset of 8,794 events was selected which all come
from documents for which a detailed discourse
structure was available. Each of these documents
can be broken down into subsections, which in turn
consist of a number of paragraphs. Subsections are
preceded by a subtitle in bold and typically group
together a piece of related information. Figure 1
visualizes the general structure of a document in
the ENCORE corpus.

For each event in our dataset we thus know
at which subsection and paragraph level it is lo-
cated within a given article. Additionally, for each
event we can derive its Text Location, depending
on where in the article the event is located. There
are 5 possible locations, being the Article Header,
Article Subheader, Article Introduction, Subsection
Title and Paragraph.

3.2 Experiments
In our experiments we draw inspiration from ear-
lier work on feature-based models (Lu and Ng,
2018) and integrate specific event proximity and
structural information into a state-of-the-art Dutch
transformer-based ECR model (De Langhe et al.,
2023b). We focus on the usage of the readily
available discourse and document-level informa-
tion which was described in Section 3.1.

3.2.1 Baseline coreference algorithm
The ECR model consists of the fine-tuned Dutch
BERT model BERTje (de Vries et al., 2019). For
this model, the mention-pair approach has demon-
stratively better results compared to other existing
methods (Lu and Ng, 2018, 2021). Concretely, pair-
wise scores for each pair of event mentions in the
dataset are obtained. First, each possible event pair
in the data is encoded by concatenating and tok-
enizing the two events and by subsequently feeding
these to the BERTje encoder. A special [SEP] to-

ken is inserted between the two event mentions to
indicate where one event ends and the other begins.
We use the token representation of the classifica-
tion token [CLS] as the aggregate embedding of
each event pair, which is subsequently passed to a
softmax-activated classification function. Finally,
the results of the binary text pair classification are
passed through a clustering algorithm in order to
obtain output in the form of coreference chains.

3.2.2 Discourse Embeddings Model

In our proposed algorithm discourse-level posi-
tional information (paragraph, subsection and text
location) is passed to BERT’s first encoder layer
for each individual event during the fine-tuning pro-
cess. This is done in a similar way as how the posi-
tional, segment and token embeddings are used in
the original BERT implementation. We believe that
this structural information corresponds well with
established general theories on discourse structure
where related concepts are usually found within
close proximity of each other, be it at the sentence,
paragraph or section level (Hoeken and Van Vliet,
2000; Glasbey, 1994). By directly integrating this
knowledge into the model it would ideally learn
that, overall, coreferring mentions are grouped
closer together compared to non-coreferring men-
tions at the document level. As mentioned before
in Section 2, it has already been shown that knowl-
edge regarding the proximity of two events can
have a positive impact on the classification deci-
sion in feature-based models (Lu and Ng, 2017b,
2018). Earlier research has also shown that cur-
rently this knowledge is not encoded by BERT-like
models (De Langhe et al., 2023a). These findings
led us to believe that this specific knowledge can
be leveraged by the model to learn about a funda-
mental aspect of coreferential relations, as well as
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Model CONLL
BERTjeBaseline 0.432
BERTjeParagraph 0.466 ± 0.012
BERTjeSubsection 0.517 ± 0.008
BERTjeText Location 0.424 ± 0.032
BERTjeParagraph + Subsection 0.518 ± 0.009
BERTjeParagraph + TextLocation 0.434 ± 0.028
BERTjeSubsection + TextLocation 0.437 ± 0.019
BERTjeParagraph + Subsection + Text Location 0.516 ± 0.022

(a) Results for the Within-document setting

Model CONLL
BERTjeBaseline 0.519
BERTjeParagraph 0.530 ± 0.014
BERTjeSubsection 0.517 ± 0.011
BERTjeText Location 0.460 ± 0.009
BERTjeParagraph + Subsection 0.481 ± 0.032
BERTjeParagraph + TextLocation 0.476 ± 0.048
BERTjeSubsection + TextLocation 0.468 ± 0.064
BERTjeParagraph + Subsection+ Text Location 0.472 ± 0.026

(b) Results for the Cross-document setting

Table 1: Subtables report average CONLL results and standard deviation over 3 trials using different random seeds
for the discourse-level embeddings in a within-document and cross-document setting respectively. All results in the
cross-document table, except the baseline model, automatically include document-level embeddings

break away from its aforementioned dependency
on outward lexical similarity of events.

In our implementation, all possible subsection,
paragraph and text location levels are encoded us-
ing a tokenizer-like mechanism where each level
of the respective subsection, paragraph or text loca-
tion is assigned a unique ID, much like individual
tokens are encoded using BERT’s own tokenizer.
Then, an input embedding matrix of size A x 768 is
randomly initiated for each type of segment infor-
mation (subsection, paragraph and text location),
where A is the maximum depth level of a given
segment across the dataset and 768 is the standard
embedding length for a BERTBase model. Con-
cretely, the maximum depth at the paragraph level
is 10 if the longest document across the dataset
(in number of paragraphs) has 10 paragraphs. The
resulting input embedding matrix will then be of
dimension 10x768 and a total of 7680 trainable pa-
rameters (A x 768) will be added to the model. The
first paragraph in each document is encoded by the
same unique ID (i.e., 1) and the paragraph-level
embedding for each individual token is obtained
by embedding the unique ID through the gener-
ated input embedding matrix. The same process
is followed for the subsection and text location
embeddings. Finally, the resulting discourse-level
embeddings are summed with the token, segment
and positional embeddings to obtain the input for
the first encoder layer. As is the case in the original
BERT implementation, the weights of our custom
discourse input embedding matrices are also opti-
mized during the fine-tuning process. A high-level
visualization of the integration of a paragraph em-
bedding can be found in Figure 2. Subsection and
text location embeddings are implemented in an
analogous manner.

While, intuitively, our proposed structural em-

beddings would most likely be most useful in a
within-document setting, we also include results
for a cross-document setting in order to gauge the
effectiveness of discourse-level features in those
contexts specifically. Our setup for cross-document
ECR is identical to the one described above with
the notable exception that we add a fourth type of
discourse-level embedding, namely a document em-
bedding. When events are found within the same
document this embedding is identical.

4 Results and discussion

Tables 1a and 1b show the results of testing various
discourse-level embeddings in a within-document
and cross-document context, respectively. We eval-
uate our results using the established CONLL met-
ric, which is an average of 3 commonly used met-
rics for coreference evaluation: MUC (Vilain et al.,
1995), B3 (Bagga and Baldwin, 1998) and CEAF
(Luo, 2005). We report the average and standard de-
viations of 3 runs of experiments with different ran-
dom seeds for the discourse-level input embedding
matrices. For the within-document experiments,
we see a significant impact on overall performance
when including paragraph- and subsection-level
information in the fine-tuning process. A combi-
nation of paragraph embeddings and subsection
embeddings provides the best results. Conversely,
we find that the inclusion of Text Location em-
beddings does not have any noticeable impact on
the classification of within-document event coref-
erence.

In the cross-document setting, we find that in-
cluding structural discourse information does not
have a significant impact on classifier performance.
While including document and paragraph-level em-
beddings results in a minor improvement over the
baseline coreference model, we find that in general
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including discourse-specific embeddings does not
help with cross-document event coreference.

5 Conclusion and Future Work

In this paper we explored the potential of using
discourse-level embeddings in transformer-based
models for event coreference resolution. Motivated
by general linguistic theory on the overall structure
of language we integrate paragraph, subsection and
text location information in a Dutch BERT-based
mention-pair event coreference algorithm. We find
that in within-document contexts the inclusion of
discourse-level information has a significant pos-
itive effect on overall classifier performance. In
particular, the inclusion of paragraph and subsec-
tion information consistently leads to better results.
Results for the cross-document setting show only
minimal improvement over the baseline model. In
future work, we aim to further develop structurally
informed models for event coreference resolution
as well as look into improving the existing cross-
document setup.
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Abstract

Biomedical argument mining (BAM) aims
at automatically identifying the argumenta-
tive structure in biomedical texts. However,
identifying and classifying argumentative re-
lations (AR) between argumentative compo-
nents (AC) is challenging since it not only
needs to understand the semantics of ACs but
also need to capture the interactions between
them. We argue that entities can serve as
bridges that connect different ACs since entities
and their mentions convey significant semantic
information in biomedical argumentation. For
example, it is common that related AC pairs
share a common entity. Capturing such entity
information can be beneficial for the Relation
Identification (RI) task. In order to incorpo-
rate this entity information into BAM, we pro-
pose an Entity Coreference and Co-occurrence
aware Argument Mining (ECCAM) framework
based on an edge-oriented graph model for
BAM. We evaluate our model on a benchmark
dataset and from the experimental results we
find that our method improves upon state-of-
the-art methods.

1 Introduction

There is a growing interest in evidence-based de-
cision making in the biomedical field, as it can
assist medical practitioners in selecting the best
treatment for a given medical case. However,
extracting relevant evidence from vast amounts
of biomedical publications is time-consuming for
practitioners. Thus, biomedical Argument Min-
ing (BAM), which is the application of Argument
Mining (AM) to biomedical texts, is proposed to
automatically extract argumentative structures in
biomedical texts by identifying Argument Compo-
nents (AC) and Argument Relations (AR) between
ACs (Mayer et al., 2020). BAM includes three
primary tasks (Si et al., 2022): (1) argument com-
ponent identification (ACI)—i.e., distinguishing ar-
gumentative components from non-argumentative

content; (2) argument component classification
(ACC)—categorizing ACs into different types (e.g.,
claim, and evidence); and (3) relation identification
(RI)—recognizing ARs (e.g., support, attack, or
none) between a pair of ACs.

Among these tasks, the RI task is the hardest one
and existing models tend to underperform on this
task, compared to the ACI and ACC tasks (Mayer
et al., 2020; Galassi et al., 2021; Si et al., 2022).
One possible reason is that these models do not in-
corporate the information about the co-occurrence
of common entities between different ACs. This
is a valuable source of semantic information and
can be particularly important in BAM. As shown
in Fig 1, the AC pairs connected by an AR share
entities with coreference relations. Furthermore,
entity co-occurrence suggests the direction of the
ARs (i.e. ACs with several entities are usually the
tail of ARs, like in Figure 1).

Based on this intuition, we propose an En-
tity Coreference and Co-occurrence aware Argu-
ment Mining (ECCAM) framework that effectively
captures ARs through entity coreference and co-
occurrence. ECCAM is a graph-based model. We
build a heterogeneous graph that consists of nodes
that represent ACs and entities, and edges between
nodes. The entity nodes can serve as bridges that
connect different ACs. Considering that the en-
tity coreference and co-occurrence relations exist
between nodes and thus are represented by edge
embeddings, we employ an edge-oriented graph
model (Christopoulou et al., 2019) that learns edge
representations of any two connected nodes by
combing all paths between the two nodes. This
enables information flow between different rela-
tions and iteratively updates the edge representa-
tions, which is finally used as the representations
of ARs. Here, the edges between AC nodes and
entity nodes are used to pass the entity coreference
information while the edges between entity nodes
aim to leverage entity co-occurrence information.
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2.The quality of life improved
in control group by 13.7 %,
while combined treatment

group showed improvement
of 83.5 % (p < 0.05 vs.

control group).

1.The rate of efficacy was
significantly higher in the
combined treatment group

(85.36 %; p < 0.05 vs. 
control group).

4.Intraperitoneal perfusion of
verapamil enhances the

efficacy of chemotherapy
drugs, prolongs survival, and
improves the quality of life.

3.Cumulative survival rate
was also significantly higher

in the combined treatment
group.

Figure 1: Part of the argument structure of the abstracts
from PubMed 23589316. Each text in the rectangle
represents an AC. Two ACs connected with an arrow
means that there is an AR between them. Entities with
the same colour are in the same coreference clusters.

Our contributions are shown below:
• To our best knowledge, this paper is the

first to incorporate entity coreference and co-
occurrence information into an argument min-
ing model.

• We propose the ECCAM framework based on
an edge-oriented model to leverage the entity
coreference and co-occurrence information.

• Experimental results show that the entity
coreference and co-occurrence information
can improve the performance of the RI task
significantly.

2 Related Work

Recently, the research community has shown grow-
ing interest in the task of BAM. Mayer et al. (2018)
created a dataset by annotating ACs within random-
ized controlled trial abstracts and employ the Sub-
Set Tree Kernel to classify the types of ACs with
Bag-Of-Words of biomedical text as input. Further,
a dataset with both ACs and ARs are created by
Mayer et al. (2020) to deal with three tasks of BAM:
ACI, ACC and RI. Various contextualized word
embeddings, such as BERT (Devlin et al., 2019),
BioBERT (Lee et al., 2020), SciBERT (Beltagy
et al., 2019a), and RoBERTa (Liu et al., 2019) are
explored to address these tasks. Liu et al. (2022) in-
corporate zoning information (such as background,
result and conclusion) to tackle the ACI and ACC
tasks at the same time. Galassi et al. (2021) em-
ployed a multi-task framework with an attentive
residual network to address the ACC task, RI task,
and link prediction task of BAM, based on the as-
sumption that ACs had been detected. SeqMT (Si
et al., 2022) also assumes the ACI task is solved
and pays attention to the ACC and RI tasks. It

utilises a multi-task learning approach to benefit
from the sequential dependency between the ACC
and RI tasks by transferring the representation of
the input and output of the ACC task to the RI task.

However, none of the previous models leverages
the entity coreference and co-occurence informa-
tion for the RI task, which is the focus of this paper.

3 Model Architecture

Following previous models (Galassi et al., 2018; Si
et al., 2022; Galassi et al., 2021), we assume that
the outputs of the ACI task are provided, i.e., all
ACs have been detected without AC types. Inspired
by Christopoulou et al. (2019) who employ an edge-
oriented graph model (Christopoulou et al., 2018)
to leverage interactions among sentences that share
the same entities for document-level relation extrac-
tion, we propose a framework for the RI task based
on a similar edge-oriented model. Our framework
contains three parts: the entity cluster extraction
module, the document encoder module and the en-
tity co-occurrence and coreference-aware argument
mining module.

3.1 Entity Cluster Extraction Module

Since we cannot assume golden annotation of enti-
ties and their mentions, the first step of our frame-
work is to identify all named entities in the AM
dataset. One simple way is to train a model on
biomedical coreference resolution datasets and use
such model to predict entity clusters. However,
most biomedical coreference resolution datasets
concern diseases (Doğan et al., 2014; Li et al.,
2015), species (Gerner et al., 2010; Pafilis et al.,
2013) or proteins and genes (Wei et al., 2015;
Collier and Kim, 2004). Most noteably, datasets
with entity annotations related to cancer experi-
ments, such as “quality of life” and “survival rate”,
are absent from the literature, while the biomedi-
cal argument mining dataset (Mayer et al., 2020)
is about the cancer research. Thus, we choose
another method that first predicts the entities in
the AM datasets, and then disambiguates them
by mapping to the Unified Medical Language
System (UMLS) (Bodenreider, 2004) to obtain a
unique identifier of a medical concept to obtain
entity clusters.

Specifically, we use the Transformed NER
model (Stylianou and Vlahavas, 2021) to obtain
entities in the abstracts. This model is trained on
the EMB-NLP (Nye et al., 2018) dataset and thus
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extracts four types of entities, namely Patient, Inter-
vention, Comparison and Outcome (PICO). Since
ACs mainly exist in sentences that describe exper-
imental results and conclusions (Liu et al., 2022),
we only use outcome entities, to avoid noise. Then,
we use all the extracted entities as input of the
QuickUMLS tool (Soldaini and Goharian, 2016) to
obtain the corresponding UMLS identifiers (IDs).
It is worth mentioning that given one mention, the
QuickUMLS usually returns multiple IDs. We han-
dle this situation as follows: when there is an exact
match between the predicted entities and the given
mention, we will use the ID of the exactly matched
entity as the ID for the mention. If there is no exact
match entity, we will reserve all the entities whose
Jaccard similarity score with the given mention is
higher than a specific threshold.

All entities in a document that share the same
UMLS ID in a document form an entity cluster.
The extracted entity clusters are denoted as C =
{C1, C2, ..., Clc}, where Ci = {m1,m2, ...,ml},
and l is total number of mentions in the i-th cluster.

3.2 Document Encoder Module

Given a document D = {t1, t2, ..., tn} consisting
of n tokens as the input of our framework, a SciB-
ERT model is employed as the encoder to generate
the embeddings of tokens X = {x1, x2, ..., xn} in
D.

X = SciBERT (D) (1)

To leverage the entity coreference and co-
occurrence information, a two-step method is pro-
posed to generate the embeddings of all entities
occurring in the document D. First, our model
generates the embeddings of each mention mi by
averaging all token embeddings {xi1, xi2, ..., xiM}
in mi. Similarly, the embeddings of each AC na

and each entity ne are also an average of the tokens
in the AC and entity, respectively.

3.3 Graph Construction

We initially construct a heterogeneous graph that
consists of two different types of nodes (AC nodes
and entity nodes) and three types of edges between
the nodes. The rules for edge generation are out-
lined below.
AC-AC edge. If two ACs are adjacent, an edge
will connect the two AC nodes. There are two situ-
ations where two ACs are adjacent. The first one is

that the sequences of this two ACs are adjacent in
the document. Another situation is that the words
between the two ACs in the document are all non-
argumentative. This type of edge is used to learn
the context.
AC-Entity edge. If an AC mentions an entity at
least once, there will be an edge between the entity
and the related AC. This type of edge is used to
learn the coreference information.
Entity-Entity edge. We connect all entity pairs so
that the model can learn which co-occurrence of
entity pairs is helpful for the RI task.

We use a concatenation operation to get the rep-
resentation of an edge eij = [ni, nj ] given the
representations of the source node ni and the desti-
nation node nj of the edge, where ni, nj ∈ ne∪na.

3.4 Entity Co-occurrence and Coreference
aware Argument Mining model Module

Given the constructed graph, we employ an
edge-oriented graph model (Christopoulou et al.,
2018) to leverage the entity coreference and co-
occurrence information. The model uses a two step
method to iteratively update the edge embeddings
of two nodes based on the paths between the two
nodes.

First, a path between two nodes i and j is gen-
erated using intermediate nodes k. Then, the rep-
resentations of two consecutive edges eik and ekj
are combined by a modified bilinear transforma-
tion. Through this action, an edge representation of
double the length is generated. All existing paths
between i and j through k are combined. The i, j,
and k nodes can be either entity nodes or AC nodes.
Intermediate nodes without adjacent edges to the
target nodes are ignored. Formally, this is written
as:

f(e
(l)
ik , e

(l)
kj ) = σ(e

(l)
ik ⊗We

(l)
kj ) (2)

where σ is the sigmoid non-linear function, W is
a learned parameter matrix, ⊗ represents element-
wise multiplication, l denotes the length of the edge
and eik refers to the representation of the edge
between nodes i and k.

At the second step, the original (short) edge rep-
resentation and the new (longer) edge represen-
tation resulting from Equation 2 is aggregated as
follows:

e
(2l)
ij = βe

(l)
ij + (1− β)

∑

k ̸=i,j

(e
(l)
ik , e

(l)
kj ) (3)

56



where β ∈ [0, 1] is a scalar used to assign the
weight of the shorter edge representation.

A finite number N of iterations is conducted for
the two steps. The final length of path is directly
proportional to the number of iterations. After N
iterations, the number of edges of the longest path
will be up to 2N .

3.5 Classification Module

Finally, to classify relations between AC pairs, we
incorporate a softmax classifier which takes the
AC-to-AC edges eaa as input:

y = softmax(Weaa + b) (4)

where W and b are learned parameters of the clas-
sification layer. The whole model is trained end-to-
end by minimising the cross-entropy loss between
predicted and gold ACs.

4 Experiment

4.1 Datasets

Following Si et al. (2022), we use the Ab-
stRCT (Mayer et al., 2020) benchmark to evalu-
ate our model and compare it with previous ap-
proaches. The AbstRCT dataset is composed of
three categories of ACs (major claim, claim, and
evidence) and two kinds of ARs (support and at-
tack). It consists of three parts, with the largest
being the neoplasm corpus, which is divided into
training, development, and testing sets. Moreover,
there are two additional test sets. The first one
solely consists of abstracts related to glaucoma,
while the second one is a mixed set containing 20
abstracts for each disease in the dataset (neoplasm,
glaucoma, hypertension, hepatitis, and diabetes).

Documents All ARs Avg. AR
Neo_train 350 1427 4.1
Neo_dev 50 210 4.2
Neo_test 100 424 4.2
Gla_test 100 367 3.7
Mix_test 100 329 3.3

Table 1: Statistics of the AbstRCT dataset. The data
statistics of the three test sets are reported separately.
Here, Neo, Gla and Mix represent neoplasm, glaucoma
and mixed, respectively.

4.2 Implementation

We use the same train-development-test split for
the AbstRCT dataset as was used in Si et al.
(2022). We fine-tune cased SciBERT (Beltagy
et al., 2019b) and set the maximum sequence length
to 256. A learning rate of 2 · 10−5 is used. We
train for 50 epochs with early stopping to avoid
overfitting. Our model is implemented in Py-
Torch (Paszke et al., 2019). We employ an AdamW
optimizer (Loshchilov and Hutter, 2019) for param-
eter optimization and report the macro-averaged
F1 scores of models trained with three different
random seeds.

4.3 Baselines

In order to evaluate our proposed method, we com-
pare it with the following baselines:
ResArg (Galassi et al., 2018) is a hybrid of residual
networks and long short-term memory network.
This model is designed to tackle both the ACC and
RI tasks simultaneously.
ResAttArg (Galassi et al., 2021) is an upgraded
version of ResArg model featuring an attention
module. ResArg and ResAttArg have two versions:
an average version that calculates the final scores
as an average of scores from 10 distinct networks
trained with 10 different seeds, and an ensemble
version that assigns the class based on the majority
vote of the same 10 networks.
SeqMT (Si et al., 2022) utilises a multi-task learn-
ing approach to benefit from the sequential depen-
dency between the ACC and RI tasks. It transfers
the representation of the input and output of the
ACC task to the RI task.

4.4 Main Results

We report the main results in Table 2. It can be
observed that our model improves upon the state-
of-the-art on two of three test sets even though our
model is a single task model while all other base-
lines are multi-task/ensemble models. To be spe-
cific, our model outperforms the current best model
on the neoplasm test set by 1.68% F1 score and the
mixed test set by 1.11% F1 score. However, there
is a gap between the performance of our model and
SeqMT on the glaucoma test set. This might be due
to the lack of multi-task training: compared with
the results of SeqMT, the performance of the sin-
gle task version model of SeqMT(SeqMT(-Lacc))
similarly experiences a large drop of performance
of 8.44% F1 score. Without the additional signal
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models NEO GLA MIX
RA(avg) 59.15 57.23 60.31
RA(Ensemble) 63.16 61.86 68.35
RAA(avg) 66.49 62.68 63.47
RAA(Ensemble) 70.92 68.40 67.66
SeqMT(-Lacc) 68.58 64.83 70.30
SeqMT 71.24 73.27 72.71
ECCAM 72.92 68.96 73.82

Table 2: Main results of different models. The best
scores are marked in bold. All the results of baselines
are copied from the related papers. Here, NEO, GLA
and MIX represent neoplasm, glaucoma and mixed.

from the ACC task, SeqMT(-Lacc) performs signif-
icantly worse than our model on the glaucoma test
set by 4.13% F1 score.

4.5 Ablation Study

To validate the effects of the entity coreference and
entity co-occurrence information, we conduct two
ablation experiments. ECCAM(-EE) is a model
where the edges between the entities are excluded
to test whether the entity co-occurrence informa-
tion can improve the performance of RI. ECCAM(-
EA) aims to reveal the impact of entity coreference
information by removing both edges between enti-
ties and between entities and ACs. The results in
Table 3 show the effectiveness of the entity corefer-
ence and entity co-occurrence information. With-
out the entity co-occurrence information, the per-
formance of our model drops by 0.84%, 2.52% and
1.43% F1 score on the neoplasm, glaucoma and
mixed test sets, respectively. The performance of
ECCAM(-EA) decreases even more significantly—
2.3%, 5.12% and 4.09% F1 score on the neoplasm,
glaucoma and mixed test sets—showing the posi-
tive impact of entity coreference information.

models NEO GLA MIX
ECCAM 72.92 68.96 73.82
ECCAM(-EE) 72.08 66.44 72.39
ECCAM(-AE) 70.62 63.84 69.73

Table 3: Ablation study of our model. ECCAM(-EE)
is a model where the edges between the entities are
excluded. ECCAM(-EA) removes both edges between
entities and between entities and ACs. The best scores
are marked in bold.

iterations DEV NEO GLA MIX
N = 1 60.20 65.32 53.49 66.90
N = 2 62.75 67.34 58.67 71.14
N = 3 66.04 71.84 63.37 71.80
N = 4 67.31 72.92 68.96 73.82
N = 5 69.64 73.85 66.30 68.83

Table 4: Results of hyper-parameter analysis. Here,
NEO, GLA and MIX represent the results of on the neo-
plasm, glaucoma and mixed test sets, respectively. DEV
denotes the results on the development set.

4.6 Hyper-parameter Analysis

We further test, whether number of iterations N
affects the model performance on the three dif-
ferent test sets. We conduct experiments with
N = 1, 2, 3, 4, 5. The results are shown in Table 4.
From the results on the development set we can see
that as the number of iterations increases, the per-
formance of the model on the development set also
increases. However, though our model obtains the
best score on the neoplasm test set when N = 5,
considering all three test sets, the best overall per-
formance is achieved with four iterations. It is
worth noting that the abstracts in the development
set are all about neoplasm. Taking all these results
into consideration, we can conclude that the more
iterations the edges representations are updated,
the more information is utilised from more distant
nodes, with too many iterations causing overfitting.

5 Conclusion

In this paper, we propose the ECCAM model
that is based on an edge-oriented graph
model (Christopoulou et al., 2019) to incor-
porate entity coreference and co-occurrence
information into BAM. We introduce edges
between entity nodes and AC nodes in a het-
erogeneous graph to help our model capture
entity coreference and co-occurrence information
respectively. Experiments on the AbstRCT dataset
show the effectiveness of these two types of
information for the RI task. In the future, we
will apply our method to other argument mining
domains, such as student essays (Eger et al., 2017).

Limitations

Although our model improves upon state-of-the-art
methods of BAM by incorporating entity coref-
erence and co-occurrence information, there are
still some limitations to our model. First, it is not
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easy to apply our model to other domains where
no coreference resolution tool is available. Second,
the number of nodes and edges of the generated
heterogeneous graph will become enormous if the
documents are long and many entities are extracted,
which requires more GPU resources.
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Abstract

Recently, the identification of free connective
phrases as signals for discourse relations has
received new attention with the introduction
of statistical models for their automatic extrac-
tion. The limited amount of annotations makes
it still challenging to develop well-performing
models. In our work, we want to overcome
this limitation with semi-supervised learning
from unlabeled news texts. We implement a
self-supervised sequence labeling approach and
filter its predictions by a second model trained
to disambiguate signal candidates. With our
novel model design, we report state-of-the-art
results and in addition, achieve an average im-
provement of about 5% for both exactly and
partially matched alternatively–lexicalized dis-
course signals due to weak supervision.

1 Introduction

Understanding the underlying structure of a text is
a fundamental problem in computational linguis-
tics. In discourse analysis, shallow discourse pars-
ing in particular, we aim to identify individual dis-
course relations within a text. Thus we can gain
information that helps in downstream tasks such
as automatic summarization, machine translation,
and document classification. The study of connect-
ing phrases not only helps in understanding the
way people connect their thoughts but also in the
identification of discourse relations anchored by
them. For our work, we use the third version of
the Penn Discourse Treebank (PDTB) (Prasad
et al., 2018) that distinguishes between explicit
relations (signaled by a closed set of discourse con-
nectives, e.g because, and, if-then, and before) and
alternative lexicalizations (signaled by connect-
ing phrases other than discourse connectives, e.g.
this means, for that reason, and it all adds up to). In
total, the PDTB contains 25878 signaled relations,
most of which belong to the group of explicit rela-
tions (94%). Only 1638 connecting phrases build

the group of free connective phrases, in the cor-
pus referred to as alternative lexicalizations. While
explicit relations are more commonly used to ver-
balize expansions and comparisons between text
spans, alternative lexicalizations often point to lex-
ically grounded causal relations. Also, they po-
tentially contain information, e.g. the phrase the
most crucial reason for that gives also evidence
about the reason’s importance, which is useful for
understanding the full discourse.

In our work, we aim to overcome the problem of
very limited training data available for free connec-
tive phrases and examine a weakly-supervised sce-
nario for continuously improving a model through
its own predictions. We regularize these predic-
tions by re-ranking the extracted signals through
a separate model trained to discriminate possible
signal candidates into signals with or without dis-
course usage. Summarized, our contributions are:
We (i) present a novel architecture and provide
state-of-the-art results for recognizing alternative
lexicalizations in the recent version of the PDTB.
Further, we (ii) improve its performance of recog-
nizing phrases by integrating unlabeled data into
the training process using weak supervision.

2 Related Work

Self-supervised learning (Yarowsky, 1995), the
most simple semi-supervised learning algorithm,
extends its training data by adding new samples
with confident predictions on different data. Self-
training has been successfully applied on con-
stituent parsing (McClosky et al., 2006) by incorpo-
rating a re-ranking strategy (Charniak and Johnson,
2005; Collins and Koo, 2005) to improve parsing
results and reduce the bias of the trained model.
Also, Suzuki and Isozaki (2008) improved perfor-
mance on part-of-speech tagging via sequence la-
beling. In recent work, Nishida and Matsumoto
(2022) study the empirical effectiveness of boot-
strapping annotations from out-of-domain data and
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show its positive impact for BERT-based discourse
dependency parsers. For candidates selection, they
study criteria inspired by Steedman et al. (2003).

Chou et al. (2014) approach semi-supervised
learning for named entity recognition, a similar
training problem (sequence labeling) as ours. They
propose an additional model for estimating con-
fidence (self-testing) and removing samples with
low scores. Braud et al. (2016) first apply semi-
supervised learning to RST discourse parsing using
multiple views on the data by incorporating various
auxiliary tasks, such as PDTB discourse parsing.
Knaebel and Stede (2020b) improved their argu-
ment extraction by jointly training three separate
models so-called tri-training on additional news
documents. Recently, Kobayashi et al. (2021) suc-
cessfully bootstrapped RST sub-trees using a com-
bination of simpler feature-based teachers to train
a more complex neural student.

The group of alternative lexicalized relations has
been rarely studied. Prasad et al. (2010) did initial
work on the identification and analysis of alterna-
tive lexicalized relations in an older PDTB version.
Synková et al. (2017); Rysová and Rysová (2015)
distinguished two classes of alternative lexicaliza-
tions and developed a dictionary approach for more
regular alternative lexicalized phrases. Most re-
cently, Knaebel and Stede (2022) implemented the
first automatic neural-based model for recognizing
alternative lexicalizations on a sentence level us-
ing a binary sequence labeling approach. In this
work, we build on their approach and adapt this
model to the paragraph level, similar to the explicit
connective model of Kurfalı (2020).

3 Method

3.1 Recognizing alternative lexicalizations

The recognition of alternative-lexicalized discourse
signals (AltLex) in the PDTB corpus is challenging
due to the higher complexity of the phrases when
compared to explicit signals for example, and the
limited number of training samples. While Knaebel
and Stede (2022) predict binary labels (is-part-of
the signal) on the sentence level, we follow Kurfalı
(2020) and integrate more context into the model
by training the whole model on the paragraph level.
Accessing more context seems unavoidable for im-
proving performance as discourse signals naturally
link to phrases outside their sentence. We make use
of pre-trained large language models and fine-tune
the base model combined with an additional token

classification layer on top of it.
Shifting from sentences to paragraphs results in

potentially having an arbitrary number of signals.
For this purpose, we use a three-class encoding sim-
ilar to Kurfalı (2020): single signals, e.g. following,
resulting, not, and soon, multi-word signals, e.g.
for this reason and in addition to, and no signal
otherwise. We limited our experiments to continu-
ous signals, e.g. we removed phrases like the more
[. . . ], the more, which removes a minor number
of samples but allows for decoding the labeled se-
quence without redundancy. We did not choose a
more complex signal encoding, such as BIOS and
BIOES, due to the lack of available training data
and the resulting class imbalance.1

3.2 Learning from unlabeled data

In this work, we study self-training, which is a
very basic but effective semi-supervised learning
technique that uses a model’s self-estimation to in-
tegrate confident predictions from unlabeled data.
However, this technique has a high bias due to rein-
forcing its own false predictions. We overcome this
problem by, first, improving the base performance
of our signal extractor by building an ensemble of
three separately trained models. Second, we follow
the idea of McClosky et al. (2006) and introduce
a separate model for confidence estimation that
not only reduces the bias of a singly self-trained
model but also simplifies the determination of a
confidence score.

To estimate the model’s confidence in its pre-
dicted alternatively–lexicalized phrases, referred
to as candidates, we design an auxiliary task to
disambiguate signal candidates produced by the
labeling model. We want to learn to discriminate
candidate phrases into those related to an AltLex
or not. We adapt previous work on explicit sense
classification (Knaebel and Stede, 2020a) to alter-
native lexicalizations and simultaneously predict
whether a possible candidate phrase is used as a dis-
course signal and if so, we learn to predict its sense.
Instead of learning only a single sense level, we
jointly learn sense versus no-sense prediction on
coarse and fine senses as Long and Webber (2022)
suggest in their work. In a short ablation study (see
Appendix A), we show that our chosen disambigua-
tion architecture works with similar performance
as a simple binary classifier.

1We did some initial studies with BIOS and BIOES encod-
ings, but the performance was not satisfying.
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Figure 1: Overview of the learning process: Phase 1 refers to the cyclic self-supervised learning procedure (alternates
between labeling and candidate discrimination). Phase 2 concludes the final training on combined data.

Our self-learning approach consists of two
phases (compare Figure 1). In Phase 1 (Recall),
we optimize our signal labeling model (Signal Ex-
traction) with respect to high recall. Therefore,
we lower the weight for the None class, which is
the dominating class label, and thus implicitly rein-
force a higher focus on the other class labels. The
resulting increase in the recall value simultaneously
leads to a reduction in the precision value of the
model. We first extract signal candidates from the
PDTB which results in a fuzzy version, in order
to train a second model for signal disambiguation
(Signal Classifier). In the final step of a single
iteration, we extract signals from a different cor-
pus (here NYT see Section 4.1) and filter these
signals, based on the confidence score, before we
use the confident paragraph samples together with
the original training data. Confident paragraphs are
defined based on the individual signal confidence,
such that signals are removed if the confidence
is below a relation threshold τrel and the remain-
ing signals’ minimum is higher than a paragraph
threshold τpar. In Phase 2 (F1Score), we use the
finally extracted confident paragraphs and train a
new model on signal extraction, but this time all
class labels are equally weighted and the model is
optimized for F1 score.

4 Experiments

4.1 Experimental Settings

The Unlabeled Corpus Most, but not all (Web-
ber, 2009), documents of the PDTB are news ar-
ticles. To learn about alternative lexicalizations
from a different corpus, as there is relatively lit-
tle annotated data currently available, we choose
another news wire corpus, under the assumption
of an easier adaption of a similar domain com-
pared to other genres. The New York Times An-
notated Corpus 2, referred to as NYT, contains

2https://doi.org/10.35111/77ba-9x74

about 1.8 million documents published by the New
York Times between 1987 and 2007. For our work,
we use a random subset of documents, 200 per
month from the years 2000–2002, sampled only
once before the experiments. The reduced corpus
is due to computational feasibility, the years were
selected randomly. We selected NYT to comple-
ment the PDTB training data because much more
data is available and it has similar quality and struc-
ture of articles as in the Wallstreet Journal corpus,
which is used for the PDTB. For example, we de-
cided against the CNN/DM corpus used in a differ-
ent study (Kobayashi et al., 2021) because of the
largely absent paragraph structure.

Hyper-Parameter Settings For data preparation,
we split 10% of documents from the PDTB corpus
for testing purposes. While we use varying test
splits for the general evaluation of the architecture,
also to compare to previous work, we use the same
test split for the evaluation of the self-supervised
setting. After creating a separate test set, in each
run, we split another 10% of the remaining training
documents for validation. To increase the repro-
ducibility of our experiments, we use the same
validation splits for each model run, e.g. we have
the same 3 and 5 splits for model ensembles and
evaluations, respectively. For both types of models,
signal labeling and sense classification, the batch
size is 32. We train for at most 10 epochs and stop
after 3 epochs without any improvement. For opti-
mization, we chose Adam with decoupled weight
decay (Loshchilov and Hutter, 2019) and an initial
learning rate of 1e−4 that is reduced linearly over
the maximum training epochs. As we observed
overfitting with a too-small dropout rate, we set it
to 0.4 for both models. For embedding paragraphs,
we chose the base architecture of RoBERTa (Liu
et al., 2019) that has shown good performance on
several other tasks related to discourse process-
ing (Long and Webber, 2022; Koto et al., 2021;
Guz et al., 2020). We fix all but the last two layers
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for signal labeling. For the disambiguation model,
we extract all hidden units from the model and
propagate them to our classifier. As the input size
of RoBERTa is limited, we truncate the tokenized
paragraph. Only less than 1% of the paragraphs are
affected by this truncation. For signal classification,
we remove training examples where a signal occurs
after the limit.

During the adaption phase, we focus on the
recognition of alternative lexicalizations rather than
whether predictions are correct or not, as we later
train an additional model that filters wrong predic-
tions. We identify two crucial hyper-parameters:
First, we examine changing the majority class
weight (None class) for the cross-entropy loss. Sec-
ond, we study the influence of negative samples
on the training progress. In agreement with our ex-
periments (for details see Appendix B), we chose
0.01 for the majority class weight as the next step’s
small increase in recall did not justify the higher
decrease in precision. Further, our results indicate
that there is no advantage in reducing the number
of negative samples.

For both phases, we set the relation threshold
τrel to 0.33 as we measured a good balance of
true and false predictions on the PDTB data. For
the paragraph threshold τpar we use a value of
0.7 during training, as we focus on optimizing the
recognition rate (recall) of the extraction model in
this phase. In the second phase, we study varying
thresholds ranging from 0.4 to 0.9 for minimal
paragraph relation confidence.

4.2 Experimental Results

First, we evaluate our novel architecture and com-
pare its base performance with the initial work by
Knaebel and Stede (2022). In their work, they
measure the overlap within sentences containing
an alternative lexicalization. We, therefore, re-run
their neural labeling model and use the same evalu-
ation metrics (exact–match) as for this paper. Re-
sults are averaged over 10 random splits and pre-
sented as mean (M) and standard deviation (SD). In
our evaluation under similar conditions, the base-
line (M=34.07% F1, SD=6.09) is clearly outper-
formed by our introduced model (M=45.48% F1,
SD=5.08). We also study the performance of en-
sembles as used in our self-learning setting and
simply combine the output probabilities of three
random models. The performance further improves
(M=51.68% F1, SD=3.28) and we observe a de-

creasing standard deviation.
Results of our final experiments are shown in

Figure 2 and in more detail in Appendix D. We
compare the baseline trained on the original PDTB
dataset with models of varying paragraph thresh-
olds τpar (0.4 to 0.9) that incorporate data from
the NYT corpus into their training data. We uti-
lize partial matching as introduced by Xue et al.
(2016), and define the matching overlap based on
the F1 score of two connecting phrases. Partial-
Match and Exact-Match refer to 70% and 90% F1
matching thresholds, respectively. For example,
our model recognizes two of three words of the
signal greatly expanding collaboration correctly,
resulting in 0.66 recall, 1.0 precision, and thus 0.83
F1, this signal would count as partially matched but
not exactly. All Experiments run on the same test
set, with varying training and validation splits, 5
repetitions each. Interestingly, all models perform
best at a τpar of 0.6, which is in accordance with
the threshold suggested by Nishida and Matsumoto
(2022). Our model (M=47.38% F1, SD=1.22) with
all unlabeled data and τ = 0.6 improves the base-
line (M=42.95% F1, SD=2.52) by more than 4%
F1 score on exact match.

4.3 Analysis of Selected Cases

In this section, we would like to show some se-
lected signal examples that we noticed while re-
viewing the results. First, we look at the predictions
of our recall-optimized signal extraction model
(without filtering predictions by our second classi-
fier) within the PDTB training data. This model has
repeatedly recognized phrases (after, and, on the
other hand, at the same time, further, if, because
[of], among others) as alternative lexicalizations al-
though, in terms of their surface form, they should
rather belong to the group of explicit connectors.
We assume some of these phrases are only partially
recognized alternative phrases e.g. signals in which
the referential expression is missing after this situ-
ation and because of that event. We also identify
cases where individual parts of the signal belong
to explicit connectives, while their conjunction is
rather considered as an alternative lexicalization,
e.g. since and then. Despite a large number of pos-
sible explicit signals, most of the confused signals
are filtered in the second step and are therefore not
considered signals at all. Interestingly, we noticed
that the model identifies a few signals at the begin-
ning of a paragraph, similar as discussed by Prasad
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Figure 2: Final model evaluation: Comparison of baseline trained on the original dataset (horizontal dotted) and final
models trained on data including NYT corpus with varying paragraph threshold τpar (0.4 to 0.9) during prediction
phase. All experiments run on the same test set, with varying training and validation splits, 5 repetitions. Evaluation
is done using partial (dashed lines) and exact (straight lines) matching as explained in Section 4.2.

et al. (2017), that are per definition not included in
the PDTB annotations, e.g. That explains why, To
illustrate, All this illustrates that, and What’s more.
Besides different variations of gerunds, we found
phrases such as at the most, that may mean, and
even that that are likely being used as discourse
signals without checking their context. The inte-
gration of the model’s output in future annotation
processes may be beneficial in identifying more
discourse signals.

Next, we examine the predicted alternative lexi-
calizations in the NYT data. Here, we found quite a
few change verbs, e.g. dimishing, bolstering, stim-
ulating, absorbing, contributing and negating, that
never occurred in the training data. There is about
the same number (20 each) of variants of alternative
lexicalizations containing the word reason in both
data sets which have no overlap with the respec-
tive other data set, e.g. the reason is probably that,
the reasons for that finding, and that alone is rea-
son for where identified in NYT but not in PDTB.
We further found, that our model tends to predict
shorter signals (average length of 9) compared with
the PDTB training dataset (average length of 13).
The longest extracted signals with respect to token
counts are one reason for the cooperative ads is
that, the overhaul was spurred in part by, and and
that might partly explain why.

5 Discussion and Conclusions

We developed a new paragraph-based architecture
to extract alternatively–lexicalized discourse sig-
nals and presented state-of-the-art performance.
Initial experiments on incorporating non-annotated
data showed a further increase in performance.

Size seems to matter for this learning too, as
this principle often holds for deep learning models.
Although the gaps are rather small for up to 10,000
sampled documents, we think the distance for the
largest set of documents is very clear. Due to time
and computation constraints, we could not identify
an upper performance bound yet.

We notice throughout our signal extraction ex-
periments a confusion between alternative lexical-
izations and explicit connectives. We assume the
model to have problems clearly understanding their
difference, as both kinds of phrases signal dis-
course relations. Filtering the connecting phrases
as we have done seems unavoidable. Contrary to
this, however, it seems worthwhile to soften the
boundaries between these two categories and de-
velop models that combine both types. This is not
trivial due to the differences between both signal
types (explicit signals are usually shorter recurring
phrases with higher frequencies; AltLex signals
tend to be longer phrases with more variance).
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Limitations

Although the new architecture works well on
PDTB-like structured data, we are often challenged
with texts without clear paragraph structure. This
would make it either necessary to pre-process texts
and split sentences into semantically closed para-
graphs such that our proposed model takes advan-
tage of the surrounding context, or develop a new
sentence-based model which was not successful in
previous work.

Limiting the model to predict only continuous
alternative lexicalizations does not highly affect re-
sults on the PDTB, but might have a more consider-
able impact on other text genres, e.g. speeches and
debates. This would require the use of a more com-
plex signal encoding as mentioned in Section 3.1.
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Model Precision Recall F1

Baseline 83.54 (5.99) 59.45 (12.34) 68.84 (9.68)
Coarse 86.32 (4.83) 51.78 (9.22) 64.36 (7.82)
Binary 85.18 (4.81) 56.81 (8.80) 67.80 (6.87)

Table 1: Ablation Study for the AltLex Candidate Clas-
sifier. Results show mean and standard deviation for 10
runs each.

A Candidate Disambiguation: Ablation
Study

Discourse signal disambiguation is a fundamental
step in our weakly-supervised learning cycle for
improving the prediction quality of our signal ex-
traction model. We intuitively followed previous
work on signal-based sense classification (Knaebel
and Stede, 2020a) with the assumption of better re-
sults learning multiple sense levels at once. (Long
and Webber, 2022) Our ablation study in Table 1
shows, that contrary to our assumption the baseline
and a binary classifier that is limited to predicting
the discourse usage of a free connective phrase have
similar performances. Removing the model’s fine-
sense classification drastically reduces the recall
of identified signals but increases precision. This
holds for the binary case, too. Further investiga-
tions are necessary to identify specific differences
in these classifiers.

B Hyperparameters: Loss Weight and
Negative Sampling

During the adaption phase, we focus on the recog-
nition of alternative lexicalizations rather than
whether predictions are correct or not, as we later
train an additional model that filters wrong pre-
dictions. Therefore, we adjust the majority class
weights (None class) of the cross-entropy loss. In
Table 2a, we report macro averaged results for
weights ranging from 1.0 (normal weight) to 0.001
(inverse occurrence weight). As expected, the re-
sults indicate an increase in average recall with a
decrease in average precision at the same time. We
chose 0.01 for the majority class weight as the next
step’s small increase in recall did not justify the
higher decrease in precision.

We also study the influence of negative samples
on the training progress. The results in Table 2b
indicate no advantage of reducing negative samples
for training data, as already mentioned so in the
paper. However, in contrast, a broader study with
varying test partitions showed an increase in recall

Weight Precision Recall F1

1.0 41.63 (1.81) 32.75 (2.22) 36.63 (1.88)
0.5 33.93 (1.06) 39.49 (2.46) 36.43 (0.53)
0.1 21.41 (3.35) 51.52 (1.54) 30.03 (3.23)

0.01 8.13 (0.40) 61.39 (0.37) 14.35 (0.61)
0.001 3.59 (0.77) 63.34 (1.20) 6.78 (1.38)

(a) Weighting the majority class: None. ’1.0’ refers to nor-
mal training while ’0.001’ is close to the inverse of the class
occurrences. By Reducing the None class weight, errors on
remaining classes are stronger penalized, and thus the model
parameters are optimized for recall.

ratio Precision Recall F1

0.0 39.37 (1.29) 35.68 (1.83) 37.42 (1.44)
0.2 40.96 (2.54) 33.14 (0.24) 36.60 (0.95)
0.4 35.78 (1.15) 33.63 (1.59) 34.63 (0.74)
0.6 33.20 (1.89) 32.55 (1.33) 32.87 (1.61)
0.8 25.65 (1.51) 35.19 (1.50) 29.66 (1.43)
1.0 13.02 (0.40) 32.45 (4.37) 18.48 (0.36)

(b) Down-sampling paragraphs without alternative lexicaliza-
tions as a performance factor, range from no sampling at all to
remove all negative samples.

Table 2: Experiments on hyper-parameter settings for
optimizing recall during the first training phase.

τ 2500 5000 10000 40000

0.4 1973 3883 7751 123595
0.5 1423 2816 5690 90016
0.6 572 1110 2256 37472
0.7 308 605 1205 19805
0.8 148 282 607 10216
0.9 46 91 200 3495

Table 3: Number of training samples extracted from
additional pseudo labeled corpus, per corpus sample
size and per relation paragraph threshold.

while reducing the number of negative samples.

C Numbers of Extracted Paragraphs

Table 3 summarizes the number of training sam-
ples that were extracted from a given corpus sample
(limited by the number of documents) and a corre-
sponding relation paragraph threshold that needs
to be satisfied for positive training samples.

D Full Final Results

Table 4 summarizes our final experiments’ results
in full detail. Partial-Match and Exact-Match refer
to 70% and 90% overlap, respectively. In con-
trast to the evaluation with previous work, for this
evaluation, we split test data only once at the very
beginning and stay with it throughout the evalua-
tion. Results are averaged over different validation
splits, though.
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Model Partial-Match Exact-Match
Precision Recall F1 Precision Recall F1

Base 41.08 (4.95) 51.78 (3.58) 45.48 (2.26) 38.82 (5.10) 48.84 (2.90) 42.95 (2.52)
0.4 36.50 (1.50) 55.50 (1.74) 44.00 (0.90) 34.28 (1.62) 52.09 (1.24) 41.31 (0.98)
0.5 38.72 (3.44) 59.22 (3.01) 46.61 (1.50) 35.76 (3.01) 54.73 (3.05) 43.06 (1.29)
0.6 43.02 (1.49) 54.73 (3.27) 48.07 (0.77) 40.12 (1.84) 51.01 (3.00) 44.82 (1.18)
0.7 40.70 (5.78) 53.02 (4.48) 45.51 (1.86) 38.09 (6.12) 49.46 (3.51) 42.52 (2.36)
0.8 42.20 (2.87) 52.40 (2.23) 46.66 (1.67) 40.09 (2.79) 49.77 (1.79) 44.32 (1.52)
0.9 40.41 (3.33) 53.18 (3.49) 45.73 (1.83) 38.20 (3.51) 50.23 (3.19) 43.22 (2.06)

(a) NYT corpus (2500 documents).

Model Partial-Match Exact-Match
Precision Recall F1 Precision Recall F1

Base 41.08 (4.95) 51.78 (3.58) 45.48 (2.26) 38.82 (5.10) 48.84 (2.90) 42.95 (2.52)
0.4 34.97 (1.85) 58.29 (3.58) 43.59 (0.79) 32.69 (2.23) 54.42 (3.19) 40.72 (1.51)
0.5 38.45 (2.06) 56.74 (3.71) 45.71 (1.11) 36.29 (2.22) 53.49 (2.73) 43.12 (1.00)
0.6 40.51 (1.38) 58.29 (3.08) 47.79 (1.89) 37.49 (1.15) 53.95 (2.76) 44.23 (1.62)
0.7 38.78 (3.43) 54.57 (4.06) 45.08 (1.68) 36.66 (3.66) 51.47 (3.12) 42.57 (1.92)
0.8 39.58 (1.82) 55.50 (1.74) 46.16 (1.09) 36.19 (2.24) 50.70 (1.26) 42.19 (1.59)
0.9 42.54 (3.72) 53.64 (4.29) 47.12 (0.67) 38.77 (3.01) 48.99 (4.64) 42.99 (0.72)

(b) NYT corpus (5000 documents).

Model Partial-Match Exact-Match
Precision Recall F1 Precision Recall F1

Base 41.08 (4.95) 51.78 (3.58) 45.48 (2.26) 38.82 (5.10) 48.84 (2.90) 42.95 (2.52)
0.4 32.27 (1.87) 56.90 (3.42) 41.06 (0.82) 34.47 (2.06) 60.78 (3.56) 43.86 (0.90)
0.5 41.08 (4.95) 51.78 (3.58) 45.48 (2.26) 38.82 (5.10) 48.84 (2.90) 42.95 (2.52)
0.6 41.26 (2.75) 56.43 (2.75) 47.57 (1.99) 39.03 (3.03) 53.33 (2.37) 44.99 (2.24)
0.7 40.75 (1.83) 54.42 (2.57) 46.56 (1.51) 38.79 (1.80) 51.78 (2.05) 44.31 (1.31)
0.8 41.42 (3.25) 52.40 (2.48) 46.10 (1.23) 38.61 (3.10) 48.84 (2.25) 42.97 (1.32)
0.9 40.24 (3.44) 53.18 (2.11) 45.70 (2.21) 37.74 (4.16) 49.77 (2.37) 42.82 (3.11)

(c) NYT corpus (10000 documents).

Model Partial-Match Exact-Match
Precision Recall F1 Precision Recall F1

Base 41.08 (4.95) 51.78 (3.58) 45.48 (2.26) 38.82 (5.10) 48.84 (2.90) 42.95 (2.52)
0.4 38.29 (1.94) 62.02 (4.33) 47.22 (1.42) 35.58 (2.18) 57.52 (2.75) 43.85 (0.98)
0.5 42.51 (1.30) 60.31 (1.42) 49.85 (0.99) 39.35 (1.62) 55.81 (1.77) 46.14 (1.49)
0.6 44.13 (2.17) 58.60 (1.60) 50.33 (1.80) 41.54 (1.53) 55.19 (1.42) 47.38 (1.22)
0.7 43.68 (1.96) 55.81 (0.49) 48.98 (1.17) 41.52 (2.49) 53.02 (1.05) 46.55 (1.87)
0.8 44.60 (3.03) 54.42 (1.14) 48.98 (2.05) 42.32 (3.09) 51.63 (1.67) 46.47 (2.30)
0.9 43.54 (3.95) 55.19 (1.24) 48.55 (2.14) 41.00 (4.01) 51.94 (1.47) 45.70 (2.46)

(d) NYT corpus (40000 documents).

Table 4: Full results, partial and exact matching, of final model with varying paragraph threshold (0.4 to 0.9) trained
on data including NYT corpus. All experiments run on the same test set, with varying training and validation splits,
results are averaged over 5 repetitions.
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Abstract

Discourse-aware techniques, including entity-
aware approaches, play a crucial role in sum-
marization. In this paper, we propose an
entity-based SpanCopy mechanism to tackle
the entity-level factual inconsistency problem
in abstractive summarization, i.e. reducing
the mismatched entities between the generated
summaries and the source documents. Com-
plemented by a Global Relevance component
to identify summary-worthy entities, our ap-
proach demonstrates improved factual consis-
tency while preserving saliency on four summa-
rization datasets, contributing to the effective
application of discourse-aware methods sum-
marization tasks. 1

1 Introduction

Discourse-aware models play a crucial role in nat-
ural language processing applications, including
machine translation (Guzmán et al., 2014) and text
summarization (Xu et al., 2020). Among these ap-
plications, abstractive text summarization, the task
of generating informative and fluent summaries of
the given document(s), has attracted much atten-
tion in the NLP community. While early neural
approaches focused more on designing customized
architectures or training schema (Nallapati et al.,
2016; Tan et al., 2017; Liu* et al., 2018), recent
works have shown that both pre-trained generation
models fine-tuned on in-domain datasets and zero-
shot GPT-like decoder-only models generally have
better performance (Lewis et al., 2020; Zhang et al.,
2020; Raffel et al., 2020; Goyal et al., 2022).

However, even with state-of-the-art performance
on standard automatic evaluation metrics such
as ROUGE (Lin, 2004) and BERTScore (Zhang*
et al., 2020), the generated summaries still suffer
from the problem of factual inconsistency, which

1The code is available at https://github.com/
Wendy-Xiao/Entity-based-SpanCopy

Entities in Source Doc: Royal Marine, Falk-
lands, Portsmouth, Falklands War Memorial....

Ground Truth: Plans to move a statue depicting
a Royal Marine in the Falklands conflict away
from Portsmouth seafront have been criticised.

PEGASUS: A campaign has been launched to
keep a statue of a Falklands War marine in Hamp-
shire.

SpanCopy: A campaign to keep a statue of a
Royal Marine marching across the Falklands in
Portsmouth has been launched.

SpanCopy + GR: A statue of a Royal Marine
marching across the Falklands during the Falk-
lands War Memorial should remain in its current
location, campaigners have said.

Table 1: An example of entity-level factual inconsis-
tency from the XSum dataset. The summary generated
by PEGASUS totally missed one entity (Royal Marine)
and one entity indicates a larger area than the correct
one (Hampshire).

means the generated summaries may not be factu-
ally consistent with the content expressed in the
source documents (Kryscinski et al., 2020; Bubeck
et al., 2023). Inconsistencies may exist either at
the entity, where summaries mention entities ab-
sent from source documents, or at the relation level,
where summaries express relations between entities
that differ from the source (Nan et al., 2021).

In this paper, we focus on the entity-level incon-
sistency problem, i.e. to make the model generate
summaries with less entities which do not appear in
the source document(s) i.e., ‘hallucinated’ entities.
Note however, that hallucinated entities are not nec-
essarily ‘unfaithful’ or ‘wrong’ (Cao et al., 2021),
so the goal is to reduce them without excluding
entities that do appear in the reference summary
i.e., without penalizing saliency. Table 1 shows an
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example of entity-level factual inconsistency from
the XSum dataset. Although the content of the
summary generated by the SOTA summarizer PE-
GASUS (Zhang et al., 2020) is roughly similar that
of the ground-truth summary, it does not accurately
summarize the original documents with the proper
entities. Specifically, the entity ‘Hampshire’ is ‘hal-
lucinated’, as it does not appear in the source doc-
ument. Despite the fact that the city ‘Portsmouth’
is located in ‘Hampshire’ county, the entity itself
is still an instance of factual inconsistency (i.e., an
unnecessary generalization).

Prior work (Dong et al., 2020; King et al., 2022)
mainly address the entity-level inconsistency prob-
lem in the post-processing stage. However, those
methods either requires additional sophisticated
models, e.g. Dong et al. (2020) uses a pre-trained
QA model to ‘revise’ the generated summaries,
or being built on arguably brittle heuristics (King
et al., 2022). Recent work (Nan et al., 2021) pro-
poses two ways to directly improve the end-to-end
summarization model, either by training with an
auxiliary task, which is to recognize the summary-
worthy entities in the source document using the
hidden states from the encoder, or jointly gener-
ating the entities and the summaries, i.e. gener-
ating a chain of entities in the summary followed
by the summary. The latter one is in-line with
recently proposed entity-aware guided summariza-
tion methods (He et al., 2020; Narayan et al., 2021).
Yet, both methods do not explicitly encourage the
model to generate the summaries with more valu-
able entities, as both of them aim to guide the
model to detect the summary-worthy entities with-
out any changes in the summary generation process.
Instead, aiming for a lean and modular solution,
we propose the discourse-aware SpanCopy Mecha-
nism to explicitly copy the matched entities2 from
the source documents when generating the sum-
maries. One key advantage of our proposal is that
it can be easily integrated into any pre-trained gen-
erative sequence-to-sequence model.

Since often only a few of the entities in the
source documents can be included in the summary,
which we call ‘summary-worthy entities’, we also
explore an additional Global Relevance component
to better recognize the summary-worthy entities by
automatically generating a prior distribution over
all the entities in the source documents.

2We particularly focus on the Named Entities in this paper,
but our method can be easily applied to any kind of spans or
entities.

We test our proposal on four summarization
datasets in the news and scientific paper domain,
comparing it with the established SOTA PEGASUS
system (Zhang et al., 2020). In a first set of exper-
iments, as a sanity check, we assess our models
on arguably easier subsets of these datasets, where
all the entities in the reference summaries belong
to the source document. In these cases, SpanCopy
should definitely dominate PEGASUS, which is
confirmed by the results. In a second set of exper-
iments, we fine-tune and test on the full datasets.
On this realistic and more challenging task, we
find that SpanCopy (without Global Relevance)
can strongly improve the entity-level factual con-
sistency (+2.28) on average across datasets, with
essentially no change in saliency (−0.06).

2 Related Work

2.1 Abstractive Summarization

Early neural abstractive summarization mod-
els (Nallapati et al., 2016; Paulus et al., 2018;
See et al., 2017) are mainly sequence-to-sequence
models based on different variants of RNN, e.g.
LSTM or GRU, with additional components tar-
geting different properties of the summaries, like
redundancy (Tan et al., 2017) and coverage (See
et al., 2017). However, all the recurrent models suf-
fer from serious weakness like long-term memory
loss, and requiring excessive time to train.

To tackle these problems, researchers in the
area of abstractive summarization started to use
attention-based transformer models (Liu and La-
pata, 2019a,b); recently reaching SOTA perfor-
mance when pre-trained generative transform-
ers are applied to the task, e.g. BART (Lewis
et al., 2020), PEGASUS (Zhang et al., 2020) and
PRIMERA (Xiao et al., 2022). The SpanCopy
mechanism we propose in this paper can be advan-
tageously injected into any pre-trained models.

2.2 Factual Consistency

Despite the large improvements with respect to
automatic evaluation metrics, recent studies (Cao
et al., 2018; Kryscinski et al., 2020) show that
around 30% of the summaries generated by the
SOTA summarization models contain factual incon-
sistencies. Ideally, the assessment of factual consis-
tency should rely on human annotations (Maynez
et al., 2020), but these are costly, time consum-
ing and lack a unified standard. Thus promising
automatic evaluation metrics for factual consisten-
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Figure 1: Structure of the model with Entity-based SpanCopy Mechanism, with five components: Encoder, Decoder,
Span Copier, Copy Gate and Generator. The upper left bar plot shows the Global Relevance component, predicting
the prior probability of all the entities {e1, e2, e3, e4} to be copied to the summary.

cies of generated summaries have been explored in
recent years. To assess relation-level factual consis-
tency two kinds of metrics have been proposed: one
based on classification (Kryscinski et al., 2020),
and one based on Question-Answering (Maynez
et al., 2020; Durmus et al., 2020). For entity-level
factual consistency, the focus of this paper, Nan
et al. (2021) propose a simple but effective evalua-
tion metric, based on the matched named entities
in both generated and ground-truth summaries. In
our work, we use such metric to evaluate whether
the generated summaries are consistent with both
the source documents and the reference summaries
at the entity-level.

2.3 Entity-aware Summarization
The use of entities as part of discourse-aware ap-
proaches has been shown to improve both saliency
and factual consistency for the summarization task.
Xiao et al. (2022) identify salient entities within
document clusters and utilize them to select pseudo
summaries during the pre-training phase, leading to
superior performance on multiple datasets. Entities
have also been employed in guided summariza-
tion, where researchers extract oracle entities from
ground-truth summaries and use them to guide sum-
mary generation. For instance, Dou et al. (2021)
introduce an additional encoder to encode guid-
ance signals, sharing partial parameters with the
original document encoder. In related research, He
et al. (2020) propose a pre-training strategy that
prepends source documents with oracle keywords

as prefixes, and Narayan et al. (2021) train models
to first predict an entity chain before generating the
final summary. Diverging from prefix-based strate-
gies, our approach enables the model to learn ex-
plicit copying of entities to specific positions in the
generated summary, further advancing discourse-
aware summarization techniques.

2.4 Copy Mechanism
See et al. (2017) first apply pointer-generator net-
work in an abstractive summarization model, which
facilitates copying words from the source docu-
ments by pointing, i.e., generating a distribution of
probabilities to copy each word from the source.
Following their work, Bi et al. (2020) propose
PALM, in which the copy mechanism is applied
on top of the transformer model, and with a novel
pre-training schema, the model achieves SOTA on
several generative tasks, such as abstractive sum-
marization and generative QA. More recently, Li
et al. (2021) further explores how to make use of
the copy history to predict the copy distribution for
the current step. However, all the aforementioned
works focus on copying at the word level, which
tends to be sparse and noisy. Instead, we aim to
train the model to copy spans of text i.e., the named
entities, in this paper.

Admittedly, some previous work has also inves-
tigated span-based copy mechanisms. Yet, those
models either predict the start and end indices of a
span (Zhou et al., 2018), or predict the BIO labels
for each token (Liu et al., 2021). Even if such
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strategies can copy any kinds of spans (clauses,
n-grams, entities, phrases or longest common se-
quence) from the source document, they may intro-
duce unnecessary noise and break the coherence
of the generated text. In this work, we focus on
copying the spans of the Named Entities, extracted
by a high-quality NER tool, aiming to improve fac-
tual consistency of the generated summary without
negatively affecting saliency.

3 Our SpanCopy Method

3.1 Transformer-based Summarizers

Typically, transformer-based summarization(Lewis
et al., 2020; Zhang et al., 2020) consists of two
steps (i) The Encoding Step (by the Encoder
shown in yellow in Fig.1), which encodes the
source input(s) into an hidden space; (ii) the De-
coding Step, which computes a probability distri-
butions on the output vocabulary to generate each
token of the resulting summary. In this paper, to
better describe our methods in the context of a
generic summarization models, we split the De-
coding process into two components, the Decoder
itself (shown in green in Fig.1), which outputs the
representations of predicted tokens, and the Gen-
erator (shown in purple in Fig.1), an MLP layer
mapping the representations to the final probability
distribution on the output vocabulary.

More formally, for a document with n tokens
D = {td1, td2, ..., tdn}, and the corresponding sum-
mary with m tokens, S = {ts1, ts2, ..., tsm}, the
output of the Encoder is a sequence of hidden
states of all the tokens, i.e. {he1, he2, ..., hen}. And
then the Decoder predicts a sequence of vector,
{hd1, hd2, ..., hdm}, representing the tokens to be pre-
dicted. Finally, the Generator maps those vec-
tors to the distributions over the vocabulary, i.e.
{p1,p2, ...,pm}, where pi ∈ R|V |.

There has been recent research on models with a
decoder-only structure for summarization (Goyal
et al., 2022), where the decoder is responsible
for both the encoding and decoding steps. In
this approach, the tokens in the source documents
are represented using the output of the decoder,
rather than relying on the encoder. Our proposed
method specifically applies to the decoder, making
it compatible with both encoder-decoder models
and decoder-only models. However, in this paper,
we primarily focus on exploring the application
of our method to encoder-decoder models, while
leaving the investigation of decoder-only models

for future research.

3.2 SpanCopy Mechanism

A key problem with generic sequence-to-sequence
transformer-based summarizers is that the decod-
ing step is prone to generate factual inconsistencies,
i.e. the model may make up entities or relations
that are not entailed by the source documents. To
address entity-level factual inconsistency, we intro-
duce in the Decoding Step the SpanCopy mecha-
nism, which can be conveniently plugged into any
pre-trained models. Specifically, we first identify
and match the entities in both source document and
summary, and then instead of generating the entire
summary word by word, we add an additional Span
Copier to directly copy entities from the source doc-
ument, with a Copy Gate predicting the likelihood
of whether the model should generate the current
token from the vocabulary or directly copy an entity
from the source document.

Span Copier (shown in blue in Fig.1) is an at-
tention module over all the entities in the input
document. Suppose there are |E| entities in the
input document, with each entity j being a span
over tokens [djs , dje ], then the entities can be sim-
ply represented as ej = avg([hejs : h

e
je
]), where hei

represents the output of the encoder for each token
di. At each decoding step i, we compute the logit
vector of copying each entity at the current step as:

oci = Q(hdi ) ·K(ej),o
c
i ∈ R|E| (1)

indicating how likely it is to copy the entities from
the source document at each step. Notice that to
better balance the numeric difference caused by the
size of selection space (|V | and |E|), we generate
and combine the raw logit vectors3 from the Span
Copier and Generator, and take softmax over the
combined space to get the final probability.

Copy Gate (shown in red in Fig.1) is a classifier
to map the hidden states to a singular value, i.e.

pcopyi = σ(MLP (hdi )), p
copy
i ∈ [0, 1] (2)

which indicates the probability of copying an entity
at each step. On the contrary, 1− pcopyi represent
the probability of generating a token from the vo-
cabulary at step i.

3The vector of raw (non-normalized) predictions that the
classification model generates
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Then the final probability, combining both gener-
ation over the vocabulary and the copy mechanism
over the entity space, is computed as

pfinal
i = softmax([(1− pcopyi ) · ogi , p

copy
i · oci ]) (3)

with pfinal
i ∈ R(|V |+|E|), where ogi ∈ R(|V |) is the

logit vector of token generation and oci ∈ R(|E|)

is the logit vector of entity copying. As a result,
the first |V | dimensions of the final probability rep-
resent the probability of generating all the tokens
from the vocabulary, while the following |E| di-
mensions contain the probabilities of copying the
entities from the source document.

Note that the input of the original Decoder in the
transformer model at each step is the embedding
of the previous token (which is the ground-truth
one during training, and the predicted one for in-
ference), but a span of text longer than 1 does not
naturally have an embedding to match. We simply
use the average of the embedding of all the tokens
in the entity, following previous work using aver-
age embedding to represent a span of text (Xiao
and Carenini, 2019).

3.3 Loss
We use the standard loss for abstractive summa-
rization, i.e. the cross entropy loss between the
predicted probability and the ground truth labels,

L1 =
∑

i

Ls(p
final
i , ti) (4)

However, notice that, since the predicted probabil-
ity distribution is over the combined space of vo-
cabulary size and entity size (pfinal

i ∈ R|V |+|E|),
the corresponding ground truth labels can be either
indices of words to be generated from the vocabu-
lary, or the indices of entities to be copied from the
source document, i.e. ti ∈ [0, |V | + |E|]. Specif-
ically, if ti < |V |, then the ti-th token should be
generated, and if ti > |V |, the (ti − |V |)-th entity
should be copied from the source document.

3.4 SpanCopy with Global Relevance
Among all the entities in the source documents,
there are only a few summary-worthy entities that
should be copied into the summary (e.g. around
10% in CNNDM and 1.5% in arXiv). To make
the model better recognize such summary-worthy
entities, we explore a Global Relevance (GR) com-
ponent, which takes all the entities in the source
document as inputs, and predicts how likely each

entity is to appear in the final summary. We use
the generated ‘entity likelihood’ as a prior distribu-
tion for the Span Copier component, with GR also
trained as an auxiliary task.

Global Relevance is a classifier mapping the hid-
den state of a source document entity into a value
within [0, 1], indicating the probability that such
entity should be included in the summary.

gr = σ(MLP (e)),gr ∈ R|E| (5)

Then pfinali in Eq.3 is updated with gr as

pfinal
i = softmax([(1− pcopyi ) · ogi

, pcopyi · oci · gr])
(6)

New Loss As an auxiliary task, we also train the
model with the ground-truth GR labels to make it
more accurate. Specifically, the label ygri = 1 if
the i-th entity in the input document is included in
the ground truth summary. Then we update the loss
function with Lgr balanced by β:

L2 =(1− β)
∑

i

Ls(p
final
i , ti)

+ β
∑

j

Lgr(grj , y
gr
j )

(7)

4 Experiments and Analysis

4.1 Settings
SpanCopy can be plugged into any pre-trained
generation model. In this paper, we use PEGA-
SUS(Zhang et al., 2020) as our base model, since it
has delivered top performance on multiple summa-
rization datasets. We recognize named entities with
an off-the-shelf NER tool4. The balance factor β
of GR is set by grid search on small subsets of each
dataset (2k for training and 200 for validation).

4.2 Evaluation Metrics
To evaluate the saliency and entity-level factual
consistency of the generated summaries, we apply
the following metrics:

Saliency metrics assess the similarity of the gen-
erated summary with the reference summary.

ROUGE scores (Lin, 2004) measure the n-gram
overlaps between generated and ground truth sum-
maries. We apply the metrics R-1, R-2 and R-L.

Summary-precision, -recall and -f1 (sump,
sumr and sumf ) (Nan et al., 2021) measure the

4https://spacy.io/
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Dataset
Original Filtered

Ldoc Lsumm Ndoc Nsumm srcp(gt) Ldoc Lsumm Ndoc Nsumm srcp(gt)

CNNDM 690.9 52.0 42.8 5.9 80.41 671.9 47.1 39.4 4.4 100
XSum 373.8 21.1 27.9 2.7 39.85 483.4 20.6 31.6 1.9 100
Pubmed 3049.0 202.4 71.1 6.4 70.93 3165.4 178.5 69.9 3.4 100
arXiv 6033.3 271.5 157.5 6.0 39.12 6478.9 164.1 161.9 2.3 100

Table 2: Statistics of all the datasets (original/filtered), on the lengths (Ldoc,Lsumm) and number of entities (Ndoc,
Nsumm) in the source documents and ground truth summaries, as well as srcp(gt), the entity level source-precision
of the ground-truth summary.

precision/recall/f1 score of the matched entities in
the generated summaries and the reference sum-
maries. we use NE(Sref ) and NE(Sgen) to repre-
sent the named entities in the reference summaries
and generated summaries, respectively.

sump = |NE(Sref ) ∩NE(Sgen)|/|NE(Sgen)|
sumr = |NE(Sref ) ∩NE(Sgen)|/|NE(Sref )|
sumf = 2 ∗ (sump + sumr)/sump ∗ sumr

These three metrics measure the entity-level
saliency of the generated summaries, i.e. recog-
nizing how many copied (and generated) entities
are salient, and should be included in the summary.

Entity-level factual consistency metric: mea-
sures the named entity matching between the gen-
erated summaries and the source documents. (Nan
et al., 2021) With NE(D) and NE(Sgen) rep-
resenting the named entities in the source doc-
ument and generated summaries, respectively,
Source-precision(srcp) measures how many en-
tities in the generated summaries are from the
source documents, i.e. srcp = |NE(D) ∩
NE(Sgen)|/|NE(Sgen)|. It is an evaluation met-
ric for entity-level factual consistency, as it directly
measures how consistent the generated summaries
are with the source.

4.3 Datasets

We test and compare our SpanCopy model with
the original PEGASUS on four datasets, in the do-
mains of news (CNNDM(Nallapati et al., 2016),
XSum(Narayan et al., 2018)) and scientific papers
(Pubmed and arXiv(Cohan et al., 2018)). As a san-
ity check, we initially assess our models on subsets
of these datasets, where all the entities in the ref-
erence summaries belong to the source document
(we call these filtered datasets). In these cases
(srcp(gt) = 1), Span Copy and GR should dom-
inate PEGASUS, because by design they tend to

generate entities from the source document. 5

The statistics of the filtered and original datasets,
on the lengths and number of entities in the doc-
ument and summaries, can be found in Table 2.
srcp(gt) measures the entity-level factual consis-
tency between the source document and the ground-
truth summary, with lower value meaning that there
are more novel entities in the ground-truth sum-
maries. The table shows that the datasets in the
news domain have higher density of the entities
with respect to the lengths (number of words) of
both documents and ground-truth summaries, i.e.
Ndoc/Ldoc and Nsumm/Lsumm are larger for the
news articles. a possible explanation is that news
articles tend to describe an event or a story, which
may contain more names of people, organizations,
locations, etc., as well as dates. Interestingly, CN-
NDM and Pubmed contain less novel than the other
two datasets (with higher srcp(gt)), something that
the proposed SpanCopy mechanism may benefit
from. Comparing the filtered datasets with the orig-
inal ones, we can see that the number of entities in
the summaries drops for all the datasets, especially
for arXiv, as the more entities in the summary, the
less likely they can be all matched to the source
documents.

4.4 Results and Analysis

The results on the filtered and original datasets are
shown in Table 3 and Table 4.

Filtered Datasets We first evaluate our models,
with the backbone model, PEGASUS on the fil-
tered datasets, which is an easier task, and the re-
sults can be found in Table 3. All the models are
fine-tuned and tested on the filtered datasets. Since
we only keep the examples with all the entities in
the summaries being matched with the entities in
the source documents, the theoretical ceiling of

5Statistics of the (filtered/original) datasets can be found
in Appendix.B
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Model ROUGE Entity(Summ) Entity(Doc)
R-1 R-2 R-L sumr sump sumf srcp

CNNDM Filtered

PEGASUS 44.70 22.23 32.52 50.80 45.32 45.03 92.85
SpanCopy 45.46 23.12 33.48 53.08 48.63 47.86 94.64
SpanCopy+GR 45.74 23.44 33.67 54.61 48.27 48.36 95.02

XSum Filtered

PEGASUS 43.01 19.00 34.01 59.14 54.94 54.68 77.32
SpanCopy 44.23 19.90 35.50 61.34 59.15 58.16 84.30
SpanCopy+GR 43.78 19.12 34.97 60.69 60.50 58.36 83.75

Pubmed Filtered

PEGASUS 46.99 21.46 42.57 42.63 33.28 33.16 73.59
SpanCopy 47.82 22.34 43.43 41.58 34.12 33.44 73.74
SpanCopy+GR 48.04 22.18 43.56 42.11 36.21 34.86 74.15

arXiv Filtered

PEGASUS 46.23 18.02 41.02 37.65 35.98 33.48 68.13
SpanCopy 46.36 18.29 41.23 39.50 37.61 34.95 72.12
SpanCopy+GR 46.56 18.27 41.34 35.38 36.11 32.76 67.56

Table 3: Result of our models and the compared backbone model (PEGASUS) on the filtered datasets. ROUGE
score and Entity(Summ) are mainly used to measure the word-level saliency and entity-level saliency, respectively.
Entity(Doc) is used to measure the entity-level factual consistency. Red represents the lowest among all the three
models, while Green represents the highest.

Model ROUGE Entity(Summ) Entity(Doc)
R-1 R-2 R-L sumr sump sumf srcp

CNNDM

PEGASUS 44.62 20.82 31.05 46.87 42.25 42.29 89.92
SpanCopy 44.19 20.86 31.19 43.15 43.87 41.25 91.89
SpanCopy+GR 44.16 20.61 30.97 42.72 43.34 40.79 91.31

XSum

PEGASUS 46.65 23.47 38.67 41.09 44.43 40.96 41.23
SpanCopy 46.23 22.76 37.96 39.90 42.97 39.70 41.89
SpanCopy+GR 46.02 22.36 37.58 40.12 42.66 39.67 42.79

Pubmed

PEGASUS 46.11 19.43 41.22 22.12 24.81 20.61 67.03
SpanCopy 46.21 19.86 41.51 23.47 25.10 21.29 68.91
SpanCopy+GR 46.27 19.82 41.59 23.34 25.29 21.39 66.91

arXiv

PEGASUS 44.23 16.55 39.15 20.98 25.42 20.56 52.70
SpanCopy 44.05 16.76 38.91 20.65 25.46 20.39 56.88
SpanCopy+GR 44.00 16.87 38.92 20.01 25.75 20.15 54.21

Table 4: Result of our models and the compared backbone model (PEGASUS) on the unfiltered datasets. See
Table 3 for the details of the columns.

srcp is 100. Comparing SpanCopy and PEGA-
SUS, SpanCopy performs better than PEGASUS
regarding both saliency and entity-level factual con-
sistency. Plausibly, this is because all the entities
in the ground-truth summary can be copied from
the source document, in which case the SpanCopy
mechanism can better learn to copy. The SpanCopy
model with the GR component performs better re-

garding the entity-level saliency on three out of
all the four datasets. On arXiv, the performance
of SpanCopy with the GR component regarding
both entity-level saliency and factual consistency
is quite low. One likely reason might be that it is
a rather difficult task to identify the salient enti-
ties in the arxiv dataset, as there is a large amount
of entities in the source documents, but only very
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Model Ravg sumf srcp

CNNDM

SpanCopy -0.08 -1.04 +1.97
SpanCopy+GR -0.25 -1.50 +1.39

XSum

SpanCopy -0.61 -1.26 +0.66
SpanCopy+GR -0.94 -1.29 +2.16

Pubmed

SpanCopy +0.27 +0.68 +1.88
SpanCopy+GR +0.31 +0.78 -0.12

arXiv

SpanCopy +0.20 +1.47 +3.99
SpanCopy+GR +0.30 -0.72 -0.57

Overall (avg. across all datasets)

SpanCopy -0.06 -0.04 +2.13
SpanCopy+GR -0.15 -0.68 +0.72

Table 5: The relative ROUGE score (avg of R-1, R-2 and
R-L), the entity-level summary-f1 and source-precision
of our models, compared with the PEGASUS model on
the four datasets (original). The last block shows the
overall performance for all the datasets.

few entities are summary-worthy (164.1 v.s. 2.3 as
shown in Table 2), which might bring in excessive
noise.

Original Datasets In a second set of experiments,
we fine-tune and test on the full/original datasets.
On this realistic and more challenging task results
are encouraging. As shown in Table 4, when the
SpanCopy model is compared to PEGASUS, it
improves the factual consistency of generated sum-
maries with the source documents (srcp) on all the
datasets, maintaining a very similar performance on
the saliency metrics, i.e. ROUGE and entity-level
saliency. Comparing across the four datasets, Span-
Copy outperforms PEGASUS on both the saliency
and factual consistency metrics on the Pubmed
dataset. For better comparison, we show the rel-
ative gains/loss regarding PEGASUS on all the
datasets, as well as the overall average results in
Table 5. It is clear that the SpanCopy model per-
forms much better regarding entity-level factual
consistency (+2.13) with essentially no change in
saliency (−0.06 on average ROUGE and −0.04 on
entity-level saliency). Admittedly, despite the suc-
cess of the GR component on the filtered datasets
on both word-level and entity-level saliency, it fails
to deliver any gain on the original datasets. A plau-
sible explanation is that GR makes the model focus
excessively on the entities in the source document,

therefore penalizing generation of new, potentially
summary-worthy, entities.

Comparing the entity-level factual consistency
on the filtered datasets and the original datasets, the
filtered datasets always have higher srcp than the
original ones, and the gain is especially larger on
the XSum and arXiv datasets, as both of them con-
tain more entity-level hallucinations in the original
datasets. Remarkably, the performance gain of the
SpanCopy model over PEGASUS on the filtered
XSum dataset is much larger on the original XSum
datasets (7.98 v.s. 0.66) , which might be because
original XSum is more abstractive, the entity-level
guidance is especially helpful for the abstractive
examples with consistent entities in the summary.

4.5 Qualitative Analysis

For illustration, we examine a real example from
the CNNDM dataset in Table 6, which is a news
article on the evacuation of Americans during the
time of the crossfire of warring parties in Yemen.
While all of the three system generated summaries
are able to capture the main statement that ‘it’s too
dangerous to evacuate the Americans’, the person
‘Ivan Watson’ mentioned by PEGASUS’s summary
does not exist in the source document, i.e., it is
an ‘hallucinated’ entity. Most likely, PEGASUS is
generating such hallucination because ‘Ivan Wat-
son’ is a senior CNN correspondent several time
associated with Yemen in other news article in the
training set, and the model automatically ‘picked
the entity from the memory’ to generate the sum-
mary without tightly adhering to the given docu-
ment. In contrast, both of our models do not con-
tain entities that are not in the source document, as
the SpanCopy mechanism tend to guide the model
to use more the entities in the source document.
In addition, with the GR component, although the
generated summary contains more matched entities
with the source document, it pushes the model too
far towards copying entities which are not salient
(e.g. The State Department).

5 Conclusion and Future Work

In this paper, we tackle the problem of entity-level
factual consistency for abstractive summarization
through a discourse-aware approach, by guiding
the model to directly copy the summary-worthy en-
tities from the source document, through the novel
SpanCopy mechanism (with the optional GR com-
ponent). This mechanism can be integrated into
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Entities in the Source Document: Yemen(0.28), Americans(0.25), Saudi Arabia(0.23), the State Department(0.23),
CNN(0.20),..., U.S.(0.15), ...

Ground-truth Summary: No official way out for Americans stranded amid fighting in Yemen. U.S. Deputy Chief of
Mission says situation is very dangerous so no mass evacuation is planned .

PEGASUS: CNN’s Ivan Watson joins a mother and her grandchildren waiting to be evacuated from Yemen. The State
Department has said it is too risky to evacuate Americans from the area. Watson meets Americans who were on a CNN
ship that docked at a Yemeni port.

SpanCopy: Dozens of Americans are trapped in Yemen. The U.S. has said it is too dangerous to evacuate Americans.

SpanCopy+GR: The U.S. has said it is too dangerous to evacuate Americans from Yemen. The State Department said it is
too risky to conduct an evacuation of citizens. A group of U.S. organizations have filed a lawsuit against the government’s
stance on evacuations.

Table 6: Example of the entity-level factual inconsistency, taken from the CNNDM dataset. The first block shows
the entities in the source document with high GR scores (shown in parenthesis) from the SpanCopy + GR model.

any transformer-based generative frameworks, con-
tributing to the advancement of discourse-aware
neural summarization.

To validate the effectiveness of our approach, we
conducted experiments on four diverse summariza-
tion datasets, including a sanity check on arguably
easier subsets. The results confirmed that Span-
Copy with GR performs better on both entity-level
factual consistency and saliency. Notably, exper-
iments on the original test sets demonstrated that
the SpanCopy mechanism can effectively improve
entity-level factual consistency while maintaining
word-level and token-level saliency.

Despite the recent success of GPT-like decoder-
only systems on the summarization task (Goyal
et al., 2022), they still appear to suffer from hal-
lucinations and inconsistencies in the generated
text (Bubeck et al., 2023). As mentioned in Sec-
tion 3, our method can be easily extended to the
decoder-only models, we intend to investigate how
the mechanism works with the models for address-
ing these limitations.

More long term, we plan to extend our discourse-
aware approach towards controllable generation
with given entities. Specifically, instead of using
the learned GR scores, the model could generate
summaries with desired entities provided by human
users.

Limitation

In our method, we employ an existing NER tool
(Spacy) to label the entities in both the source doc-
uments and the summaries, and the performance
of the NER tool may have an influence on the re-
sults of the model. Thus a good in-domain NER
tool may be required when the work is extended to
some specific domains, e.g. medical text.

In addition, we use PEGASUS(Zhang et al.,
2020) as our base model in all the experiments
on different datasets, as it has delivered top per-
formance on multiple summarization datasets. We
follow the original paper on the length limits of all
the datasets, however, the length of the source doc-
uments in both scientific paper datasets are much
longer than the length limit (3k/6k v.s. 1024),
which leaves the room for further improvement
with sparse attention techniques applied (Xiao et al.,
2022; Guo et al., 2022).

Ethics Consideration

Although we tackle the problem of factual inconsis-
tency for abstractive summarization, and improve
the entity-level factual consistency of the generated
summaries by applying the entity-level span copy
mechanism, the generated summaries still contain
unfactual information. Therefore, caution must be
exercised when the model is deployed in practical
settings.
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A Model and Training Details

We use PEGASUS as our backbone model, which
contains 571M parameters, and the span copy
mechanism has 2M additional parameters. We train
the fine-tuned models from the huggingface model
hub6 for 100k steps (16 data per step) with early
stopping based on the ROUGE scores on the vali-
dation set, which takes around 24 hours with single
V100 GPU.

B Datasets

We compare the size of filtered and original datsets
in Table 7.

Dataset # Data (original) # Data (filtered)

CNNDM 287,113/13,368/13,368 105,847/4,490/3,903
XSum 204,017/11,327/11,333 42,481/2,349/2,412

Pubmed 119,924/6,633/6,658 32,123/1,797/1,772
arXiv 202,914/6,436/6,440 66,360/2,365/2,324

Table 7: Number of data examples in all the datasets
(original v.s. filtered).

C Software and Licenses

Our code is licensed under Apache License 2.0.
Our framework dependencies are:

• HuggingFace Datasets7, Apache 2.0

• NLTK 8, Apache 2.0

• Numpy9, BSD 3-Clause "New" or "Revised"

• Spacy10, MIT

• Transformers11, Apache 2.0

• Pytorch12, Misc

• Pytorch Lightning 13,Apache 2.0

• ROUGE 14, Apache 2.0
6https://huggingface.co/models
7https://github.com/huggingface/

datasets/blob/master/LICENSE
8https://github.com/nltk/nltk
9https://github.com/numpy/numpy/blob/

main/LICENSE.txt
10https://github.com/explosion/spaCy/

blob/master/LICENSE
11https://github.com/huggingface/

transformers/blob/master/LICENSE
12https://github.com/pytorch/pytorch/

blob/master/LICENSE
13https://github.com/PyTorchLightning/

pytorch-lightning/blob/master/LICENSE
14https://github.com/google-research/

google-research/tree/master/rouge
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Abstract

In this study, we examine the benefits of incor-
porating discourse information into document-
level temporal dependency parsing. Specifi-
cally, we evaluate the effectiveness of integrat-
ing both high-level discourse profiling informa-
tion, which describes the discourse function
of sentences, and surface-level sentence po-
sition information into temporal dependency
graph (TDG) parsing. Unexpectedly, our re-
sults suggest that simple sentence position in-
formation, particularly when encoded using
our novel sentence-position embedding method,
performs the best, perhaps because it does
not rely on noisy model-generated feature in-
puts. Our proposed system surpasses the cur-
rent state-of-the-art TDG parsing systems in
performance.

Furthermore, we aim to broaden the discussion
on the relationship between temporal depen-
dency parsing and discourse analysis, given the
substantial similarities shared between the two
tasks. We argue that discourse analysis results
should not be merely regarded as an additional
input feature for temporal dependency parsing.
Instead, adopting advanced discourse analysis
techniques and research insights can lead to
more effective and comprehensive approaches
to temporal information extraction tasks.

1 Introduction

Temporal Information Extraction (TIE) is the task
of modelling the relative and/or absolute temporal
relations between all the temporal nodes in an ar-
ticle. A temporal node can be either an event or
a time expression (timex). TIE is a core compo-
nent task of text comprehension. Despite its impor-
tance, TIE remains one of the lowest performing
natural language understanding tasks. It is a diffi-
cult task, and the challenge is further compounded
when expanding it to the document level, as the
number of temporal relations scales quadratically
with the number of temporal nodes, and the requi-

site amount of reasoning must incorporate longer
spans of text.

To address these challenges, Kolomiyets et al.
(2012); Zhang and Xue (2018b); Yao et al. (2020)
proposed the use of temporal dependency struc-
tures to represent the overall temporal relational
structure within an article. This approach is based
on the phenomenon of temporal anaphora, where
the interpretation of the occurring time of one tem-
poral node depends on knowing the occurring time
of another temporal node. By modelling these tem-
poral dependency relations, the overall temporal
structure of an article can be obtained without the
need for exhaustively labelling every pair of tem-
poral nodes.

As a result, temporal dependency parsing not
only models the temporal relations between events
but also captures narrative and discourse structure.
There are striking similarities between temporal
dependency structures and the constituency dis-
course tree structures (Guz and Carenini, 2020)
used for discourse parsing in the context of Rhetor-
ical Structure Theory (RST; Mann and Thompson,
1988), and not just in their use of trees or graphs.
More importantly, temporal dependency relations
can be viewed as a specific type of anaphoric re-
lation that discourse analysis models attempt to
capture. This observation suggests a potential con-
nection between dependency parsing and discourse
analysis, warranting further investigation into their
relationship and potential synergies.

This connection between document-level tem-
poral structure and discourse structure was corrob-
orated by Choubey and Huang (2022), who dis-
covered that incorporating discourse profiling (DP)
information, specifically the functional role of each
sentence, could enhance the overall performance
of temporal dependency graph parsing (TDG; Yao
et al., 2020). Their evaluation may not have been
sufficiently comprehensive, however. TDG parsing
encompasses three distinct types of relation parsing:
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timex to timex (t2t), event to timex (e2t), and event
to event (e2e), each requiring a different prediction
mechanism. Upon a more detailed reexamination
of Choubey and Huang’s (2022) findings, DP in-
formation in fact does not consistently improve
performance across all three relation types; it re-
liably enhances e2e, but may lead to a decline in
performance for the other two.

We believe this is caused by two major limita-
tions of Choubey and Huang’s (2022) approach.
First, DP is a hard problem in its own right. The
state-of-the-art DP system (Choubey and Huang,
2021) only yields a 59.21% F1 performance.
This means TIE systems following Choubey and
Huang’s (2022) guidance will only have access to
noisy and inaccurate DP features. Second, sentence
function is a relatively high-level, descriptive type
of discourse structure. Temporal dependency struc-
ture, on the other hand, can also benefit from a lot
of simple surface-level discourse information, such
as precedence (Zhang and Xue, 2018a).

To address these issues, we have experimented
with incorporating surface-level sentence-position
information into a TIE system, and in two ways:
encoding absolute sentence-position by appending
the sentence number directly onto the context sen-
tences, following Choubey and Huang (2022), and
proposing a novel Sentence Position Embedding
(SPE) using a sinusoid. Our experiments demon-
strate that SPE could significantly enhance tempo-
ral dependency graph parsing performance across
all relation types, with the performance increase
being mostly greater or at least comparable to that
provided by DP information. The resulting TDG
parsing system1 with SPE obtains the state-of-the
art performance.

2 Temporal Dependency Parsing

TIE is the task of classifying the temporal relation
between two temporal nodes. A temporal node can
be either an event trigger (a.k.a. event mention)
that represents an event that exists in the narrative
of an article, or a timex that is a nominal descrip-
tion of a date or time. When treating a pair of
temporal nodes as either intervals or points on the
timeline, the temporal relation between temporal
nodes can be described by Allen’s (1983) tempo-
ral calculus. There are some variations between
different TIE annotation standards, but generally

1The code and data are publicly available online:
https://github.com/frankniujc/tdg-discourse.

“A 26 years [sic] old woman died early this week.
She fell roughly 30m down the Bergisel mountain
in Tyrol on Friday. Remaining conscious after the
fall, she had alerted her family via telephone who
in turn contacted emergency services.”

ROOT

DCT

early this week Friday

died fell fall alerted contacted
after overlap before before

Figure 1: An example of a TDG from (Yao et al., 2020).
In the example text (upper), event triggers are high-
lighted in green and timexes are highlighted in orange.
In the TDG (lower), different types of dependency rela-
tions have different edge colours (t2t, e2t and e2e). Each
arrow points from the parent node to the child node.

Docs Timex Event t2t e2t e2e
Train 400 1,952 12,047 2,352 15,369 8,725
Dev 50 325 1,717 375 2,136 1,298
Test 50 209 1,015 259 1,324 706
Total 500 2,486 14,779 2,986 18,829 10,729

Table 1: TDG corpus statistics.

speaking, temporal relations include links such as
BEFORE, AFTER and OVERLAP.

This pairwise annotation scheme, however, fails
to generalize to the document level. The number
of temporal node pairs is quadratic in the number
of temporal nodes (n), i.e.,

(
n
2

)
∈ O(n2). Yao

et al. (2020) pointed out that this quadratic increase,
together with the increase in the complexity and
number of vague relation links for annotators to
consider will, in practice, inevitably cause errors to
annotation.

To address this issue, Kolomiyets et al. (2012);
Zhang and Xue (2018b); Yao et al. (2020)
have advocated for using dependency structures
to represent document-level temporal relations.
Kolomiyets et al. (2012) annotated a children’s
story with temporal dependency trees. Each event
u only depends on one other event v iff the interpre-
tation of when u occurred requires knowing when
v occurred. Kolomiyets et al.’s (2012) temporal
dependency tree structure only includes events, but
this standard may yield disconnected structures.
Zhang and Xue (2018b) refined temporal depen-
dency tree structure to allow the inclusion of timex
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A woman died early this week

RoBERTa Encoder

MLP Classifier

Label

concatenation

Figure 2: An overview of the pairwise classification
model architecture.

vertices as well as two special vertices: a docu-
ment creation time (DCT) vertex and a ROOT ver-
tex. The inclusion of timex vertices allows for
capturing the missing events in timex (e2t) tempo-
ral dependencies and timex to timex (t2t) temporal
dependencies. The addition of the DCT and ROOT
vertices ensures each document is always parsed
into a valid TDT.

Both Kolomiyets et al. (2012) and Zhang and
Xue (2018b) assumed that each event or timex had
exactly one reference temporal node (to which the
dependency edge points), resulting in a tree struc-
ture. Yao et al. (2020), on the other hand, argued
that this assumption is overly stringent, and that it is
possible for an event to have both a reference timex
and an reference event. They therefore proposed
to characterise temporal structure with temporal
dependency graphs (TDG), in which each event
can have a timex parent, an event parent, or both.
As depicted in Figure 1, the event alerted depends
on both the timex Friday and the event fall. As a re-
sult, TDG is more expressive than the earlier TDTs.
In this work, we used the TDG corpus released by
Yao et al. (2020). Table 1 shows the statistics of
this corpus.2

3 Model Architectures

3.1 Pairwise Classification Model
Typically, TIE is formulated as a classifica-
tion task. Given a pair of temporal nodes

2There are some minor discrepancies between the statistics
reported by Yao et al. (2020) and the final released corpus.
We used the final version of the TDG corpus released at
https://github.com/Jryao/temporal_dependency_graphs_crowd
sourcing.

Softmax

0.10.1 0.10.4 0.10.2

Feed-Forward Scoring Layer

Figure 3: An overview of the joint ranking model ar-
chitecture. Given a temporal node s in the article, the
model predicts a scalar reference score for every can-
didate node (t1, . . . , t6). This reference score can be
considered as classification logits and later trained using
the cross-entropy loss.

(n1, n2), the sentences containing the nodes
([t11, . . . , t1m], [t21, . . . , t2n]) are encoded into a
context vector e = [e11, . . . , e1m, e21, . . . , e2n].
Next, the event embedding pair [en1 ; en2 ] are con-
catenated and the classification task is performed
using a multilayer perceptron (MLP) layer. Where
a temporal node spans multiple tokens, we utilize
Lee et al.’s (2017) method for obtaining an attentive
span representation. Figure 2 depicts an overview
of this architecture. In this model, we deliberately
avoid jointly learning the pairwise model to ob-
serve the effects of different discourse information
on various relation types.

3.2 Joint Ranking Model

Neural ranking models (Zhang and Xue, 2018a;
Ross et al., 2020; Choubey and Huang, 2022) for-
mulate the task as a regression problem. For each
temporal node, the model predicts a scalar ref-
erence score for every potential parent node and
selects the edge with the highest reference score.
Therefore, this edge selection process can be formu-
lated as a classification task — the reference scores
can be considered as classification logits, and the
cross-entropy loss of the edge prediction can be
calculated. The three relation types (t2t, e2t, and
e2e) are trained jointly. Unlike the pairwise model
that uses the concatenation of the two event embed-
dings, we follow Choubey and Huang (2022), who
enclose both triggers in special symbols ($n1$ and
#n2#) and use the embedding of the [CLS] token
as the pair embedding en1,n2 = e[CLS].
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4 Discourse Analysis for TDG Parsing

Based on Dijk’s (1986) schemata of news content,
Choubey et al. (2020) proposed the task of dis-
course profiling (DP). The task is to classify each
sentence into one of eight content types (see ap-
pendix B). There are two ways of encoding DP
information, as proposed by Choubey and Huang
(2022). The first (DP Feature) appends the con-
tent type label directly, marked with a special to-
ken #. For instance, if the sentence represents a
main event, the label #M1# is appended to the sen-
tence. We obtained the same model-generated con-
tent type labels from Choubey and Huang (2022).
The second (DP Distillation) involves using model
distillation. In this approach, the model is equipped
with two decoders: one predicts the reference score,
while the other performs DP classification. The
training of both tasks occurs simultaneously, dis-
tilling the DP information into the underlying lan-
guage model.

4.1 Sentence Position Information
Sentence position information has proven valuable
in various tasks. For instance, the next sentence pre-
diction (NSP) task played a crucial role in training
BERT (Devlin et al., 2019), and similar techniques
have been shown to be effective for discourse anal-
ysis (Yu et al., 2022). In temporal dependency
parsing, previous work (Zhang and Xue, 2018a)
employed hand-crafted precedence features to en-
hance performance. In this study, we also present
two methods for encoding sentence position:

Sentence Position Feature (SPF) We experi-
mented with directly incorporating sentence posi-
tion information into the context sentence, in a man-
ner similar to the DP feature. For each sentence,
we prepend the context sentences with “Sentence
X:,” where X represents the sentence number.

Sentence Position Embedding Vaswani et al.
(2017) utilized sine and cosine functions with vary-
ing frequencies for token position encoding. We
extend this idea by proposing a sentence position
encoding (SPE; Equation 1), where pos denotes
the sentence number, i is the dimension, and dmodel
is the model’s dimension.

SPE(pos,2i) = sin(pos/100002i/dmodel)

SPE(pos,2i+1) = cos(pos/100002i/dmodel)
(1)

Since the SPE shares the same dimension as
RoBERTa’s word embeddings, they can be

summed. For the pairwise model, we add the SPE
of the event’s sentence to its event embedding. For
the joint ranking model, we directly add both SPEs
of both sentences to the pooler’s output. A post-hoc
classifier on RoBERTa itself serves as our baseline.

5 Experimental Results

5.1 Pairwise Prediction Results

The left side of Table 2 displays the performance
of the models with various types of discourse infor-
mation. Among the results, we can emphasize two
key comparisons. First, the addition of all kinds
of discourse information leads to a substantial
performance increase in the e2e parsing task;
however, it may result in a decline in performance
for the other two types. A contributing factor is
that the e2e task not only models temporal depen-
dency structure but also requires the model to learn
a shortcut heuristic that takes sequence length into
account. Upon closer examination, we discovered
that Yao et al.’s (2020) assumption that each event
can depend on at most one other event is not always
valid. It is common for an event to have multiple
parents. In such cases, the TDG annotation stan-
dard instructs the annotator to choose the event that
is closer in time. If this is not feasible, the annota-
tor should select the event that is closer in textual
order. Therefore, discourse information offers ex-
tra benefits for e2e parsing, regardless of the DP
encoding.

Second, SPE is the only information that leads
to performance improvements across all three
relation types, and it also yields the most signif-
icant performance increase. As previously dis-
cussed, DP information that is model-generated is
noisy. Moreover, the discourse structure of TDG
news articles is relatively simple. Surface-level sen-
tence position can be considered a reliable proxy
for the article’s discourse structure. For instance,
every news article in the TDG corpus begins with a
timex indicating the publication date of the article.
Additionally, the majority of the articles follow the
publication time with the lead sentence of the ar-
ticle. Directly incorporating the sentence number
into the article, however, does not produce the same
level of performance improvement. This outcome
is also expected, as a BERT-based language model
struggles with representing numbers (Wallace et al.,
2019).
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Model Pairwise Model Joint Ranking Model
Relation t2t e2t e2e t2t e2t e2e overall
Baseline 94.72 74.07 60.59 93.82 78.72 70.37 77.94

DP-F 94.55 76.64 70.79 94.59 76.91 70.99 77.15
DP-D 92.87 73.71 67.72 91.12 77.97 73.20 78.07
SPF 94.53 71.41 70.74 92.66 76.83 71.78 77.05
SPE 95.37 77.69 72.19 91.12 79.10 72.73 78.64

Table 2: Performance on different settings. Top performance of each segment is highlighted in bold.

5.2 Ranking Model Results
The right side of Table 2 presents the performance
of the ranking models. Once again, SPE achieves
the highest overall performance, showcasing the
effectiveness of this approach. Similar to the pair-
wise results, all models surpass the baseline for the
e2e task. Interestingly, with only a few exceptions,
the e2t and t2t performance of each model declines.
In addition to the previously mentioned reasons,
one contributing factor is the imbalanced distribu-
tion of the three relation types. The TDG corpus
contains 2,486 timexes and 14,779 events, resulting
in 20,862 t2t, 63,065 e2t, and 233,065 e2e potential
pairs in the training set. When all three types are
trained jointly, the model overfits on the e2t and
e2e relations, leading to performance disparities
across the three relation types.

Despite the issue of data imbalance, the bene-
fits of joint learning are substantial. All models
exhibit better performance on the e2t and e2e tasks
compared to their pairwise counterparts. The three
relation types are not disconnected; for instance,
events that depend on the same timex are likely to
depend on each other. Without joint learning, this
valuable TDG structural information is lost. There
are moreover several ways to better model struc-
tural information, such as the application of GNNs
(Ji et al., 2019), as well as methods to address the
data imbalance issue. We leave these topics for
future research.

6 Discussion

Before Choubey and Huang (2022), the relation-
ship between discourse and TIE had not been ex-
plored, and indeed our own experiments corrobo-
rate the value of their insight to incorporate dis-
course information into constructing document-
level temporal structures. Merely using the out-
put of a discourse system as an additional input
feature for document-level TIE may not be the
most effective strategy, however. A very superficial,

but novel sentence position embedding effectively
encodes surface-level sentence-order information,
and seems to be more reliable as a proxy for the dis-
course structure of news articles. Incorporating this
information leads to state-of-the-art performance
in TDG parsing.

The success of sentence-position embedding of-
fers a significant opportunity to bridge discourse
analysis and document-level temporal dependency
parsing. It suggests that we should not naïvely rely
on discourse information as a separate, modular
input source. Instead, the similarities between the
two tasks indicate that various techniques and in-
sights can be transferred and applied across both
domains, leading to more effective models and a
deeper understanding of the relationship between
discourse analysis and temporal dependency pars-
ing.
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Limitations

In accord with Choubey and Huang (2022), our
study focuses solely on the unlabelled performance
of TDG parsing. This implies that our evaluation is
limited to identifying reference temporal relations
without considering the classification of relation
types. We plan to explore the labelled TDG parsing
task in future research.
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Owing to resource constraints, our experiments
were conducted using only one type of language
model, RoBERTa-base. However, other models
such as BERT (Devlin et al., 2019), DeBERTa (He
et al., 2021), and ERNIE (Zhang et al., 2019) have
demonstrated impressive performance across var-
ious natural language understanding benchmarks.
We aim to evaluate these models in future research,
and we encourage other researchers to reproduce
our work using these alternative models.
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A Training Details

We follow Choubey and Huang’s (2022) experi-
ment setup. We first conducted a hyperparamter
search on learning rate using the baseline models.
In particular, we used 1e-5 for the t2t pairwise mod-
els, 3e-5 for the e2t and e2e pairwise models, and
8e-5 for the joint ranking models. We train each
model for 15 epochs, and report the test set perfor-
mance on the model with the highest development
set performance. RoBERTa-base is used as the
encoder for all the experiments. For the pairwise
model, we down sampled e2e labels by a factor of
10.

B DP Content Types

Choubey et al. (2020) specified eight DP content
types: Main event (M1), Consequence (M2), Previ-
ous Event (C1), Current Context (C2), Historical
Event (D1), Anecdotal Event (D2), Evaluation (D3)
and Expectation (D4).
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Abstract

We present a quantitative and qualitative com-
parison of the discourse trees defined by the
Rhetorical Structure Theory and Questions un-
der Discussion models. Based on an empiri-
cal analysis of parallel annotations for 28 texts
(blog posts and podcast transcripts), we con-
clude that both discourse frameworks capture
similar structural information. The qualitative
analysis shows that while complex discourse
units often match between analyses, QUD struc-
tures do not indicate the centrality of segments.

1 Introduction

Rhetorical structure Theory (RST) (Mann and
Thompson, 1988) and the Question under Discus-
sion (QUD) model (e.g., Ginzburg, 1996; Roberts,
2012; Onea, 2019) are two accounts of discourse
structure that stem from different research fields
and aim to explain different phenomena (speaker in-
tentions and rhetoric versus information structure).
However, they share a fundamental formal assump-
tion: that discourse structure is to be represented
as a tree that is constructed by recursively combin-
ing adjacent “elementary units” of the discourse.
For QUD, “discourse” originally meant primarily
dialog, while RST was designed for monologue
text. Nonetheless, researchers have occasionally
explored ways to apply one theory also to the mode
of the other.

In this paper, we systematically compare these
two approaches to discourse structure, based on
empirical observations in a novel multi-media cor-
pus. While some researchers have previously noted
the intuitive similarities of RST based trees and
QUD based trees on a theoretical level, this work
presents the first study where both frameworks are
systematically applied to a corpus of both spoken
and written data, and compared in a quantitative
and qualitative manner.

*Equal contribution

We first present part of a novel corpus of German
blog posts (monologue) and podcast transcripts (di-
alog). There is a loose 1:1 correspondence between
the two, in that the blogs are descriptions of what is
being discussed in the podcasts. To our knowledge,
this is one of the first corpora that are annotated in
parallel with RST and QUD structures. Our aim is
to compare the annotated material so that insights
into the descriptive and explanatory power of the
two approaches can be gained from an empirical
perspective of studying authentic data. We make
the annotated corpus available to facilitate follow-
up research.

To enable the quantitative comparison, we au-
tomatically map manually-annotated RST trees to
Riester (2019)-style QUD trees. We make the con-
version tool available as a web application (and will
later release the code). Based on the common for-
mat, we perform a quantitative analysis of the simi-
larity of RST and QUD discourse trees, for which
we propose an evaluation measure. In addition, our
thorough qualitative comparisons show that QUD
trees do not indicate the centrality of segments, and
often fail to cover relations such as concession and
contrast. On the other hand, the topic progression
and speaker change within a dialog is captured in
QUD analyses but may be missing from RST.

2 Related Work

In annotating both media present in our corpus,
we apply both discourse models outside of what
they have been primarily designed for. While QUD
has been applied to monologue texts before (Ri-
ester et al., 2018; Westera et al., 2020), it is most
centrally applied to (short) dialogs. On the other
hand, RST aims to capture the intentional structure
constructed by the writer and is thus designed for
monologue, but it has been occasionally applied to
dialog, as well (e.g., Stent, 2000).

The QUD framework has been developed to cap-
ture aspects of the information structure of sen-
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tences and certain specific pragmatic phenomena
(Ginzburg, 1996; Roberts, 2012). Only recently
has it been used for annotating larger texts, and
compared to models of the coherence structure of
discourse.

Hunter and Abrusán (2017) compare QUD struc-
tures to those proposed by Segmented Discourse
Representation Theory (SDRT). They argue that
although there likely is no QUD corresponding
to every discourse relation, “QUDs correspond to
complex discourse units in a discourse graph” (p.
41), that is, topics that lead to grouping discourse
units together.

Onea (2019) similarly starts by comparing QUD
and SDRT and argues that formally analyzing the
erotetic (i.e., question) structure of a discourse can
be useful to understand its meaning and its relation
structure, for example its SDRT representation. He
develops a method for mapping (parts of) question
graphs to SDRT representations, and takes a close
look at the Result relation as a case study. He ar-
gues that QUD theories (in particular, models based
on potential questions) have repercussions for the
larger discourse structure of a text (as represented
for example in SDRT).

Riester et al. (2018) offer the first detailed guide-
lines for segmenting discourse and annotating QUD
trees in authentic text, discussing individual texts
from English, French, and German and from three
different genres. One claim is that the same guide-
lines apply to monologue (newspaper articles) and
dialog (interviews) alike. In later work, Riester
et al. (2021) compare QUD, RST, and the CCR
approach to discourse structure for one text. Re-
garding segmentation rules in QUD and RST, they
point out that QUD calls for smaller segments than
RST when information-structural factors suggest
a discourse contribution, e.g., for contrastive foci.
Conversely, adjunct clauses can sometimes be sep-
arate segments in RST (e.g., in Circumstance re-
lations) but not in QUD. As for the relations, the
authors show how RST relations can be integrated
into a QUD tree notation, and discuss some typical
mappings.

Riester (2019) presents a proposal to include
both sub- and coordinating relations in a tree that
combines QUD and SDRT, based on the approach
by Klein and von Stutterheim (1987). For example,
the temporal progression of a discourse can be rep-
resented by questions asking about each point in
time: What happened at t1:n?

Finally, we mention that an early (but somewhat
inconclusive) debate in the RST community on the
interplay of “intentional” and “informational” co-
herence relations (e.g., (Moore and Pollack, 1992))
foreshadowed the kind of duality that RST and
QUD embody.

3 Data and Method

We carry out an empirical comparison of QUD-
and RST-based annotations of the same texts in
two media. The idea is based on the assumption
that while the QUD and RST frameworks cannot
be directly mapped onto one another, both aim
to capture the overall coherence of a discourse in
a tree-like fashion. Thus, previous work such as
(Hunter and Abrusán, 2017; Riester et al., 2021)
has proposed to study the correspondences in these
discourse trees by looking at the relation between
rhetorical relations and question-based structures.
Our study is the first, to our knowledge, which
carries out a parallel annotation of both spoken and
written texts in the two frameworks.

Our data and annotation process is described
here.

3.1 Data

The corpus contains texts from two media: podcast
transcripts and their corresponding blog posts, both
in German. Furthermore, the corpus contains differ-
ent domains: business podcasts that are produced
by companies like DELL or Deutsche Telekom
and science podcasts that cover topics from various
fields of science and politics. For this analysis, we
use 14 blog posts and chunks of 14 podcast tran-
scripts. The blog posts are composed of 26 EDUs
on average. The contiguous discourse chunks we
annotated from the transcripts consist of 17 EDUs
on average. Table 1 shows the size of the resulting
sub-corpus.

medium # episodes # EDUs # tokens

blog posts 14 364 4,204
transcripts 14 502 4,980

total 28 866 9,184

Table 1: Corpus overview, EDU and token count.

3.2 Annotation

The texts have been manually annotated in both
frameworks, RST and QUD. To simplify the com-
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Figure 1: A QUD tree converted from an RST tree (UKW024-p3).

parison between the annotations, we use the RST
segmentation according to the Potsdam Commen-
tary Corpus guidelines (Stede, 2016) for both
frameworks. For now, we assume EDUs as viable
segments for QUD annotation, even though there
are differences compared to the usual QUD segmen-
tation, as discussed by Riester et al. (2021). Other
than the segmentation, the QUD annotation follows
the guidelines defined by Riester et al. (2018). The
RST annotation mainly follows the guidelines pro-
posed by Stede et al. (2017), with a few changes.1

The annotations were conducted by one person
for each model, and revised by a second annota-
tor (a co-author of this paper).2 The annotated
files can be found in the project’s GitHub reposi-
tory3. For reasons of space, not all examples re-
ferred to in our analysis are shown in the text, but
they can be found under the file name given, e.g.
CRE210_Transcript_p3. An example of the same
file annotated with both discourse models is pre-
sented in Figure 2. The English translation of this
example is given in (4).4

1To account for particularities of speech, we added a ‘com-
pletion’ relation that is used in podcast conversations, if a
speaker says something that is not complete, e.g. does not
have a verb, and then completes it later. In addition, we ex-
tended the ‘restatement’ relation to allow being used as a
forward-looking relation. This way, it also covers cases of a
speaker’s self-correction. It is noteworthy to know that there
is no "question" relation in these guidelines. Such a relation
exists in some RST guidelines, for instance in the annotation
guide proposed by Carlson and Marcu (2001).

2For future work, we will add a second annotation in each
framework and inter-annotator-agreement.

3https://github.com/mohamadi-sara20/rst-qud-comparison
4All examples are our own translations of the original

German data.

4 Converting RST to QUD Trees

Both RST structures and QUD trees encode dis-
course structure formally as trees that span over
the entire discourse. In RST, intermediate nodes
are discourse relations that group (typically) two
segments, (typically) a nucleus and satellite. In
QUD, intermediate nodes are explicit or implicit
questions which guide the discourse; children are
(partial) answers to these questions. Disregarding
node labels for intermediate nodes, trees with the
same yield can be mapped onto each other by com-
paring just the branching structure.

To evaluate the similarity of RST and QUD trees,
we converted the RST trees to a format similar to
the QUD trees that can be quantitatively compared
to the QUD annotation. Figure 1 shows the con-
verted version of the RST tree in Figure 2.

To convert an RST tree to the QUD format, we
take a discourse relation in an RST tree as an inter-
mediate node (implicit question) in a QUD struc-
ture. The satellite and nucleus of the relation are
daughters of this intermediate node at the same
level of nesting.5 The details of the conversion
will be made available in the project repository on
GitHub.

5 Quantitative Analysis of RST and QUD
Correspondence

We automatically evaluated the similarity of the
RST and QUD discourse structures quantitatively

5It is also possible to convert an RST tree into a QUD tree
where the satellite is nested one more level compared to the
nucleus. That is, to consider the satellite a subtopic of the
nucleus. This way, information on nuclearity will not be lost
in the conversion. However, we found this less similar to a
QUD structure, so it was not used for the final analysis.
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Figure 2: Representations of (4) in QUD (top/left) and RST (bottom/right) (UKW024-p3).
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across the whole corpus. To do this, we com-
puted a variant of the PARSEVAL measure known
from evaluating (syntactic) constituency parse trees.
This measure compares unlabelled trees A and B:
First, for all nodes NA in tree A, one determines
whether tree B contains a node with the same yield
(= concatenation of all the text dominated by a
node) as NA. In the case of comparing an auto-
matic parse tree with a gold standard, this would
reflect precision. Second, for all nodes NB in B,
the same is repeated (∼ recall). We finally compute
the harmonic mean of both directions to determine
the similarity of RST and QUD structures.

We use unlabelled parseval scores because in-
termediate nodes are labelled with relations in the
case of RST trees, and with questions in QUD
trees.6 Note that the standard parseval score in-
cludes leaf nodes in its computation (in the case
of syntactic trees, POS tags), and that this practice
typically leads to much higher scores than exclud-
ing leaves. In our computation, we also include
leaves, not only because it is commonly done, but
also because in our tree structures, certain error
cases can only be reflected when including leaf
nodes. This happens in particular, when an explicit
text segment is used as an explicit question under
discussion (i.e., internal node) in a QUD tree. For
this reason, we also redefine the “yield” of a node
to be all explicit text dominated by that node, both
when it is represented in a leaf node and when it is
in an intermediate node.

medium Q→R R→Q f-score

blogs 0.87 0.68 0.76
transcripts 0.85 0.63 0.73

total 0.86 0.65 0.74

Table 2: (Micro-averaged) parseval scores comparing
RST and QUD discourse trees.

The results of the quantitative comparison are
shown in Table 2. It can be seen that there is a large
amount of overlap in the tree structures between
QUD and RST frameworks, with an average simi-
larity (parseval) score of 0.74. In addition, we see

6We cannot compute labelled parseval scores because the
RST node labels are (a fixed set of) coherence relations and the
QUD node labels are (totally free) natural language questions,
some of which actually are part of the discourse and thus
represented as leaf nodes in the RST trees. To compare QUD
trees automatically in general, one would need to define an
evaluation method that can rate the equivalence of natural
language questions, a task we leave for future work.

that the blog posts show higher similarity across
frameworks than the podcast transcripts. This is
the case even though the blog posts annotated here
are on average longer than the transcript snippets
(in a longer discourse, there are more possibilities
for mismatches in discourse structure annotations).
However, we can observe that the similarity of dis-
course structure between QUD and RST trees is
quite high, comparable to inter-annotator agree-
ment within the same framework.

6 Qualitative Comparison of RST and
QUD Trees

To further evaluate the correspondences between
the analyses, we take a closer look at our annota-
tions. First, we inspected the five pairs of trees that
received the lowest matching scores in the quan-
titative comparison; here we note that a frequent
source of mismatch is RST’s tendency to build a
complex discourse unit in cases where QUD at-
taches the material locally (see below). Then we
turned also to the other pairs, trying to generalize
sources of misalignment. Section 6.1 compares
the way complex discourse units are constructed
in both models.The overall structure of texts an-
notated with both models seems to often be sim-
ilar, yet there are instances where the structures
are quite different. Sections 6.2 and 6.3 compare
how translatable different rhetorical relations are to
QUD trees and whether RST trees are able to rep-
resent typical characteristics of dialog, like speaker
changes.

6.1 Comparison of Complex Discourse Units

As discussed in the previous section, both RST
trees and QUD trees seem to similarly cluster
EDUs into groups, which is particularly beneficial
in higher-level units. It is possible to decompose
an RST tree into prominent sub-trees. EDUs in the
same sub-tree or cluster are closer to each other
than they are to other EDUs. In a QUD tree, EDUs
grouped together are put under the same parent
question and hence address the same topic or rather,
answer sub-questions of an overarching question
under discussion. One example can be seen in the
RST tree in Figure 2: EDUs 1–6 make up one
cluster, while EDUs 7–14 are grouped together.

The tendency for QUD and RST analyses to
group discourse units similarly is noticeable in
most of the trees of the corpus, but there are also ex-
ceptions. Figure 2 shows an example where QUD
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and RST trees seem to capture different aspects
of the functions of discourse unit 6. As evident
in the figure, RST subtree 1-5 discusses the prob-
lem of the unavailability of public data archives.
Unit 6 repeats the same idea, without the details.
According to the guidelines, one possible relation
holding between 6 and 1-5 is the Summary relation.
On the other hand, unit 7 starts with the pronoun
‘Das’ (‘that’), which expresses an evaluation of the
current condition of the archives. Hence, the best
attachment point for it is unit 6.

However, if the evaluation is attached to 6, the
summary relation cannot be chosen to relate it to
the prior discourse. On the other hand, if the evalu-
ation is attached to 1-6 instead of only 6, it would
mean ignoring the intention behind this repetition.
This is where the difference between the two trees
arises: The RST tree groups 6 with the previous
discourse, and therefore loses the ideal attachment
point for the evaluation. The QUD tree, on the
other hand, groups 6 with the discourse following
it, and hence fails to fully observe the function of
this repetition.

This pattern is not limited to discourse manage-
ment in dialogs but is also seen in monologues. In
example (1), part (1-a) discusses the fact that there
is a great difference between theory and practice in
IT security, and brings some evidence to support
this claim. Part (1-b) repeats this idea with fewer
details and different wording, and (1-c) evaluates
the situation.

(1) a. And what we actually see in crime out
there is that the so-called cybercrime
is working on a level way lower than,
for example, academic research. In
academic research, we invent amaz-
ing new procedures of cryptography,
helping us against quantum computers.
What I think, I think this research is
important. But what really happens to
us is that companies are being hacked
because some recipients click on e-
mail attachments.

b. Meaning, there is a huge difference
between the technically complex and
artistic attacks in academic research
and street crime.

c. And it makes sense if you compare
that to a purse thief.

(DELL001_Transcript)

The main reason for adding (1-b) is to bring at-
tention back to the ‘difference between theory and
practice in IT security’ in order to later evaluate
it. If the evaluation is attached to (1-b), the sum-
mary relation cannot be chosen. If the evaluation is
attached to Summary(a, b) instead of just (1-b), it
would mean ignoring the intention behind this rep-
etition. This is, again, the source of the difference
between the two trees: The RST tree groups (1-b)
with the previous discourse, and hence loses the
ideal attachment point for the evaluation, while the
QUD tree groups it with the discourse following it,
neglecting the function of the repetition.

Another example of the two representations cap-
turing different aspects of a conversation is shown
in (2). In this example, the second sentence by
speaker 2 (2-c) has two functions: It is an eval-
uation of the speaker’s knowledge of the current
topic but at the same time part of a turn-taking-
mechanism, offering speaker 1 to evaluate on the
net research.

(2) Context: The first human settlements, be-
ginnings of agriculture, and domestication
of animals.
a. Speaker 1: I just looked it up, and it

is not really well. . . It seems to be dis-
puted when the dog really joined us,
the process seems to have been over a
very long time and gradually.

b. Speaker 2: Yes, maybe it fluctuates,
too, that is, how cultures reacted to it.

c. Well, with your net research, you prob-
ably know more about it than I do.

d. S1: Well, I’m not reading all of it now.
There is a lot to say here about canis lu-
pus, but sometime around 15,000 and
100,000 years. It really is vaguely de-
fined.

(CRE210_Transcript_p5)

Double functions like these are not rare in our data,
many utterances have a discourse-managing func-
tion on top of the propositional content. Thus, they
may be interpreted differently by different annota-
tors, leading to a different annotation of the same
text independent of systematic differences between
the two discourse models.

6.2 Comparison Between Relations

Restatement. Figure 4 shows an example of a
‘restatement’ relation in both QUD and RST trees.
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Figure 3: Concession represented in QUD tree, translated to English (VBZ011_Blog).

Instances of ‘restatement’ are all at the same level
in a QUD tree (since they all answer the same ques-
tion), while an RST tree does not represent this
as a parallel structure; it forms a tree that is right-
branching. Our RST annotation guidelines allow
the restatement of adjacent units to be successfully
modeled.7

Figure 4: Restatement represented in RST tree (top) and
QUD tree (bottom) (FG029-p2).

Although restating an idea does not introduce a
new topic, there are definitely intentions behind it;
sometimes the speaker needs time to think and so
they buy time by repeating themselves, sometimes
interlocutors want to make a topic more memorable
and do so by restating it. It is also possible to re-
state a previous topic, which is not the current topic,
in order to make it salient in current discourse. A
QUD structure would not be concerned with these
functions of a ‘restatement’ relation. In contrast,
the fine-grained representation of discourse rela-
tions provided in RST or SDRT would distinguish
such cases of ‘restatement’.

7Our guidelines respect the adjacency constraint, so it is
not possible to mark non-adjacent restatements. That is, if
somewhere the fifth EDU restates the content of the first EDU,
we cannot model that with a restatement relation according to
our guidelines, as it would need a non-adjacent edge.

Background. A background relation in RST in-
troduces background information in order to enable
the reader to understand a more central claim. What
is annotated with a ‘background’ relation in an RST
tree has been modeled in different fashions in the
QUD annotation. Sometimes it is represented in
the QUD tree with a nested structure, with a se-
ries of nested questions and answers leading to the
more central claim. But in different cases what is a
‘background’ satellite in the RST tree is annotated
in the QUD tree to share the same immediate par-
ent of the central claim – and therefore without a
nested structure.

This is probably due to the QUD model being
concerned with different aspects of discourse than
the RST model. A QUD representation does not
aim at presenting what is the most important or
central claim of discourse but rather the series of
sub-questions that are talked about.

Concession and Contrast. Since there is no
question type that can be answered with a ‘but’-
statement (Scheffler, 2013), it may be expected
that a QUD representation of a discourse is unable
to model contrastive relations. Q9 in the QUD tree
shown in Figure 3 is annotated with the ‘conces-
sion’ relation in the corresponding RST tree.

In the QUD tree, the concession is represented
by an additional sub-question – as is also suggested
by Riester et al. (2021). This way, concessions
can, in principle, be modeled in a QUD represen-
tation. However, the QUD representation cannot
explicitly show which part of the concession is the
expectation or the violation of the expectation –
the information conveyed by the nucleus and the
satellite in an RST representation is lost.

A similar problem arises when dealing with ‘con-
trast’ relations. Even though contrasts can be mod-
eled by a parallel structure in a QUD tree, see ex-
ample (3) Q4.1 and Q4.2, the contrastive meaning
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is not explicitly represented due to the list character
of this representation. Thus, it is not impossible
to represent a tree that has contrastive relations
in a QUD structure in general, but the resulting
representation is not explicitly contrastive.

(3) A1: And then there seems to have been
some shift in the climate,
{Q2: What did this shift in the climate
cause?}
A2’: causing Africa to dry in its center,
A2”: that is changing more and more into a
savannah landscape.
{Q3: What were the resulting changes in
humanity?}
A3: and then there seems to have been a
split in the evolution
{Q4: What was the result of this split?}
{Q4.1: What did the first half do?}
A4.1: one part further tried to eat vegetar-
ian food
{Q4.2: What did the second half do?}
A4.2: and the others started to hunt.

(CRE210_Transcript_p2)

6.3 Comparison of Speaker Changes

While the QUD model is made to deal with ex-
plicit questions and speaker changes in dialog, RST
is not. Still, in some examples, both representa-
tions deal with the speaker change in a similar way:
A different speaker than the person before takes
the turn, their utterance has its own subtree giving
more information, elaboration, or repeating what
has been said, then both models go back to a higher
discourse level (see figure 5).

Figure 5: Representations of the same speaker change
in QUD (left) and RST tree (right).

But in most cases of speaker changes, the utter-
ances by each speaker are separate sub-trees con-
nected on a higher level in the RST tree, while in
the QUD, the second speaker’s utterance does not
form its own sub-tree. Since RST and QUD deal
differently with topical progression, examples like
(4) are represented in different ways.

(4) Context: Daily reports of COVID case num-
bers and the German government’s archive
infrastructure.
a. Speaker 2: For all the other reports

that came in before, you have to know
all the data dumps from the day before.
But there is no public archive and be-
cause I only started this week, I now
have only, thanks to someone on Twit-
ter who gave me two missing dumps,
so that I now have one week of dumps
and do calculations with it.

b. Speaker 1: There is none, that really
stuns me. The data is always only on
a daily basis and changing constantly
and there is no archive of the previous
data, even though you would need ex-
actly this to be able to extract all the
information.

c. S2: That’s how it is.
d. S1: Man that sucks.

(UKW024_Transcript_p2)

In the RST representation, an utterance containing
a summary of the previous topic and a transition to
the next topic will always be parts of two different
sub-trees. On the other hand, in the QUD repre-
sentation, the transition to the next topic will be a
child of the previous topic, as long as both topics
are closely connected to each other - see figure 2
for both representations of (4). This means that in
the RST representation, the utterance by speaker 1
is split up between two different sub-trees while in
the QUD representation, it is not. Unsurprisingly,
example (4) has one of the lowest similarities (0.68)
in our quantitative comparison between discourse
annotations.

Another problem occurs if a speaker change is
accompanied by an explicit question. While this is
what QUD is meant to model and has no problem
dealing with, an explicit question that has no other
function than introducing a new topic cannot be
appropriately represented in an RST tree without
introducing an additional discourse relation.

7 Discussion

In this paper, we have carried out a systematic com-
parison of the discourse structures induced by RST
and QUD frameworks for the same texts from two
media, blog posts and podcast transcripts. Our an-
notations of the 28 texts show that both frameworks
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can be successfully applied to monologue texts as
well as dialogs.

We compare the branching structure of the re-
sulting RST and QUD trees by first providing a
method that converts an RST tree into an equiva-
lent QUD representation. We compare these rep-
resentations to the manually annotated QUD trees
and find an overall similarity of 0.74 – similar to or
surpassing the agreement scores between human
annotators for discourse structure annotation tasks.
This shows that the two frameworks cover some of
the same information for our corpus. The similar-
ity between analyses is higher for the blog posts,
indicating that the topic structure (QUD) and coher-
ence/intentional structure (RST) are more closely
related for monologue texts than for dialog (where
two speakers have to agree on how the overall dis-
course progresses).

Finally, we provide a detailed qualitative com-
parison of the way complex discourse units are
mapped across frameworks, about how certain dis-
course relations can be represented in QUD trees,
and the effects of speaker changes in dialog. We
discuss that while the overall structure of QUD and
RST trees often matches approximately, QUD trees
do not indicate the centrality of discourse segments
and cannot represent certain types of relations eas-
ily, such as concession and contrast. In contrast,
the topic progression within a discourse is captured
in QUD analyses but may be missing from RST.

Limitations

We have carried out all analyses according to our
best abilities. Nevertheless, it should be noted that
RST structures and QUD structures were annotated
by distinct researchers. While all annotations have
been double-checked by at least one other expert
for plausibility, in many cases there are alternative
analyses of the texts which may also be applica-
ble (as is usually the case for discourse structure).
Since we do not have direct access to the discourse
creators and their goals, this limitation is unavoid-
able in corpus studies.
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Abstract

In discourse relation recognition, the classifica-
tion labels are typically represented as one-hot
vectors. However, the categories are in fact
not all independent of one another – on the
contrary, there are several frameworks that de-
scribe the labels’ similarities (by e.g. sorting
them into a hierarchy or describing them in
terms of features (Sanders et al., 2021)). Re-
cently, several methods for representing the
similarities between labels have been proposed
(Zhang et al., 2018; Wang et al., 2018; Xiong
et al., 2021). We here explore and extend the
Label Confusion Model (Guo et al., 2021) for
learning a representation for discourse relation
labels. We explore alternative ways of inform-
ing the model about the similarities between
relations, by representing relations in terms of
their names (and parent category), their typical
markers, or in terms of CCR features that de-
scribe the relations. Experimental results show
that exploiting label similarity improves classi-
fication results.

1 Introduction

Discourse relations (DRs) are logical relations be-
tween units of text (“arguments 1 and 2”) that make
the whole text coherent, see e.g. the concession re-
lation in (1).

(1) [John prepared for his final exam hoping to
get at least a pass.]Arg1 [He got an E.]Arg2

(DR: COMPARISON.CONCESSION.ARG2-AS-
DENIER)

The task of implicit DR recognition (IDRR) is par-
ticularly challenging because informative discourse
connectives (DCs), such as "however" are missing.
Implicit discourse relation classification tasks us-
ing the Penn Discourse Treebank (PDTB) frame-
work (Prasad et al., 2008) typically distinguish be-
tween 11 different labels. However, these labels
are not completely independent of one another –
some relations tend to co-occur or be confused

more than others. The similarities between rela-
tions are represented in the PDTB relation hierar-
chy, which groups the labels into four top-level
classes, or by the CCR feature representation pro-
posed in Sanders et al. (2021). However, these
well-known similarities are typically not exploited
for discourse relation classification tasks – instead,
all labels are treated as if they were independent of
one another.

Guo et al. (2021) recently proposed the Label
Confusion Model (LCM), which seems well-suited
for the characteristics of the IDRR task: Guo et al.
(2021) showed that the method is particularly suit-
able for problems with many labels, classification
problems in which labels are ambiguous and tend
to be confused with each other, and/or when there is
semantic overlap between the labels. They demon-
strated the benefit of the method on several text
classification tasks.

The goal of the present paper is to test whether
the LCM approach is indeed helpful for IDRR and
experiment with three different ways of capturing
the label similarities. (1) We use label embeddings:
DR labels are not random words but terms that lex-
ically describe the meaning of the DRs, such as
REASON, PRECEDENCE, CONDITION, and so on.
Using label embeddings assumes that similar rela-
tions also tend to have names with similar lexical
embeddings. However, some relation labels may
additionally be associated with a quite different
meaning in normal language use (e.g., “conces-
sion”), and their embedding may hence not capture
the technical meaning well. (2) We characterize a
DR by a set of prototypical connectives (e.g., how-
ever and nevertheless for a CONCESSION relation).
(3) We encode DRs via their cognitive features
(e.g., a concession relation would be described as a
negative causal relation).
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2 Related work

2.1 Discourse Relation Classification
Our work is not the first to use information from
typical connectives for enriching classification: For
example, the implicit DCs that are annotated to-
gether with the sense labels in PDTB have been
incorporated into the training objective (Kishimoto
et al., 2020; Jiang et al., 2021a; Kurfalı and Östling,
2021; Jiang et al., 2021b). Several works also
utilize the label hierarchy of the PDTB to train
the model to learn the difference between the la-
bels by contrastive learning (Long and Webber,
2022) or operate on the label hierarchy for learning
sounder embeddings to direct the prediction (Wu
et al., 2021). In this work, we operate on the label
names to incorporate the information of the DCs
and the PDTB hierarchy.

In addition, DRs can be described in terms of
features. The Cognitive approach to Coherence
Relations (CCR) (Sanders et al., 1992, 2021) char-
acterizes the nature of DRs by “dimensions" such
as basic operation, source of coherence, order and
polarity. For example, a CONTRAST relation can
be described as a negative relation of addition oper-
ation with objective source of coherence. We also
explore the potential of encoding these unifying
dimensions of DRs into the label names for IDRR.

2.2 Exploiting label Similarity
Text classification tasks typically distinguish be-
tween a large number of categories or labels. Vari-
ous approaches have been proposed to model the
relation between the semantics of the labels and the
text to be classified. Zhang et al. (2018) compares
the vectors of the inputs and labels in a multitask
learning setting. Wang et al. (2018) use label-based
attention scores to embed the label information.
Xiong et al. (2021) append the labels to the inputs,
such that the embeddings of the labels are learned
using the self-attention mechanism of BERT.

Our work builds on the Label Confusion Model
(LCM; Guo et al., 2021), which was proposed for
learning about the similarity of instances and labels
simultaneously during training and which can be
expected to be particularly useful in classification
tasks with many similar labels. The LCM generates
an alternate semantically informed vector in place
of one-hot vectors.

For every input to the base model, the LCM
inputs all the labels of the corresponding classifi-
cation tasks, i.e., the LCM is run in parallel with

a base model, as seen on the right side of Figure
1. The LCM model consists of a label encoder
and a Simulated Label Distribution (SLD) block.
The encoder, which comprises an input layer, an
embedding layer and a linear layer produces a rep-
resentation for all the labels.

The representation produced by the base model
before the soft-max layer and the representation
generated by the LCM encoder is made compati-
ble such that they have dimensions that enable a
similarity calculation. A similarity calculation is
performed in the SLD block between the represen-
tation produced by the base model and the label
encoder to generate the SLD distribution in place
of one-hot vectors. A controlling parameter is α
modulates the balance between the original label
one-hot vector and the generated SLD.

Then, KL-divergence loss is computed between
the predicted label distribution (PLD) of the base
model and the generated SLD. The final labels are
predicted using the soft-max classifier of the base
model. The LCM trains in parallel with the base
model until the LCM-stop epoch, which is deter-
mined by a hyper-parameter.

Experiments and analyses on data sets like DB-
Pedia1, THUCNews2, etc., show that the LCM can
generate representations that capture the dependen-
cies between the labels and assist the base model to
better understand the obscure meaning of the target
labels compared with one-hot representation. In
this work, we train an IDRR model with the LCM
to exploit the semantics of the DR labels.

3 Methodology

3.1 LCM for IDRR
We train an 11-way classification model which pre-
dicts one of the second-level DR labels defined in
PDTB 2.0, as shown in the first column of Table 1,
given the two spans of text (called Arg 1 and Arg 2)
the DR links. To do so, we trained the LCM with a
state-of-the-art IDRR model, which is the Bilateral
Matching and Gated Fusion (BMGF) RoBERTa
model (Liu et al., 2020).

The BMGF-RoBERTa is a complex model that
comprises six layers: a hybrid representation layer,
a context representation layer, a matching layer, a
fusion layer, an aggregation layer, and a prediction
layer. As shown in Fig 1, the LCM runs concur-
rently with the BMGF-RoBERTa for each input

1https://www.dbpedia.org/
2http://thuctc.thunlp.org/

100



instance. We initialize the embedding layer of the
LCM with pre-trained GloVe (Pennington et al.,
2014) word embeddings of the labels and their vari-
ations as described in table 1. The learned repre-
sentation generated by the prediction layer of the
BMGF-RoBERTa is fed as the input to the SLD
block of the LCM. KL-divergence loss is calculated
between the predicted label distribution (PLD) of
the BMGF-RoBERTa and the generated SLD. The
final labels are predicted using the soft-max clas-
sifier of the BMGF-RoBERTa and the SLD pro-
duced by the LCM is utilized for optimizing the
loss until the LCM-stop epoch, which is determined
by a hyper-parameter. After the LCM-stop epoch,
only the BMGF-RoBERTa is trained further and
the LCM is inactive.

Figure 1: Combined architecture of the BMGF-
RoBERTa and the LCM

3.2 Encoding other DR knowledge

Training with the LCM allows the IDRR model to
learn the association between the input arguments
and the semantics of the label tokens, such as CON-
JUNCTION and CAUSE. We hypothesize that more
detailed relationships could be learned with more
expressive label tokens. We explore three alterna-
tive ways of encoding label similarity: via label
encodings, via encodings of prototypical connec-
tives and via CCR features.

DR labels The PDTB 2.0 labels are arranged in
a three-level hierarchical structure, where the 11-
way labels, which are usually used in classification
tasks, belong to the second level and are children of
one of the four parent categories, namely TEMPO-
RAL, COMPARISON, CONTINGENCY, and EXPAN-
SION. Labels under the same parent category are
more closely related than labels of different parent
categories. In our experiments, we compare the use

of only the level-2 labels with the combination of
level-2 and level-1 “parent” labels.

Prototypical DCs DCs are used in both tradi-
tional and crowd-sourced annotations to facilitate
the identification of the implicit DRs (Prasad et al.,
2007; Yung et al., 2019). Most relations can be
characterized by some prototypical DCs. For ex-
ample, a CAUSAL relation is best represented by
because and therefore. We define a subset of pro-
totypical DCs for each label and replace the label
tokens with the DC tokens. We do not include
preposition tokens present in multi-word DCs in or-
der not to dilute the overall semantic representation
of the labels (e.g. example instead of for example).

Cognitive approach to Coherence Relations
(CCR) Sanders et al. (2021) decompose each
third-level DR in the PDTB 2.0 with five unifying
dimensions. We specify each second-level rela-
tion by the dimension values shared by its children.
Two or three dimensions are enough to specify the
second-level relations. We use these CRR tokens in
addition to the original DR tokens because certain
second-level relations, such as CONJUNCTION and
RESTATEMENT, have the same set of dimension
values. We do not include value tokens that seman-
tically overlap with the relation label. For example,
we do not include the value of the temporal order
dimension of the SYNCHRONOUS relation, because
it is also synchronous.

Table 1 shows the lexical terms we use for each
setting. We combine the representation of the mul-
tiple tokens per label by summing up the GloVe
embeddings of the individual tokens3.

3.3 Data and setting

We train and evaluate the proposed model on the
PDTB 2.0 data set (Prasad et al., 2008). We use
sections 2-20 for the training, 21-22 for testing, and
0-1 for validation, following e.g. Ji and Eisenstein
(2015). The models are trained for the 11-way
classification of the second-level sense labels.

We use the codes of the BMGF-RoBERTa re-
leased on GitHub5, which was implemented in Py-
Torch, and re-implemented the original LCM from

3We also experimented with vector averaging. Similar
results were obtained.

4For integrity, we use single tokens in the original labels.
For the PRAGMATIC CAUSE relation, we used the token prag-
matic instead of cause since there is already a CAUSE relation.

5https://github.com/HKUST-KnowComp/
BMGF-RoBERTa
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Original labels Parent labels Prototype DCs CCR features
concession comparison despite, even, though, however negative, causal
contrast comparison contrast, comparison, but negative, addition, objective
cause contingency because, result, therefore positive, causal, objective
pragmatic (cause) contingency considering, accordingly positive, causal, subjective
alternative expansion alternatively, instead, rather positive, addition
conjunction expansion addition, also, furthermore positive, addition
instantiation expansion example, instance positive, addition
list expansion firstly, secondly, thirdly positive, addition
restatement expansion other, words, means positive, addition
asynchronous temporal subsequently, afterwards, previously positive, addition
synchrony temporal same, time, simultaneously, meanwhile positive, addition

Table 1: Tokens used in each label representation strategy. The prototype DC tokens replace the original labels
while the CCR and parent tokens are used in addition to the original labels 4.

TensorFlow to PyTorch in order to integrate the
two models.

For training, we have utilized 3 × NVIDIA Tesla
V100, with a batch size of 16. The pre-trained
embedding utilized where GloVe (Pennington et al.,
2014) common crawl with 42B tokens. Whenever
we utilized the pre-trained word embeddings for
the labels, the weights of the embedding layer were
frozen and not updated during the training. The
values of the hyper-parameters α is optimized to 4
using initialization in the range of 1–6. The LCM-
stop parameter is set to 100, which is chosen based
on the implementation of Guo et al. (2021). The
results reported below are averaged over five runs.

4 Results

Table 2 compares the results of the models evalu-
ated by accuracy and macro F1. It can be observed
that all versions of the LCM improved the base-
line model. In particular, the LCM model using
prototype DCs outperforms the other models.

Model Accuracy macro F1
BL (Liu et al., 2020) 55.20 (.013) 36.07 (.010)
+ LCM (orig.) 57.20 (0.006) 38.92 (0.014)
+ LCM (orig.+parent) 57.55 (.010) 40.48 (.006)
+ LCM (orig.+CCR) 57.69 (.004) 39.45 (.015)
+ LCM (protyp. DC) 57.80 (0.013) 40.63 (0.025)

Table 2: 11-way classification results on PDTB 2.06.
The standard deviation of the five runs is shown in brack-
ets respectively.

Figure 2 compares the distribution of the labels
predicted by the baseline and the LCM (protyp.
DC) models as well as the gold labels of the five

6The published accuracy of the BMGF-RoBERTa is 58.13.
We found that the discrepancy is because, according to the
released codes, the result of the best test epoch has been re-
ported. For fair evaluation, we report the results of all the mod-
els based on the best validation epoch (based on macro F1).

contrast cause conjunction instantiation restatement
0

50
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150

200

250

300
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+LCM (proto.dc)
gold

Figure 2: Distribution of the predictions produced by
the BL and LCM (protyp. DC) model compared with
gold on the five most frequent DR labels. The counts
are the average values of the five runs of each model.

most frequent DRs in the test set7. It shows that the
baseline model over-predicts CONTRAST, CAUSAL,
and CONJUNCTION. Inspection of the samples re-
veals that many of the over-predicted CONTRAST

are actually CAUSAL, while the over-predicted
CAUSAL and CONJUNCTION are mostly RESTATE-
MENT and these are correctly classified by the
model with LCM. However, the LCM also leads to
over-prediction of RESTATEMENT. We will look at
some concrete examples in the next section.

The predicted label distributions suggest that the
LCM allows the IDRR model to learn the differ-
ence and similarity between COMPARISON and EX-
PANSION, but not among different types of EXPAN-
SION. The parent relation and the CCR features
of all EXPANSION relations are in fact the same.
That could explain why the performances of these
two versions on the EXPANSION items are similar,
while LCMDC performs slightly better.

7These are the gold labels of 90% of the test set instances.
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5 Qualitative Analysis

In this section, we analyze some examples that
demonstrate that the LCM has better captured the
implicit DRs between two arguments.

First, as mentioned in the previous section, the
false positive CONTRAST relations predicted by the
baseline model are mostly CAUSAL relations. In
most of these cases, the Arg2 contains the tokens
now or still, which are often used to mark contrast,
as in the following example.

(2) [Last week that company and union negotia-
tions had overcome the major hurdle, ...]Arg1

[Now only minor points remain to be cleaned
up]Arg2

(gold: : CONTINGENCY.CAUSE

LCM: CONTINGENCY.CAUSE

baseline: COMPARISON.CONTRAST)

In Example 2, the baseline model’s prediction
might have been based on the local markers now
and the lexical pair major and minor, while the
LCM model infers the positive relation between
overcome major hurdle and only minor points re-
main.

Secondly, the LCM models overpredict RE-
STATEMENT relations, which are annotated as other
relations in the PDTB. We found that for some of
these cases, a restatement label could actually be
justifiable as a secondary label.

(3) [Treating employees with respect is crucial
for managers.]Arg1 [It’s in their top five work
values.]Arg2

(gold: : CONTINGENCY.CAUSE

LCM: EXPANSION.RESTATEMENT

baseline: CONTINGENCY.CAUSE)

(4) [Sotheby’s defends itself and Mr. Paul in the
matter.]Arg1 [Mr. Wachter says Mr. Paul
was a quick study who worked intensely
and bought the best pictures available at the
moment.]Arg2

(gold: : EXPANSION.INSTANTIATION

LCM: EXPANSION.RESTATEMENT

baseline: EXPANSION.INSTANTIATION)

In Example (3), respect being crucial is the rea-
son that it is counted as a top value, but these two
arguments can also be viewed as different ways
to state that it is important for managers to repect
their employees. In Example (4), Mr. Wachter’s

comment could be an example of how Sotheby’s de-
fends Mr. Paul. However, depending on the context,
Arg2 can also be interpreted as a RESTATEMENT.
These cases suggest that the LCM tends to confuse
relations most easily when they are similar or have
semantic overlap.

However, we do note that there are cases where
the LCM model indeed overpredicts restatement
relations, see example (5).

(5) [It’s no longer enough to beat the guy down
the street.]Arg1 [You have to beat everyone
around the world.]Arg2

(gold: : EXPANSION.ALTERNATIVE

LCM: EXPANSION.RESTATEMENT

baseline: EXPANSION.ALTERNATIVE)

Finally, comparing the different versions of the
LCM models, the LCMDC model outperforms the
other two models in predicting CAUSAL and CON-
JUNCTION relations. A possible explanation is that
the DC tokens used to represent these relations
are indeed strongly prototypical compared with
other relations. This suggests that the choice of
prototype DCs has a strong effect on the model
performance. On the other hand, the LCMparent

model has the highest recall of INSTANTIATION

relations, but these are often co-occurring with RE-
STATEMENT, which is predicted by the other two
variants.

6 Conclusion

We proposed to inform an IDRR model with knowl-
edge about the DRs encoded in the classification
labels using the LCM, instead of treating each class
independently. In addition, we explored various
strategies to encode different types of knowledge
into the model and found that they are all beneficial.
This approach is flexible and can also be applied to
other base models. Furthermore, learning the lexi-
cal semantics of the label tokens allows a model to
train on multiple datasets even if they do not share
the same label set, and this is the direction of our
future work.

7 Limitations

The encoder of the LCM which we have utilized
for our experiments is a basic deep neural network.
Replacing it with more robust and effective ar-
chitectures could help achieve better performance.
Furthermore, instead of using pre-trained GloVe
embeddings for the encoder, using IDDR-specific
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embeddings could have been a more efficient ap-
proach. Lastly, our models have been trained and
evaluated on PDTB 2.0, instead of the latest PDTB
3.0, which includes also intra-sentential implicit re-
lations and has a more systematic sense hierarchy.
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Abstract

Incorporating external knowledge, such as pre-
trained language models (PLMs), into neural
topic modeling has achieved great success in
recent years. However, employing PLMs for
topic modeling generally ignores the maximum
sequence length of PLMs and the interaction
between external knowledge and bag-of-words
(BOW). To this end, we propose a sentence-
aware encoder for neural topic modeling, which
adopts fine-grained sentence embeddings as
external knowledge to entirely utilize the se-
mantic information of input documents. We
introduce sentence-aware attention for docu-
ment representation, where BOW enables the
model to attend on topical sentences that con-
vey topic-related cues. Experiments on three
benchmark datasets show that our framework
outperforms other state-of-the-art neural topic
models in topic coherence. Further, we demon-
strate that the proposed approach can yield bet-
ter latent document-topic features through im-
provement on the document classification.

1 Introduction

Topic models have been widely used to identify
human-interpretable topics and learn text represen-
tations, which have been applied for various tasks
in Natural Language Processing (NLP) such as
information retrieval (Lu et al., 2011), summariza-
tion (Nguyen et al., 2021), and semantic similarity
detection (Peinelt et al., 2020). A typical topic
models is based on the latent Dirichlet allocation
(LDA) (Blei et al., 2003) and Bayesian inference.
However, to avoid the complex and expensive iter-
ative inference of conventional topic models, topic
modeling with the deep neural network has been
the leading research direction in this field (Miao
et al., 2016; Srivastava and Sutton, 2017; Ding
et al., 2018).

Neural topic models (NTMs) usually exploit
the BOW representation as input, disregarding the

∗Corresponding Author

syntactic and semantic relationships among the
words in a document, thus leading to relatively
inferior quality of topics. Recently, pre-trained
language models (PLMs) (Kenton and Toutanova,
2019; Reimers and Gurevych, 2019) demonstrate
their strong ability to capture sentential coherence
by achieving state-of-the-art performance on many
natural language processing tasks. Therefore, sev-
eral approaches have been proposed to incorporate
external knowledge into topic models to address the
limitations of BOW. A typical method to take exter-
nal knowledge as additional features (Bianchi et al.,
2021; Jin et al., 2021) concentrates the outputs of
PLMs with BOW data. Another way (Hoyle et al.,
2020) is to distill the knowledge of the teacher
PLMs to generate a smoothed pseudo-document,
which guides the training of a student topic model.

However, there are still limitations to the above
approaches. Firstly, the document-level sequences
are too long to be modeled, since the token-level se-
quence in the context is usually considered as input
to the PLMs. Extracting the document-level seman-
tic embedding with PLMs as external knowledge
ignores the restriction on sequence length, which
loses massive semantic information from input text.
Secondly, the difference in learning objectives be-
tween NTMs and PLMs makes it challenging to
incorporate external knowledge. The encoder of
NTMs is designed to handle the sparse BOW data,
unable to take into account the dense contextual
document embedding from PLMs.

To address these limitations, we build upon
the framework of variational autoencoders (VAE)
(Kingma and Welling, 2013) and propose a
sentence-aware encoder for incorporating exter-
nal semantic knowledge into topic models. The
proposed approach integrates the advantages of
NTMs and PLMs as encoders. Specifically, the
encoder of the topic model is responsible for
processing document-level BOW data like most
NTMs, while the PLMs is used to encode sentence-
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Figure 1: Basic Architecture of SAE-NTM. The
sentence-aware encoder deals with the BOW data xi

and sentence sequences {si
1, · · · , si

m} of the ith docu-
ment, while variational inference reconstructs the BOW
data xrec

i from document representation di .

level semantic information as its original training
objective. Different from previous approaches,
our proposed framework considers cross-attention
(Vaswani et al., 2017) between the BOW data and
sentence embeddings, which leverages fine-grained
semantic information for topic discovery.

To summarize, the main contributions of this
paper are as followed: (1) We propose a novel
framework SAE-NTM: Sentences-Aware Encoder
for Neural Topic Modeling which leverages the
cross-attention for incorporating external semantic
knowledge in a sentence-aware manner. (2) Quanti-
tative and qualitative experiments demonstrate that
our proposed approach significantly outperforms
the existing state-of-the-art topic models in topic
coherence. (3) We show that the BOW-guided at-
tention yields practical latent document-topic fea-
tures, achieving better performance on the docu-
ment classification task.

2 Methodology

2.1 SAE: Sentence-Aware Encoder
In this section, we introduce the sentence-level se-
mantic information as external knowledge and pro-
pose a method to efficiently combine BOW data
with external knowledge for document representa-
tions, as shown in Figure 1.

Encoder for bag-of-words and sentence se-
quences. Neural topic models with variational au-
toencoders usually take high-dimensional, sparse
word counts xi as input and transform it into a low-
dimensional dense feature hi to fit the variational
autoencoders framework as formulated in Eq.1.

hi = Enc (xi) (1)

Where Enc : RV → RL is usually a multi-layer

perceptron (MLP) for the inference of the ith docu-
ment representation.

Complementary to the orderless BoW, the con-
text of the document carries more affluent and more
sophisticated semantic information. And it can
be represented as contextual embeddings by pre-
trained language models (e.g., BERT (Kenton and
Toutanova, 2019)) from large corpora, which have
a fine-grained ability to capture aspects of linguis-
tic context. In this paper, we employ sentence-
transformers (Reimers and Gurevych, 2019) to en-
code each sentence in the document as follows:

{
hi

1, · · · , hi
m

}
= Trans

({
si

1, · · · , si
m

})
(2)

where si
j is a sequence of tokens and hi

j is the aggre-
gated contextual embedding from the pre-trained
sentence-transformers for the jth sentence.

Sentence-aware Attention. The contextual em-
beddings

{
hi

1, · · · , hi
m

}
and BOW representation

hi jointly constitute the input of sentence-aware en-
coder. Then sentence-aware attention is employed
to accomplish the interaction of word counts and
semantic embeddings formulated in Eq.3.

di =

j=m∑

j=1

αi
jh

i
j

αi
j =

exp(score(hi, h
i
j))∑k=m

k=1 exp(score(hi, hi
k))

(3)

Where the representation di of the ith document
is a weighted sum of contextual embeddings{
hi

1, · · · , hi
m

}
and αi

j is the normalized attention
of the jth sentence. Typically, the scoring func-
tion score is scaled dot-product attention. Sentence
embeddings as external knowledge provide rich
textual information, while the BOW data guides
topic model in the assignment of attention on top-
ical sentences, which contributes to capturing the
co-occurrence patterns of the words.

2.2 Variational inference
Starting with the document representation, varia-
tional inference (Kingma and Welling, 2013) con-
sider Logistic-Normal distribution as the posterior
distribution q(z | x), whose mean µi and variance
σi vectors are separately derived from the docu-
ment representation through a linear layer. Then
the reparameterization trick in Eq.4 is used to esti-
mate the gradient.

zi = softmax (µi + σi · εi) (4)
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Method
K=50 K=200

20NG Wiki IMDb 20NG Wiki IMDb

W-LDA (Nan et al., 2019) 0.274 ± 0.012 0.492 ± 0.014 0.134 ± 0.003 0.159 ± 0.002 0.316 ± 0.007 0.090 ± 0.001
SCHOLAR (Chang et al., 2009) 0.322 ± 0.005 0.480 ± 0.009 0.166 ± 0.004 0.262 ± 0.003 0.416 ± 0.005 0.140 ± 0.002

CLNTM (Nguyen and Luu, 2021) 0.327 ± 0.002 0.486 ± 0.013 0.167 ± 0.002 0.267 ± 0.002 0.425 ± 0.003 0.144 ± 0.001
CTM (Bianchi et al., 2021) 0.329 ± 0.003 0.484 ± 0.016 0.176 ± 0.002 0.283 ± 0.005 0.432 ± 0.004 0.163 ± 0.004

SCHOLAR + BAT (Hoyle et al., 2020) 0.343 ± 0.006 0.501 ± 0.007 0.170 ± 0.004 0.301 ± 0.002 0.437 ± 0.003 0.160 ± 0.002

SAE-NTM (Ours) 0.352 ± 0.006 0.511 ± 0.011 0.196 ± 0.001 0.314 ± 0.002 0.472 ± 0.004 0.174 ± 0.002

Table 1: Results of average NPMI scores with 50 and 200 topics on three datasets. For each group of results, we
repeat the experiment five times with different random initialization and report the standard deviation.

where εi ∼ N (0, 1) denotes samples from the nor-
mal distribution and zi is the latent document-topic
vector. Next, it attempts to reconstruct the original
BOW data xi by modeling the words distributions
of topics ϕ as follows:

xrec
i ∼ Multi

(
softmax

(
ziϕ

T
)
, N

)
(5)

where ϕ ∈ RV ×K is the word-topic matrix and N
is a vector of document lengths.

Finally, SAE-NTM are trained by maximiz-
ing the Evidence Lower Bound (ELBO) of the
marginal likelihood of the BoW data:

L(x) = −Eq [log p(x | z)] + KL [q(z | x)∥p(z)] (6)

where log p(x | z), q(z | x) and p(z) are respec-
tively the reconstructed data likelihood, the poste-
rior distribution and prior Dirichlet distribution.

3 Experiments

In this section, we design empirical experiments to
answer the following questions of concern in topic
modeling. First, how effectively does SAE-NTM
perform quantitatively and qualitatively in terms
of topic quality? Second, how does SAE-NTM
perform in automated document-topic inference for
downstream tasks? Besides, more details about the
impact of external knowledge on topic modeling
can be found in Appendix A.

3.1 Experimental Settings
Datasets. We evaluate our proposed SAE-NTM
on three benchmark datasets, which differ signif-
icantly in the domain, vocabulary size, and docu-
ment length: 20Newsgroups (20NG, Lang, 1995)
1, Wikitext-103 (Wiki, Merity et al., 2016) 2, IMDb
movie reviews (IMDb, Maas et al., 2011) 3. For

1qwone.com/~jason/20Newsgroups
2s3.amazonaws.com/research.metamind.io/

wikitext/wikitext-103-v1
3ai.stanford.edu/Ëœamaas/data/sentiment

consistency with prior work, we adopt the same
preprocessing steps and train/dev/test split from
the original papers for 20NG (i.e., 48/12/40), Wiki
(i.e., 70/15/15), IMDb (i.e., 50/25/25).

Baselines. We compare our model with existing
state-of-the-art neural topic models: W-LDA (Nan
et al., 2019) is a neural model with wassestein
autoencoder, which approximates the Dirichlet
prior by minimizing Maximum Mean Discrepancy.
SCHOLAR (Card et al., 2018) is a VAE-based
neural topic model with a logistic normal prior
to facilitate approximate Bayesian inference and
provide a flexible way to incorporate document
metadata. SCHOLAR+BAT (Hoyle et al., 2020)
is a knowledge-distilled neural topic model where
a BERT-based autoencoder as a teacher provides
contextual knowledge for the student model. CTM
(Bianchi et al., 2021) is a combined topic model
with the incorporation of contextualized document
embeddings in neural topic models. CLNTM
(Nguyen and Luu, 2021) is a contrastive learning
version of the neural topic model through a word-
based sampling strategy.

3.2 Evaluation in topic coherence

Since topic models aim to discover a set of latent
topics that are meaningful and useful for humans
(Chang et al., 2009), we evaluate topic coherence
using the Normalized Mutual Pointwise Informa-
tion (NPMI) which is significantly correlated with
human judgments on topic quality (Aletras and
Stevenson, 2013; Lau et al., 2014). Specifically, we
first select the top 10 words under each topic gen-
erated by topic models, and then estimate NPMI
scores with reference co-occurrence counts from
the held-out corpus, e.g. the dev or test split.

As shown in Table 1, we report the results of
the average NPMI over 5 runs with different ran-
dom seeds for initialization for robustness. It can
be observed that our model yields the most coher-
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Dataset Model NPMI Topic Words

20NG
SCHOLAR 0.234 encryption enforcement privacy conversation industry manufacturer protect administration device

Our Model 0.434 encryption enforcement clipper agency wiretap privacy escrow protect security secure

Wiki
SCHOLAR 0.379 opera composer repertory theatre conductor libretto operatic painting orchestral painter

Our Model 0.632 cantata bach recitative oboe continuo soloist chorale viola soprano violin

IMDb
SCHOLAR 0.161 religious beliefs christian society christ views portray racist issues jesus

Our Model 0.333 christ christian religion church jesus religious bible faith god beliefs

Table 2: Some example topics on three datasets, where the italic words are less relevant to the topic.

ent topics across all baselines for three benchmark
datasets in NPMI scores. This demonstrates that
our method promotes the overall quality of gen-
erated topics. More importantly, our model not
only significantly outperforms the baseline without
external knowledge such as SCHOLAR, but also
surpasses other state-of-the-art neural topic models
that incorporate external knowledge, such as CTM,
SCHOLAR+BAT. It suggests that our approach is
more efficient than others for incorporating exter-
nal knowledge into neural topic models.

In addition to the quantitative evaluation, we
also randomly extract sample topics from three
datasets to gain an intuitive view on the quality of
generated topics, as shown in Table 2. Obviously,
the topic words generated by our model capture the
concept of topics in the document rather than the
baseline model. For example, it can be noticed that
in the 20NG dataset our words are closely related to
encryption (agency, wiretap, etc.), rather than some
common words (industry, manufacturer, etc.) from
SCHOLAR. The words generated by our model
in Wiki are more focused on cantata and opera,
while SCHOLAR drifts gradually away from the
music topic to paintings. Similarly in the IMDb
dataset, the topic words generated by our model
reflect religion-related themes, which is different
from SCHOLAR including off-topic words such as
views, racist, etc.

3.3 Document Classification

Since the latent vectors inferred by neural topic
models can be applied as text features (Nan et al.,
2019), we employ the downstream task of docu-
ment classification to compare the predictive perfor-
mance of the models in addition to the evaluation
of topic coherence. Specifically, we collect latent
document-topic features from the trained neural
topic models setting number of topics to 50 and use
these vectors as inputs to train a Random Forest
classifier on the training split separately.

Model 20NG IMDb

W-LDA 52.3 80.3
SCHOLAR 62.8 82.7

CLNTM 58.4 79.5
CTM 62.4 84.5

SCHOLAR + BAT 65.2 83.1

SAE-NTM (Ours) 66.1 85.9

Table 3: Test Accuracy between different topic models
on document classification.

We report classification accuracy on the test split
of 20NG and IMDb in Table 3. It is worth noting
that we aim to evaluate the predictive capability of
topic models by the performance in document clas-
sification, rather than training the model to obtain
higher accuracy. The document-topic features pro-
vided by our proposed model achieve best accuracy
for all the datasets with a significant improvement.
It demonstrates that the proposed sentence-aware
encoder not only discovers topics that are more
meaningful to humans, but also learns better latent
document features.

4 Conclusions

In this paper, we propose a Sentence-Aware En-
coder for Neural Topic Modeling framework: SAE-
NTM to incorporate external knowledge into neu-
ral topic models. The proposed method can cap-
ture document information by performing attention
on sequential sentences in a bag-of-words guided
manner. Extensive experiments have shown that
our framework can achieve state-of-the-art perfor-
mance in topic coherence and encode better latent
document-topic features. In the future, we would
like to explore the possibility of integrating our
approach with neural topic models built on other
frameworks, such as generative adversarial training
(Nan et al., 2019; Wang et al., 2020).
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Limitations

The proposed model with sentence-aware encoder
aims to efficiently incorporate external knowledge
and bag-of-words for topic modeling, which means
that in this work we are mainly interested in how
documents should be encoded for topic inference.
However, the decoder of topic models can also
be coupled with word embeddings through factor-
ization, such as embedded topic models (Dieng
et al., 2020). It is worth exploring how hierarchical
semantic embeddings can be employed for topic
modeling with our model.

In this paper, we do not conduct any fine-tuning
for the pre-trained language model. Our approach
reveals how the frozen pre-trained language model
can be effectively used to improve the performance
of the topic model with limited computational over-
head, given that the parameter size of the pre-
trained language model is much larger than that of
the topic model. Moreover, fine-tuning pre-trained
language models for topic modeling as an unsuper-
vised learning task (Mueller and Dredze, 2021) is
challenging.
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A Analysis on individual topics

To evaluate whether our improvements are mean-
ingful on individual topics, we directly compare
each of the aligned topics generated by the baseline
SCHOLAR without external knowledge and our
model. Follow previous works (Hoyle et al., 2020;
Nguyen and Luu, 2021), we align the topics by
using a variation of competitive linking to greed-
ily approximate the optimal weight of the bipartite
graph matching. And the weight of each link is
calculated based on the similarity between their
word distributions as measured Jenson-Shannon
(JS) divergence (Wong and You, 1985; Lin, 1991).
We iteratively select the topic pair with the lowest
score based on JS divergence, separate the two top-
ics from the topic list, and repeat until the rest JS
score exceeds a certain threshold.

Figure 2 shows the JS-divergences for aligned
topic pairs for three benchmark corpora. Based on
visual inspection, we choose the most aligned 44
topic pairs to conduct the comparison, since there
is no conceptual relationship between topic pairs

Figure 2: Jensen-Shannon divergence for aligned topic
pairs of SCHOLAR and our model.

beyond this point and employ the same threshold
across all three datasets for simplicity. Consider-
ing these aligned topic pairs conceptually related,
we explore the impact of external knowledge on
the baseline topic model on a topic-by-topic ba-
sis as shown in Figure 3. It can be observed that
the number of topics with high NPMI scores from
our model is apparently more than that of the base-
line model. This means that the overall promotion
achieved by our approach can be interpreted as
identifying the topic space generated by the base-
line models and in most cases, improving the co-
herence of individual topics.

Figure 3: The number of aligned topic pairs which our
model improves upon SCHOLAR model.
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Abstract

Document-level context for neural machine
translation (NMT) is crucial to improve the
translation consistency and cohesion, the trans-
lation of ambiguous inputs, as well as several
other linguistic phenomena. Many works have
been published on the topic of document-level
NMT, but most restrict the system to only local
context, typically including just the one or two
preceding sentences as additional information.
This might be enough to resolve some ambigu-
ous inputs, but it is probably not sufficient to
capture some document-level information like
the topic or style of a conversation. When in-
creasing the context size beyond just the local
context, there are two challenges: (i) the mem-
ory usage increases exponentially (ii) the trans-
lation performance starts to degrade. We ar-
gue that the widely-used attention mechanism
is responsible for both issues. Therefore, we
propose a constrained attention variant that fo-
cuses the attention on the most relevant parts
of the sequence, while simultaneously reduc-
ing the memory consumption. For evaluation,
we utilize targeted test sets in combination
with novel evaluation techniques to analyze
the translations in regards to specific discourse-
related phenomena. We find that our approach
is a good compromise between sentence-level
NMT vs attending to the full context, especially
in low resource scenarios.

1 Introduction

Machine translation (MT) is the task of mapping
some input text onto the corresponding transla-
tion in the target language. MT systems typi-
cally operate on the sentence-level and utilize neu-
ral networks trained on large amounts of bilin-
gual data (Bahdanau et al., 2014; Vaswani et al.,
2017). These neural machine translation (NMT)
systems perform remarkably well on many do-
mains and language pairs, sometimes even on
par with professional human translators. How-
ever, when the automatic translations are evalu-

ated on the document-level (e.g. the translation of
a whole paragraph or conversation is evaluated),
they reveal shortcomings regarding consistency in
style, entity-translation or correct inference of the
gender, among other things (Läubli et al., 2018;
Müller et al., 2018; Thai et al., 2022). The goal of
document-level NMT is to resolve these shortcom-
ings by including context information as additional
input when translating a sentence.

In recent years, many works have been published
on the topic of document-level NMT. However,
most of these works focus only on including a
few surrounding sentences as context. When the
context size is increased beyond that, typically a
degradation of overall translation performance is
reported. Additionally, the transformer architecture
as the quasi standard in NMT seems sub optimal
to handle long sequences as input/output, since the
memory complexity increases quadratically with
the sequence length. This is due to the attention
mechanism, where each token in a sequence needs
to attend to all other tokens.

In this work, we propose a constrained attention
variant for the task of document-level NMT. The
idea is to reduce the memory consumption while at
the same time focusing the attention of the system
onto the most relevant parts of the sequence. Our
contributions are two-fold:

1. We observe that the attention patterns become
less focused on the current sentence when
increasing the context-size of our document-
level NMT systems. Therefore we propose a
constrained attention variant that is also more
memory efficient.

2. We utilize a targeted evaluation method to as-
sess automatic translations in regards to con-
sistency in style and coreference resolution.
We find that our document-level NMT ap-
proach performs among the best across all
language-pairs and test scenarios.
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2 Related Work

Many works have been published on the topic of
document-level NMT. The widely used baseline
approach consists of simply concatenating a few
adjacent sentences and feeding this as an input to
the MT system, without modifying the system ar-
chitecture in any way (Tiedemann and Scherrer,
2017; Bawden et al., 2018; Agrawal et al., 2018;
Talman et al., 2019; Nguyen et al., 2021; Majumde
et al., 2022). Also, several modifications to this
baseline concatenation approach have been pro-
posed. Ma et al. (2020) introduce segment embed-
dings and also partially constrain the attention to
the tokens of the current sentence. Zhang et al.
(2020) propose to calculate the self-attention both
on the sentence- and on the document-level and
then combine the two representations. Fernandes
et al. (2021) and Lei et al. (2022) both mask out
tokens in the current sentence to increase context
utilization while Yang et al. (2023) remove tokens
from the context if they are not attended. Typically,
slight improvements in BLEU are reported as well
as more significant improvements on targeted test
sets e.g. for coreference resolution.

Apart from the simple concatenation method,
there exist other approaches to document-level
NMT. They include using a single document-
embedding vector (Macé and Servan, 2019; Sto-
janovski and Fraser, 2019; Jiang et al., 2020; Huo
et al., 2020), multiple encoders (Jean et al., 2017;
Bawden et al., 2018; Wang et al., 2017; Voita
et al., 2018; Zhang et al., 2018), hierarchical at-
tention (Miculicich et al., 2018; Maruf et al., 2019;
Tan et al., 2019; Wong et al., 2020), translation
caches (Maruf and Haffari, 2018; Tu et al., 2018;
Kuang et al., 2018) or dynamic evaluation (Man-
simov et al., 2021). However, these approaches
are less versatile and require significant changes to
the model architecture, often introducing a signifi-
cant amount of additional parameters. Furthermore,
recent works have concluded that the baseline con-
catenation approach first proposed by Tiedemann
and Scherrer (2017) performs as good - if not better
- than these more complicated approaches (Lopes
et al., 2020; Sun et al., 2022).

While the concatenation approach works well for
short context sizes, when used with a larger number
of context sentences, typically performance degra-
dation is reported: Scherrer et al. (2019) saw a
severe performance degradation when using input
sequences with a length of 250 tokens. Liu et al.

(2020) could not get their system to converge when
using context sizes of up to 512 tokens. They im-
prove training stability by adding additional mono-
lingual data via pre-training. Bao et al. (2021) also
report that their systems with context length of
more than 256 tokens fail to converge. They pro-
pose to partially constrain the attention to the cur-
rent sentence, similar to Zhang et al. (2020). Sun
et al. (2022) try to translate full documents with
the concatenation approach but could not get their
system to converge during training. Their solution
is to mix document- and sentence-level data, which
reportedly improves system convergence. Li et al.
(2022) report severe performance degradation for
context sizes longer than 512 tokens. They argue
this is due to insufficient positional information and
improve performance by repeatedly injecting this
information during the encoding process. However,
increasing the context size seems to not always re-
sult in performance degradation. In their works,
Junczys-Dowmunt (2019) and Saleh et al. (2019)
train systems with a context size of up to 1000
tokens without degradation in translation quality,
which stands in contrast to the works mentioned
above and which we will discuss again in the con-
text of our own results. We want to point out that
all of the approaches mentioned above still have
the problem of quadratically increasing resource
requirements, which poses a big challenge even on
modern hardware.

Since our proposed approach consists of modify-
ing the attention matrix in the model architecture,
we give a brief overview of previous works related
to this concept. The works of Ma et al. (2020),
Zhang et al. (2020) and Bao et al. (2021) are most
closely related and were already mentioned above.
All three papers restrict the attention (partially) to
the current sentence and combine sentence- and
document-level attention context vectors for the
final output. However, this means all approaches
still suffer from the quadratic dependency on the
number of input tokens. Luong et al. (2015) were
among the first to propose using the attention con-
cept for the task of MT. They also proposed using
a sliding-window with target-to-source alignment
for attention similar to us. However, they only
work on sentence-level NMT and to the best of our
knowledge, this approach was never before trans-
ferred to document-level NMT. Shu and Nakayama
(2017) and Chen et al. (2018) both extend the ap-
proach of Luong et al. (2015) while still working
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solely on sentence-level NMT. Our approach is
also related to the utilization of relative positional
encoding, which was introduced by Shaw et al.
(2018) and later extended by Yang et al. (2018)
to be applicable for cross-attention. The work by
Indurthi et al. (2019) should also be mentioned,
where they pre-select a subset of source tokens
on which to perform attention on. Again, all of
the above mentioned works only perform experi-
ments on sentence-level NMT. The works of Child
et al. (2019), Sukhbaatar et al. (2019) and Guo et al.
(2020) are also related, since they use attention
windows similar to us for tasks other than MT.

Finally, we briefly want to touch on the sub-
ject of automatic evaluation of document-level MT
systems. Many works only report results on gen-
eral MT metrics like BLEU (Papineni et al., 2002),
sometimes matching n-grams across sentence-
boundaries. However, it has been argued that these
metrics do not capture well the very specific im-
provements that could be expected by including
document-level context and that the reported im-
provements rather come from regularization ef-
fects and comparing to sub optimal baseline perfor-
mance (Kim et al., 2019; Li et al., 2020; Nguyen
et al., 2021). Several targeted test suites have been
released to better assess the improvements gained
by document-level NMT (Müller et al., 2018; Baw-
den et al., 2018; Voita et al., 2019; Jwalapuram
et al., 2019). These test suites have some lim-
itations, for example they are language-specific
and they are based on just scoring predefined con-
trastive examples without scoring the actual transla-
tions. More recently, Jiang et al. (2022) and Currey
et al. (2022) have released frameworks that allow
to score the actual MT hypotheses in regards to
their consistency regarding specific aspects of the
translation.

3 Methodology

Here, we explain the baseline concatenation ap-
proach (Section 3.1), the more refined method that
we are comparing ourselves against (Section 3.2)
as well as our own approach (Section 3.3). We
also discuss our different evaluation approaches in
Section 3.5.

3.1 The Baseline Concatenation Approach

The baseline concatenation approach is very sim-
ple and follows Tiedemann and Scherrer (2017)
using the vanilla transformer architecture (Vaswani

Model Context Attn. [%] BLEU

sent.-level 0 sent. 100.0 32.8
concat adj. 1 sent. 76.0 33.1

1000 tok. 46.6 29.5

Table 1: Percentage of attention on the n-th source
sentence during decoding the n-th target sentence, as
well as overall translation quality measured in BLEU,
for the newstest2018 test set of the NEWS task.

et al., 2017). Assume we are given a document
D = (Fn, En)

N
1 consisting of N source-target

sentence-pairs (Fn, En). If we want our model
to have a context length of k sentences, we simply
concatenate the current input sentence with its k−1
predecessor sentences and the input to the model
would be

Fn−k <sep> Fn−k+1 ... <sep> Fn <eos>

while on the target side we include the preceding
sentences as a prefix

En−k <sep> En−k+1 ... <sep> En−1 <sep>.

We use a special token <sep> as a separator be-
tween adjacent sentences and <eos> denotes the
end of the sequence. This is done to make it easier
for the model to distinguish between the sentence
that needs to be translated and the context. Further-
more, we use a special token F0 = E0 = <bod> to
denote the start of a document. Since we use the
vanilla transformer architecture with self-attention
and cross-attention components, the memory usage
is O(L2) with L being the sequence length.

When we train full document-level systems, we
simply concatenate all sentences in the document
using again the special <sep> token. Due to hard-
ware limitations, if the length of the target-side
of the document exceeds 1000 tokens, we split the
document into smaller parts of roughly equal length
(i.e. a document of length 1500 tokens would be
split into two parts with ca. 750 tokens each).

In a preliminary study, we train systems using
no context (sentence-level), just a single sentence
as context as well as the maximum context size of
1000 tokens. When looking at the percentage of
attention that is payed to the n-th source sentence
Fn when decoding the n-th target sentence En (ex-
tracted from cross-attention module, see Table 1)
we find that this percentage becomes lower as the
context size increases. This finding motivates us to
explore approaches that bias the attention towards
the current sentence.
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3.2 LST-attention
This method was proposed by Zhang et al. (2020)
and is called Long-Short Term (LST) attention. The
authors find that their approach outperforms the
baseline concatenation approach but they only use
a maximum of 3 sentences as context. Nevertheless
we deem this approach promising, since it also fo-
cuses the attention onto the current sentence. The
input to the system is augmented in the same way
as described in Section 3.1. Given some queries
Q ∈ RI×d, keys K ∈ RJ×d and values V ∈ RJ×d,
Zhang et al. (2020) formulate their restricted ver-
sion of the attention as1

A(Q,K, V ) = softmax
(
Q ·K⊺
√
d

+M

)
V

with d being the hidden dimension of the model
and M ∈ RI×J being the masking matrix. This
masking matrix is defined as

Mi,j =

{
0 , s(i) = s(j)

− inf , otherwise

where s(·) ∈ 1, .., N is a function that returns the
sentence index that a certain position belongs to.
This means we are restricting the attention to be cal-
culated only within the current sentence. For self-
attention in the encoder and the decoder, Zhang
et al. (2020) calculate both the restricted and the
non-restricted variant and then combine the output
context-vectors via concatenation and a linear trans-
formation. The cross-attention between encoder
and decoder remains unchanged in this approach
and the memory consumption remains O(L2).

3.3 window-attention
This method is proposed by us. We can use the
same formulation as above to describe this ap-
proach by simply changing the definition of the
attention mask to

Mi,j =

{
0 , bi − w ≤ j ≤ bi + w

− inf , otherwise
(1)

where w is the window size and bi ∈ 1, ..., J is
a target-source alignment. This means a certain
query vector qi is only allowed to attend to the
key vectors kj that surround the position bi that

1In practice we use multi-head attention in all our architec-
tures, but we omit this in the formulas for sake of simplicity.
Also, for all methods, causal masking is applied in the decoder
self-attention just like in the vanilla transformer.

this query vector is aligned to. We replace all self-
attention and cross-attention modules in our net-
work with this window-attention variant. Please
note that in practice we do not calculate this mask,
but instead we first select the corresponding key-
vectors for each query and then calculate atten-
tion only between these subsets which reduces the
memory consumption from O(L2) to O(L · w).
We also want to point out that with this approach,
the context is not as restricted as it seems on first
glance. For any individual attention module, the
context is restricted to 2 · w or w for self-attention
in the encoder and decoder respectively. However,
since in the transformer architecture we stack mul-
tiple layers, we get a final effective context size of
2 · w · num_enc_layers+ w · num_dec_layers.

This approach requires us to define an alignment
function bi : [1, I] → [1, J ]. For self-attention, we
assume a 1-1 alignment so the alignment function
is the identity function bi = i. For cross-attention,
during training we use a linear alignment function

bi = round(
J

I
· i)

where J is the number of tokens in the source doc-
ument and I is the number of tokens in the target
document. This is not possible during decoding, as
we do not know the target document length before-
hand. Therefore, we propose three different ways
to approximate the alignment during decoding:

1. 1-1 alignment: bi = i

2. linear alignment: bi = round(train_ratio · i)
where we define train_ratio as the average
source-target ratio over all documents in the
training data.

3. sent-align: assume we have already produced
N ′ full target sentences (i.e. we have pro-
duced N ′ <sep> tokens) up to this point, then

bi =

{∑N ′
n=1 Jn + 1 , ei−1 == <sep>

bi−1 + 1 , otherwise

with Jn being the length of the n-th source
sentence in the input document. In simple
terms, when starting to decode a new sentence,
we always force-align to the beginning of the
corresponding source sentence.

We also test the window-attention approach with
relative positional encoding in the self-attention
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instead of absolute positional encoding, which in
this framework only requires a small modification
to Equation 1:

Mi,j =

{
ri−j , bi − w ≤ j ≤ bi + w

− inf , otherwise

where ri−j ∈ Rd are additional learnable parame-
ters of the network.

3.4 Decoding
During decoding, given a document FN

1 , we want
to find the best translation ÊN

1 according to our
model. We can not perform exact search due to
computational limitations, therefore we have to use
approximations. There exist multiple approaches
for decoding with a document-level NMT system
and since we could not determine a single best
approach from the literature, we describe and com-
pare two competing approaches.

Full Segment Decoding (FSD) (Liu et al., 2020;
Bao et al., 2021; Sun et al., 2022): we
split the document into non-overlapping parts
F k
1 , F

2k
k+1, ..., F

N
N−k and translate each part

separately using

Êi
i−k = argmax

Ei
i−k

{
p(Ei

i−k|F i
i−k)

}
,

which is approximated using standard beam
search on the token level (we use beam size
12 for all experiments). For the full document-
level systems, we simply use

ÊN
1 = argmax

EN
1

{
p(EN

1 |FN
1 )

}
.

Sequential Decoding (SD) (Miculicich et al.,
2018; Voita et al., 2019; Garcia et al., 2019;
Fernandes et al., 2021): we generate the
translation sentence by sentence, using the
previously generated target sentences as
context:

Êi = argmax
Ei

{
p(Ei|Êi−1

i−k , F
i
i−k)

}
.

3.5 Evaluation
For all tasks we report BLEU (Papineni et al., 2002)
and TER (Snover et al., 2006) using the SacreBLEU
(Post, 2018) toolkit. In addition, for the two En-De
tasks (NEWS and OS) we analyze the translations
in regards to ambiguous pronouns and style. For

pronouns, the goal is to measure how well a system
can translate the English 3rd person pronoun ‘it’
(and its other forms) into the correctly gendered
German form (which can be male, female or neuter
depending on the context). For style, the goal is to
measure, how well a system can translate the 2nd
person pronoun ‘you’ (and its other forms) into the
correct style in German. For example, ‘you’ (singu-
lar) can be translated into ‘sie’ or ‘du’ in German,
depending if the setting is formal or informal. We
employ several strategies to determine the systems
ability to disambiguate these phenomena.

We utilize the ContraPro test suite (Müller et al.,
2018) and report the contrastive scoring accuracy
for pronoun resolution. The test suite contains
12,000 English sentences, each with the correct
German reference as well as 2 contrastive German
references where the pronoun has been changed
to a wrong gender. We score all test cases with
the NMT system and each time the system gives
the best score to the true reference, it gets a point.
In the end we report the scoring accuracy, i.e. the
number of points the system has gathered divided
by 12,000.

Additionally we also report F1 scores for pro-
noun and style translation, the method for which
is inspired by Jiang et al. (2022). We use parts of
speech (POS) taggers as well as language-specific
regular expressions to identify ambiguous pro-
nouns/formality in the test sets. We then com-
pare the occurrences in the reference against the
occurrences in the hypothesis, calculate precision
and recall and then finally the F1 score for both
pronoun as well as formality translation. The
exact algorithm as well as detailed data statis-
tics for the test sets are given in Appendix A.1.
We report pronoun translation F1 score for both
NEWS and OS tasks and the formality transla-
tion F1 score only for the OS task, since in the
NEWS test set there are not enough examples of
ambiguous formality cases. Our extension to the
work of Jiang et al. (2022) can be found here:
https://github.com/christian3141/BlonDe.

4 Experiments

We perform experiments on three document-level
translation benchmarks. We call them NEWS
(En→De) with newstest2018 as test set, TED
(En→It) with tst2017 as test set and OS (En→De)
where the test set is simply called test. NEWS is
a collection of news articles, TED is a collection of
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transcribed TED talks and their respective transla-
tions and OS consists of subtitles for movies and
TV shows. Especially the latter holds many exam-
ples for discourse between different entities. For
the details regarding data conditions, preparation
and training, we refer to Appendix A.2.

4.1 GPU Memory efficiency
First, we compare the GPU memory consumption
of the baseline concat-adj. approach against the
window-attention approach for various input se-
quence lengths. The results are shown in Table 2.
As expected, the memory usage increases at a much

# target
tokens

concat-adj.
window-attn

w = 10 w = 20

736 2.3 GB 2.4 GB 3.5 GB
1472 5.8 GB 3.9 GB 5.9 GB
2208 10.9 GB 5.2 GB 8.5 GB

Table 2: GPU-memory consumption for the different
approaches when training on a single document of spec-
ified number of target tokens.

higher rate for the concat-adj. approach, while the
window-attention approach scales roughly linearly,
the slope being a function of the window-size w.

4.2 Comparison of Decoding Strategies
After training all models on the NEWS task accord-
ing to Appendix A.2, we test the different search
strategies for each of the systems, the result of
which can be found in Table 3. For the baseline
concat-adj. approach as well as the LST-attn ap-
proach, FSD works best. However, we still see sig-
nificant performance degradation for the systems

Model Context
Search

Strategy
BLEU

sent.-level 0 sent. - 32.8
concat-adj. 2 sent. FSD 33.4

SD 33.0
1000 tok. FSD 29.5

SD 23.1
LST-attn 1000 tok. FSD 30.0

SD 22.2
window-attn 1000 tok. FSD 31.5

SD 33.1

Table 3: Results for employing the different search
strategies for translating the newstest2018 test set of
the NEWS task.

using long context information. For concat-adj.
and LST-attn with 1000 tokens context size, SD
performs very poorly. This is because when begin-
ning translating a document, the input sequences
are very short and the systems can not appropri-
ately handle that. However, FSD sometimes leads
to sentence-misalignment while translating a docu-
ment, resulting in a lower BLEU score as well. For
the window-attention approach (rel. pos. enc., sent-
align, window-size 20) we find that the SD decod-
ing strategy works best. Since this approach seems
to be able to better handle short input sequences,
SD performs better than FSD, since it seems more
robust to sentence-misalignment. Moving forward,
all numbers reported will be generated with the best
respective decoding approach, i.e. SD for window-
attention and FSD for all other approaches.

4.3 Hyperparameter Tuning
Our window-attention approach has three hyperpa-
rameters that need to be tuned: (i) positional en-
coding variant (ii) alignment variant during search
(iii) window size. Again, we use the NEWS task
for tuning and the results for the different variants
can be found in Table 4.

In terms of positional encoding, relative works
significantly better than absolute for the window-
attention system. We also test relative positional
encoding (window-size 20) for the baseline concat-
adj. method, but here the training did not converge.
This is, because for long input sequences the sys-
tem without explicit target-source alignment can no
longer distinguish the token ordering on the source
side (on the target side it is still possible due to the
causal attention mask). The only way to resolve
this would be to drastically increase the window-
size for the relative positions, however, this would
add a significant amount of additional parameters
to the network so we decide against this. In terms
of alignment, using the sent-align variant signifi-
cantly outperforms the other approaches. For the
window-size, 20 works best. An important find-
ing is, that if we make the window too large, we
start losing performance, probably due to the less
focused attention problem discussed in Section 3.1.

4.4 Final Performance Comparison
In Table 5 we report the translation performance
of the different document-level approaches on all
three translation benchmarks measured in terms
of BLEU and TER. None of the document-level
systems can consistently outperform the sentence-
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Model pos. enc. Alignment window-size BLEU TER

concat-adj. abs. - - 29.5 53.7
rel. - - N/A N/A

window-attn abs. 1-1 20 29.7 51.7
train avg. 20 28.1 55.3
sent-align 10 28.3 53.7

20 30.3 50.9
30 29.4 52.2

rel. 1-1 20 31.9 49.8
train avg. 20 30.5 53.2
sent-align 10 30.6 51.8

20 33.1 48.1
30 32.8 48.4

Table 4: Results for the different hyperparameter settings of the window-attention system reported on the
newstest2018 test set of the NEWS task. All systems have context size 1000 tokens.

Model Context
NEWS TED OS

newstest2018 tst2017 test
BLEU TER BLEU TER BLEU TER

sent.-level (external) 0 sent. †32.3 - ‡33.4 - *37.3 -
sent.-level (ours) 32.8 49.0 34.2 46.3 37.1 43.8
concat adj. 2 sent. 33.4 48.6 34.3 46.3 38.2 43.9

1000 tok. 29.5 53.7 32.1 48.4 38.1 46.0
LST-attn 1000 tok. 30.0 53.1 29.8 54.5 38.5 45.1
window-attn 1000 tok. 33.1 48.1 34.6 45.8 38.3 44.4

Table 5: Results for the different document-level approaches in terms of BLEU and TER on the three translation
benchmarks. Best results for each column are highlighted. External baselines are from † Kim et al. (2019), ‡ Yang
et al. (2022) and *Huo et al. (2020).

level baseline on all tasks. On the OS test set,
there is a disagreement between BLEU and TER

which we think comes from the fact that the aver-
age sentence-length on this test set is quite short.
The hypothesis of the sentence-level system is the
shortest of all hypotheses and also shorter than
the reference which gets punished more heavily
by BLEU than TER. Out of all full-document ap-
proaches, window-attention performs best and is
on par with the sentence-level baseline and the
document-level system using only 2 sentences as
context. For full-document translation, LST-attn
performs better than the baseline concatenation ap-
proach but still falls behind the sentence-level sys-
tem especially on the NEWS and TED tasks. One
possible reason for why these approaches work bet-
ter on OS is, that for this task we have much more
training data available than for NEWS and TED.
We argue that this could also be the reason for the
conflicting results reported by Junczys-Dowmunt

(2019) and Saleh et al. (2019) compared to the
other works who report performance degradation
for longer context sizes (see Section 2). However,
we leave a detailed analysis of this for future work.

Next, we analyze the ability of the systems to
translate ambiguous pronouns and to translate in
a consistent style using the methods explained in
Section 3.5. The results for the two En→De tasks
can be found in Table 6. For both NEWS and OS,
all document-level systems can significantly im-
prove over the sentence-level baseline in terms of
pronoun translation. We also find that a context
longer than two sentences does not seems to help
for the pronoun task. This is actually to be expected
since typically the distance between noun and pro-
noun is not that large and according to Müller et al.
(2018), the overwhelming majority of ContraPro
test cases do not require more than two sentences
as context. For the correct translation of the style
however, the larger context size is clearly beneficial,
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Model Context
NEWS OS

ContraPro ContraPro test

BLEU

Scoring
Acc.

Pronoun

Pronoun
Trans.

F1
BLEU

Scoring
Acc.

Pronoun

Pronoun
Trans.

F1

Formality
Trans.

F1
sent.-level 0 sent. 18.4 48.2 44.5 29.7 45.8 40.3 59.4
concat adj. 2 sent. 19.6 67.9 54.1 31.2 81.8 63.2 61.7

1000 tok. 15.4 61.9 47.8 29.9 83.1 64.6 70.1
LST-attn 1000 tok. 16.8 61.4 51.3 29.1 83.3 64.8 70.9
window-attn 1000 tok. 19.6 63.0 51.9 31.4 83.9 66.5 67.9

Table 6: Results for the different document-level approaches in terms of pronoun and formality translation. Best
results for each column are highlighted.

source reference
What’s between you and Dr. Webber - is none of my business... Was zwischen dir und Dr. Webber ist, geht mich nichts an...
- You don’t owe me an apology. Du schuldest mir keine Entschuldigung.
You owe Dr. Bailey one. Du schuldest Dr. Bailey eine.
We were taking a stand for Dr. Webber. Wir haben uns für Dr. Webber eingesetzt.
I don’t understand why... Ich verstehe nicht wieso...
Dr. Webber doesn’t need you to fight his battles. Dr. Webber braucht dich nicht, um seine Schlachten zu kämpfen.
What you did stands to hurt this entire hospital. Was du getan hast, hat dem ganzen Krankenhaus geschadet.
Your first priority needs to be this place and its patients. Deine oberste Priorität muss diesem Haus und seinen Patienten gelten.

sentence-level-hypothesis window-mask-hypothesis
Was zwischen Ihnen und Dr. Webber ist, geht mich nichts an... Was zwischen dir und Dr. Webber ist, geht mich nichts an...
- Du schuldest mir keine Entschuldigung. - Du schuldest mir keine Entschuldigung.
Sie schulden Dr. Bailey etwas. - Du schuldest Dr. Bailey eine.
Wir haben für Dr. Webber Partei ergriffen. Wir haben für Dr. Webber Stellung bezogen.
Ich verstehe nicht, warum... Ich verstehe nicht, warum...
Dr. Webber braucht Sie nicht, um seine Schlachten zu schlagen. Dr. Webber braucht dich nicht, um seine Schlachten zu kämpfen.
Was du getan hast, verletzt das gesamte Krankenhaus. Was du getan hast, könnte das ganze Krankenhaus verletzen.
Ihre oberste Priorität muss dieser Ort und seine Patienten sein. Deine oberste Priorität muss dieser Ort und seine Patienten sein.

Table 7: Example translation of a snippet from the OpenSubtitles test set. Formal 2nd person pronouns are marked
in red and informal ones are marked in blue.

as the system with just 2 sentences as context can
barely outperform the sentence-level baseline. To
correctly infer the style of a conversation, ideally
the whole dialog should be part of the context, es-
pecially the beginning of the conversation. In Table
7, we show a snippet of the test set of the OS task
together with the translations of the sentence-level
system and the window-attention system. This ex-
ample highlights the need for long-context NMT
systems especially for the task of dialogue transla-
tion, since there we need to stay consistent in terms
of style, which the sentence-level system can not
manage. Overall, the LST-attn approach performs
best for the task of formality translation, but the
other full-document systems are not far behind.

5 Conclusion

In this work, we focus on methods to increase
the context-size for document-level NMT systems.

We point out the shortcomings of the baseline ap-
proaches to long-context document-level NMT and
in turn propose to modify the attention component
to be more focused and also to be more memory
efficient. We compare our approach against ap-
proaches from literature on multiple translation
tasks and using different targeted evaluation meth-
ods. We confirm the improved memory efficiency
of the proposed method. We find that for some
discourse phenomena like pronoun translation, the
longer context information is not necessary. For
other aspects, like consistent style translation, the
longer context is very beneficial. It seems that
the baseline concatenation approach needs large
amounts of training data to perform well for larger
context sizes. We conclude that our approach per-
forms among the best across all tasks and evalua-
tion methods, with the additional benefit of reduced
memory consumption for long input sequences.
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Limitations

This work is about document-level NMT, we fo-
cus specifically on methods that improve the model
performance for long input sequences. Due to con-
strained resources, this work has several limitations.
To be able to train all methods including the in-
efficient baseline approach, we have to limit the
context size to 1000 tokens. While we do a compar-
ison to existing approaches, other approaches have
been proposed to improve the performance of sys-
tems with long context information, which we do
not compare against. We run experiments on three
different tasks, but two of them are low resource
and two of them translate into German, which was
necessary because we only had access to German
language experts for preparing the evaluation.
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A Appendix

A.1 Pronoun and Formality Translation
Evaluation

Here, we explain how we calculate the pronoun
translation and formality translation F1 scores.
Pronouns
For each triplet (Fn, En, Ên) (source, hypothe-
sis, reference) of our test data we first check if it
contains a valid ambiguous pronoun. That means,
in the source sentence there must be an English
3rd person pronoun in the neutral form and it also
must be labeled as a pronoun by the English POS-
tagger. We also check if a 2nd or 3rd person plural
pronoun is present in the source and if that is the
case, we do not consider female pronouns on the
target side, since we could not distinguish if e.g.
‘sie’ is the translation of ‘it’ or ‘they’. This would
require a word alignment between source and hy-
pothesis/reference which we do not have. If we
found the example to be valid, we then check for
occurrences of 3rd person pronouns in the male,
female and neuter forms, in both reference and hy-
pothesis using a German POS-tagger as well as
language-specific regular expressions. After go-
ing through the complete test data (Fn, En, Ên)
sentence-by-sentence we calculate an F1 score for
pronoun translation:

F1pro =
2 · Ppro · Rpro

Ppro + Rpro

with precision Ppro =

∑N
n=1

∑
x min

(
CP(Fn, En, x),CP(Fn, Ên, x)

)

∑
n

∑
x CP(Fn, En, x)

and recall Rpro =

∑N
n=1

∑
x min

(
CP(Fn, En, x),CP(Fn, Ên, x)

)

∑
n

∑
x CP(Fn, Ên, x)

where CP(·, ·, ·) counts the number of
valid pronoun occurrences and x ∈
{male, female, neuter}.
Formality
We follow almost exactly the same steps as for de-
tecting the pronoun translations described above.
The only differences are that we check for valid-
ity slightly differently and instead of pronouns we
check for occurrences of formal/informal style. For
sentence-pairs where 3rd person female/neuter or

3rd person plural pronouns are present, we do not
count the formal occurrences, since we might not
be able distinguish the German translations in these
cases. We calculate an F1 score for formality trans-
lation using

F1for =
2 · Pfor · Rfor

Pfor + Rfor

with precision Pfor =

∑N
n=1

∑
x min

(
CP(Fn, En, x),CP(Fn, Ên, x)

)

∑
n

∑
x CP(Fn, En, x)

and recall Rfor =

∑N
n=1

∑
x min

(
CP(Fn, En, x),CP(Fn, Ên, x)

)

∑
n

∑
x CP(Fn, Ên, x)

where CP(·, ·, ·) counts the number of valid pro-
noun occurrences and x ∈ {formal, informal}.

The POS-taggers we use are en_core_web_sm2

for English and de_core_news_sm3 for German.
For both languages, spaCy claims an accuracy of
97% for POS-tagging and in our testing we did not
find even a single error in pronoun-tagging. For cal-
culating the Pronoun Translation F1 score we use
the same ContraPro test set as described in Section
3.5 with the correct references. For calculating the
Formality Translation F1 score, we use the test set
from the OS En-De task. The statistics for both test
sets are reported in Table 8. In the ContraPro test
set, for each gender class we have exactly 4,000 ex-
amples. The fact that we identify more than 4,000
valid examples for the pronoun case means, that in
some cases we identify multiple pronouns per sen-
tence. All in all, we find the classes to be relatively
balanced for these test sets.

A.2 Dataset Statistics and Experimental
Setups

For the NEWS En→De task, the parallel train-
ing data comes from the NewsCommentaryV14 cor-
pus4. As validation/test set we use the WMT
newstest2015/newstest2018 test sets from the
WMT news translation tasks (Farhad et al., 2021).
For the TED En→It task, the parallel training
data comes from the IWSLT17 Multilingual Task
(Cettolo et al., 2017). As validation set we

2https://spacy.io/models/en
3https://spacy.io/models/de
4https://data.statmt.org/news-commentary/v14/
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Pronoun Trans. F1 score Formality Trans. F1 score

neuter male female formal informal

# examples 4565 4688 4001 416 605

Table 8: Number of valid examples for specific ambiguous pronoun/style translation in the reference of our test sets.

use the concatenation of IWSLT17.TED.dev2010
and IWSLT17.TED.tst2010 and as test set we
use IWSLT17.TED.tst2017.mltlng. For the OS
En→De task, the parallel training data comes from
the OpenSubtitlesV2018 corpus (Lison et al.,
2018). We use the same train/validation/test splits
as Huo et al. (2020) and additionally remove all
segments that are used in the ContraPro test suite
(Müller et al., 2018) from the training data. The
data statistics for all tasks can be found in Table 9.

task dataset # sent. # doc.
NEWS train 330k 8.5k

valid 2.2k 81
test 3k 122
ContraPro 12k 12k

TED train 232k 1.9k
valid 2.5k 19
test 1.1k 10

OS train 22.5M 29.9k
valid 3.5k 5
test 3.8k 5
ContraPro 12k 12k

Table 9: Data statistics for the different document-level
translation tasks.

Since in the original release of ContraPro
only left side context is provided, we ex-
tract the right side context ourselves from the
OpenSubtitlesV2018 corpus based on the meta-
information of the segments. For translation of
the ContraPro test set, as well as for scoring the
contrastive references, we take both the left- and
the right-side context into account. For the full-
document systems, we cap the context size for the
ContraPro test set to 4 sentences for computational
reasons.

We tokenize the data using byte-pair-encoding
(Sennrich et al., 2016; Kudo, 2018) with 15k joint
merge operations (32k for OS En→De). The mod-
els are implemented using the fairseq toolkit (Ott
et al., 2019) following the transformer base archi-
tecture (Vaswani et al., 2017) with dropout 0.3 and

label-smoothing 0.2 for NEWS En→De and TED
En→It and dropout 0.1 and label-smoothing 0.1
for OS En→De. This resulted in models with ca.
51M parameters for NEWS and TED and ca. 60M
parameters for OS for both the sentence-level and
the document-level systems.

Let us assume that the training data C consists
of M documents Dm and each document consists
of source-target sentence pairs (Fn,m, En,m). The
goal of training is to find the optimal model param-
eters θ̂ which minimize the loss function:

θ̂ = argmin
θ

L(θ)

When training the local context models, we define
the loss function:

L(θ) = − 1

|C|
M∑

m=1

Nm∑

n=1

log pθ(E
n,m
n−k,m|Fn,m

n−k,m).

When we take full documents as input to the model,
the loss function simply becomes

L(θ) = − 1

M

M∑

m=1

log pθ(E
Nm,m
1,m |FNm,m

1,m ).

All systems are trained until the validation per-
plexity does no longer improve and the best check-
point is selected using validation perplexity as well.
Training took around 24h for NEWS and TED and
around 96h for OS on a single NVIDIA GeForce
RTX 2080 Ti graphics card. Due to computational
limitations, we report results only for a single run.
For the generation of segments (see Section 3.4),
we use beam-search on the token level with beam-
size 12 and length normalization.

125



Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023), pages 126–144
July 13-14, 2023 ©2023 Association for Computational Linguistics

Unpacking Ambiguous Structure: A Dataset for Ambiguous Implicit
Discourse Relations for English and Egyptian Arabic

Ahmed Ruby1 Sara Stymne1 Christian Hardmeier2

1Uppsala University, Department of Linguistics and Philology
2IT University of Copenhagen, Department of Computer Science
{ahmed.ruby, sara.stymne}@lingfil.uu.se, chrha@itu.dk

Abstract

In this paper, we present principles of con-
structing and resolving ambiguity in implicit
discourse relations. Following these princi-
ples, we created a dataset in both English
and Egyptian Arabic that controls for seman-
tic disambiguation, enabling the investigation
of prosodic features in future work. In these
datasets, examples are two-part sentences with
an implicit discourse relation that can be am-
biguously read as either causal or concessive,
paired with two different preceding context sen-
tences forcing either the causal or the conces-
sive reading. We also validated both datasets by
humans and language models (LMs) to study
whether context can help humans or LMs re-
solve ambiguities of implicit relations and iden-
tify the intended relation. As a result, this
task posed no difficulty for humans, but proved
challenging for BERT/CamelBERT and ELEC-
TRA/AraELECTRA models.

1 Introduction

Coherence is essential for effective communication
in written or spoken language (Adornetti, 2015),
and discourse connectives play a crucial role in
achieving it by helping readers or listeners to infer
the intended discourse relation holding between
two text spans (Asr and Demberg, 2020). Listen-
ers generally have little difficulty recovering the
intended meanings with implicit connectives which
are inferred between two juxtaposed independent
sentences. They evidence this by combining lexi-
cal cues, general reasoning, and prosodic cues to
effectively identify the implicit discourse relation.
When interpreting ambiguous implicit relations,
prosodic cues can be used for disambiguation in
spoken language (Tyler, 2014; Jasinskaja, 2009),
while semantics is essential in both speech and
writing, ensuring effective communication and un-
derstanding. Consider for instance the following
examples:

(a) John is tall, so she will ask him out.
(b) John is tall, but she will ask him out.
(c) John is tall. She will ask him out.

The discourse relations in both (a) and (b) can
be understood by listeners and readers because the
connectives "so" and "but", respectively, explic-
itly indicate the discourse relation. Although the
implicit discourse relation is ambiguous in (c), lis-
teners might be able to infer it through prosody.
However, it is still an open question whether spe-
cific prosodic cues are helpful for disambiguation
in this case. Moreover, disambiguation can also
be achieved in written and spoken language using
semantic cues (e.g., additional context), such as
adding different preceding context sentences that
can enforce either the causal or the concessive read-
ing. For instance, the preceding context for the
casual and concessive reading can be:

(1) She prefers tall men. John is tall. She
will ask him out.

(2) She prefers short men. John is tall. She
will ask him out.

The additional context can influence the ambigu-
ous structure, suggesting a likely interpretation in
(1) that her preference for tall men implies a causal
relation, while her preference for short men indi-
cates a concessive interpretation in (2).

We observed that the ambiguous structure of
implicit relations arises when the first argument
(Arg1) does not provide specific details about the
event being described and can be influenced by ad-
ditional context information. However, for some
ambiguous examples or structures, there is a clearly
preferred reading even without any context, unless
there is extremely strong evidence for a different
reading. Consider for instance the following exam-
ple (adapted from (Carston, 1993))

(a) Max fell. John pushed him.
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The preferred reading for this example is that
the pushing caused the falling. However, there is
another possible reading where Max fell first and
was later pushed by John, but it needs extremely
strong evidence to force this interpretation. This
means that it is hard to figure out if other aspects
than semantics contribute to inferring the intended
reading.

In order to explore how ambiguous implicit rela-
tions can be successfully resolved by the listener,
we plan to conduct, in future work, a controlled
experiment on the impact of prosody without be-
ing disambiguated by the semantic component. To
support this, this study presents a small dataset of
"truly" ambiguous examples for implicit discourse
relations for both English and Egyptian Arabic,
which cannot be resolved in the absence of any
context, so that it enables a future investigation of
prosodic features. We create a set of sentences with
an implicit discourse relation that can be ambigu-
ously read as either causal or concessive with two
different preceding context sentences forcing either
the causal or the concessive reading. The dataset is
validated by humans who read these sentences and
filled in the intended implicit discourse connective
by choosing the most appropriate option from the
provided list of connectives.

We were able to identify the ambiguous structure
of implicit discourse relations and propose a new
set of principles to construct ambiguity in implicit
discourse relations. This process led to the creation
of a small dataset for English and Egyptian Arabic
that was validated by human participants. As far as
we are aware, this is the first dataset that addresses
ambiguous implicit discourse relations.

Since human participants were able to identify
the intended implicit connectives in a set of exam-
ples, we investigate whether language models like
BERT (Devlin et al., 2019) and ELECTRA (Clark
et al., 2020) can also fill in the implicit connectives
in the examples correctly, which is a challenging
task, as context barely influenced the choice made
by these models.

2 Related Work

2.1 Discourse relation datasets

Although discourse relations have been extensively
studied over the last two decades, leading to elabo-
rate taxonomies and inventories of varying scope
and levels of abstraction, it is still challenging to
provide a general definition for implicit discourse

relations (Jasinskaja, 2009). However, there are
some inferred relation types that are considered in
Wolf and Gibson (2004); Miltsakaki et al. (2005);
Prasad et al. (2008); Lavid and Hovy (2010) and
annotated implicit relations were covered in the
Penn Discourse Tree Bank 2.0 (PDTB 2.0) (Prasad
et al., 2008), which is the most popular resource.
Moreover, there are discourse-annotated corpora
that cover implicit relations in multiple languages,
such as TED Multilingual Discourse Bank, or TED-
MDB, which contains transcribed TED talks in
English, German, Russian, European Portuguese,
Polish, and Turkish (Zeyrek et al., 2020), as well
as in individual languages following the PDTB ap-
proach, such as the Hindi Discourse Relation Bank
(Oza et al., 2009) and the Chinese Discourse Tree-
banks for Chinese. (Yuping et al., 2014; Long et al.,
2020).

2.2 Discourse relations and ambiguity

Ambiguous structures can signal multiple potential
interpretations of implicit discourse relations, and
the intended relation can be inferred by context or
by drawing on one’s background assumption (Ver-
hagen, 2000). Our study focuses on ambiguous
implicit discourse relations, where a two-part sen-
tence implies various potential relations, and must
be inferred by context. Considering the distribu-
tion of discourse connectives in both PDTB and
LADTB as reported by (Alsaif, 2012), the connec-
tives ’but’ and ’so’ are commonly used in English
and Arabic (Pitler et al., 2008; Alsaif, 2012). This
observation has inspired the present study to ex-
plore the implicit relations that can be expressed
by these particular connectives.

3 Ambiguity in inferring implicit
relations

Each discourse relation involves two arguments,
which are typically expressed as two clauses or
phrases (Cabrio et al., 2013). Muskens (2000) ar-
gues that underspecified representations must be
ambiguous. Drawing from this notion, we have
shaped our own study’s approach to examining the
first argument with ambiguity in mind. The results
of the validation confirm that if Argument 1 does
not provide information that is relevant to inferring
a specific discourse relation, it is not possible to
make an inference about that relation unless there
are underlying assumptions or presuppositions. In
this case, it may be necessary to look for additional
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information from context to infer the implicit dis-
course relation.

The meaning of Argument 1 can be shaped and
influenced by context if it carries a neutral connota-
tion, and Argument 2 gives additional information
or detail based on the event influenced by context.
Consider the example in Figure 1, where Argument
1 "John is tall" in both sentences is unspecified
and needs to be interpreted in the context of the
sentence to determine the intended information con-
veyed by Argument 2 "she will ask him out". In
the first sentence, the context helped Argument 1
convey a positive meaning to infer that she has
a preference for tall men, and because John fits
this preference, she will ask him out, while in the
second sentence, the context helped Argument 1
convey a negative meaning to infer that she does
not have a preference for tall men, but she will still
ask John out, even though he fits this preference.

While there is a lot of evidence that the context
can disambiguate the discourse relation structure
(Nowak and Michaelson, 2020; Lichao, 2010), we
still do not have a thorough understanding of how
ambiguity in implicit relations is structured, and
how they can be interpreted only by context. In
this regard, this study examines whether different
preceding context influence whether the causal or
concessive reading is elicited. A dataset was cre-
ated and validated to investigate this question in
two languages (English and Egyptian Arabic).

4 Constructing data for ambiguous
implicit discourse relations

Creating a dataset for implicit discourse relations
that involve ambiguity can be a challenging task.
This is because the ambiguous structure is not lin-
guistically defined in a way that influences mean-
ing. Furthermore, inferring implicit discourse re-
lations can be difficult, since it requires a nuanced
understanding of language and discourse. There-
fore, we aim to investigate this gap by identifying
the ambiguous structure of implicit discourse rela-
tions and proposing a method to build a dataset for
inferring relations by context.

4.1 Principles of constructing ambiguity in
discourse relations

The initial validation findings, which are detailed
in Section 4.4, reveal several principles that can
be used when constructing ambiguity in implicit
discourse relations, such as:

1. The discourse relation between sentences or
Arg 1 and Arg 2 should be implicit, where:

(a) Arg 1 and Arg 2 are not connected by
any structural connective, such as "so",
"but", "because", etc., but the connective
can still be inferred.

(b) Arg 2 should not contain a lexical item
e.g., "this" or "that" which implies a pre-
supposition already established by Arg
1. This is because these anaphoric pro-
nouns refer to the fact expressed by the
first sentence, so the second sentence
presents an evaluation of that fact, due to
the lexical semantics of the verb that fol-
lows these pronouns. (Jasinskaja, 2009)

(c) Arg 2 should provide supplementary in-
formation or clarification for Arg 1.

2. Arg 1 should convey a neutral meaning1, and
be influenced by context. For instance, "The
apple is red" can be influenced and shaped by
context to be positive or negative.

3. The discourse relation can only be inferred by
context.

4.2 Data and design
We create a set of contrastive sentences pairs that
deliberately contain discourse relation ambiguities,
with their preceding context, where both Arg1 and
Arg2 are identical, with ”but” versus ”so”, depend-
ing on if the context makes Arg 2 expected or un-
expected. As shown in Table 1.

Context Target_sentence
The car is very cheap It’s 100,000, __ I’ll buy it.

The car is very expensive It’s 100,000, __ I’ll buy it.

Table 1: Paired example with ambiguous implicit re-
lations with two different preceding context sentences
forcing either the causal or the concessive reading.

As you can see in Table 1, the preceding context
sentence guides the speaker to the intended mean-
ing of the target sentence whether the discourse
relation between adjacent sentence is a causal or
concessive relation, and thus the speaker can fill in
the connective in these sentences depending on the
context.

1Arg 1 can also contain contronyms, which have opposite
or contradictory meanings such as "crazy prices" can have
opposite meanings depending on the context, it could refer to
the low prices, or it could refer to the high prices. However,
when testing this principle, we realized that it may be inferred
by drawing on one’s background assumption.
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She prefers tall men. John is tall. [so] she will ask him out.

She prefers short men. John is tall. [but] she will ask him out.

Meaning here is shaped and influenced by context to be positive

positive cc

causal

negative punct

Meaning here is shaped and influenced by context to be negative

concessive

Figure 1: An example of inferring by context of the causal and concessive relation.

4.2.1 Arabic translation

There are five levels of Arabic used in Egypt as
stated by Badawi (1973) in his socio-linguistic anal-
ysis of contemporary Arabic in Egypt: 1) Classical
Arabic of the heritage, 2) Modern Standard Ara-
bic, 3) Colloquial of the educated, 4) Colloquial
of the enlightened, and 5) Colloquial of the illit-
erate. The "Colloquial of the educated" is a form
of Arabic spoken by educated individuals that bal-
ance regional informality and linguistic proficiency.
We opted for this level in our study, as opposed to
Modern Standard Arabic (MSA) or "Colloquial of
the enlightened," because it represents the preva-
lent form of spontaneous spoken communication.
While MSA is widely understood, it is mainly used
in formal written contexts or speeches, whereas
"Colloquial of the enlightened" is characterized by
its localized nature, which might limit understand-
ing across regions or social groups.

By choosing the "Colloquial of the educated"
level, we translated our English examples into
Egyptian Arabic. In order to ensure consistency
with the common writing style in Egyptian Ara-
bic, two linguists, who are native Arabic-speaking,
were asked to provide their feedback and sugges-
tions about the writing style of the examples. This
process helped to enhance the quality of the transla-
tion. After the first round of validation on translated
examples, we decided to eliminate certain exam-
ples and introduce new ones. This implies that the
English data is not entirely equivalent to the Arabic
data.

4.3 Data validation method

In order to examine our data, we utilize human val-
idation with the aim of ensuring the reliability and
confidence of examples. This involves a number of

procedures:

4.3.1 Distractors

To distract the respondents from the purpose of
the study, and reinforce the impression that par-
ticipants were reading the sentences naturally, we
randomly interleave a number of distractors/ fillers
with the target examples, which reflect the other
implicit discourse relations: expansion and tem-
poral according to the PDTB relations hierarchy
(Prasad et al., 2008). Since distractors should be
fitted syntactically in all examples, we created 5
examples with implicit ’in fact’ connective for ex-
pansion relation, and also 5 examples with implicit
’when’ connective for temporal relation. These dis-
tracted examples are similar to the target examples
in terms of design and construction, where contain
two discourse units, e.g. clauses or sentences, with
proceeding context such as:

(a) Writing on walls is illegal. The teacher
arrived early in the morning, _ we were
painting on the wall.

(b) Many people were thankful for the ex-
perience of traveling by car to Sharm
El-Sheikh. We tried to travel there by car,
_ it was a very wonderful experience.

For Arabic, we used the same procedures as
those applied in English, but we found that the
equivalent of the "when" connective, lámma, can
convey both causal and synchronous relations si-
multaneously, which means that this equivalent
can be fitted in with both relations. As a result,
we decided to eliminate it and use the "at the
time/sāQithā" connective instead for the temporal
relation.
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4.3.2 Questionnaire design
To achieve our aim of distraction, we added addi-
tional connectives, resulting in a balanced distri-
bution of fillers and actual test connectives. As a
result, the selection list comprises four connectives:
"when", "so", "but", and "in fact", as illustrated in
Figure 2.

Figure 2: selection list

Regarding Arabic, there are more equivalent
words for these connectives in Egyptian Arabic,
such as "so" has three equivalents, and "but" has
two equivalents as shown below.

so

fa Qašān-kida fa-Qašān-kida

but

bass lákin
For the "so" connective, (fa) the first equivalent

can also be used as a filler, so we exclude it in
this experiment, as it can be fitted in with other
connectives, and the second and the third equivalent
are similar in use, but the second is more widely
used. We decided to use the second equivalent
Qašān-kida in the experiment.

The first equivalent of the "but/bass" connective
is more commonly used, but the results of the first
iteration showed that it can also be used as a filler,
whereas the second one is mainly used in Modern
Standard Arabic and among the educated in col-
loquial language. Therefore, we decided to use
"lákin" as the equivalent of "but" connective in the
second iteration.

We also found that the "in fact" connective has
two equivalents, the first one is fil-èq̄Iqa, which
can be also used as a filler, and the second one
is bil-fiQl, which is more commonly used among
the educated in colloquial language. we ultimately
decided to use the latter.

We use the same ratio of test items and fillers
as that used in the English experiment in both val-

idation iterations. In the first iteration, we used
the Arabic equivalents of distractors/fillers used in
the English experiment: "when/lámma", "so/Qašān-
kida", "but/bass" and "in fact/fil-èq̄Iqa". while in
the second iteration, we replaced the "when" con-
nective with "at the time/sāQithā" and used another
Arabic equivalent of "in fact" connective and "but"
connective: "at the time/sāQithā", "so/Qašān-kida",
"but/lákin" and "in fact/bil-fiQl".

4.3.3 Participants
In order to investigate whether humans are able to
identify implicit discourse connectives for these ex-
amples, we designed a questionnaire in English and
invited volunteers with diverse native languages
to answer the questionnaire by selecting the most
appropriate connective from the provided list of
options to fill in the blanks. In the first and second
iterations, 24 and 21 participated in this validation,
respectively.

We used the same process to create a question-
naire in Egyptian Arabic and invited Egyptian Ara-
bic speakers to answer the questionnaire by se-
lecting the most appropriate connective from the
provided list of options to fill in the blanks as well.
In the first and second iterations, 19 and 28 native
speakers of Egyptian Arabic participated, respec-
tively.

4.3.4 Procedure
To perform the validation process, we utilized the
SurveyMonkey platform and enabled the random-
ization feature to randomize the two context sen-
tences across participants so that each participant
will only see one variant of each example. We dis-
tributed the survey link via an email list to gather
responses from volunteers. In this task, we marked
the main sentence in boldface, which contained the
missing connective and preceded by context, and
added a list of connectives under each sentence,
as illustrated in Figure 2. The task was organized
into three blocks of questions and was followed
by a few language-related questions presented in
Appendix C. However, these questions were not
used for analysis. The entire validation task took
approximately 10 minutes to complete.

The validation of the Egyptian Arabic dataset
was also run by using SurveyMonkey. To collect
responses from Egyptian people, we used Face-
book to distribute the survey link and request their
participation in answering the questions. Following
the same processes of the English validation, where

130



Dataset Validation > 80% both > 80% concessive > 80% causal < 80% both

English 1st iteration 1 3 13 14
2nd iteration 19 3 8 1

Arabic 1st iteration 10 5 8 5
2nd iteration 22 7 2 1

Table 2: The summary of human validation results on So/But groups of English and Egyptian Arabic datasets

each participant can only see one variant of each
example and is not allowed to do the validation
twice.

4.4 Results and Analysis

This section presents the summary of validation
results on both English and Egyptian Arabic exam-
ples, showing the results of the So/But grouping
that was conducted to compare the performance
of the pair examples. Two validation iterations
were conducted in both English and Egyptian Ara-
bic. After analyzing problematic cases and refining
our principles from the first English iteration, we
created significantly improved examples for the
second English iteration. Similarly, by examining
the results of the first Egyptian Arabic iteration
and adjusting the corresponding connective words
in Egyptian Arabic, we achieved much better out-
comes in the second Egyptian Arabic iteration. To
ensure the validity and reliability of the validation
process, a minimum threshold of 80% agreement
between participants was established, meaning that
only paired examples with a high level of agree-
ment were included. Table 2 shows the summary
of the validation results for both languages within
each iteration. Detailed validation results can be
found in AppendixA. We also employ Krippen-
dorff’s alpha to determine the degree of agree-
ment or reliability among annotators/participants
for each variant of an example. More detailed re-
sults of the inter-annotator agreement can be found
in Appendix B.

In the first iteration of the English validation,
which was performed on 31 paired examples, only
one example in both cases: causal and concession
met the threshold, while 14 examples in both cases
did not meet the threshold. However, in the second
iteration, the findings reveal that the participants
were relatively successful in selecting the appro-
priate connective, with 19 examples in both cases
meeting the threshold and only one example in both
cases failing to meet the threshold.

In the first iteration of the Egyptian Arabic vali-
dation conducted on 28 paired examples, only 10

examples in both cases met the threshold, while 5
examples in both cases did not meet the threshold.
However, in the second iteration, which involved
32 paired examples, the findings reveal that the par-
ticipants were relatively successful in selecting the
appropriate connective, with 22 examples in both
cases meeting the threshold and only one example
in both cases failing to meet the threshold.

To maintain consistency, we followed our princi-
ples and added three more examples to the existing
set in English, so that both datasets contain a total
of 22 examples.

For our preliminary dataset, the findings reveal
that the participants were relatively successful in se-
lecting the appropriate connective in the ‘so’ group.
However, the results for the ‘but’ group were less
promising, indicating that the participants struggled
to identify the correct connective in these instances.
This could be attributed to a range of factors, such
as difficulties in understanding the intended mean-
ing, or Arg 1 carries underlying assumptions or
presuppositions. For instance, instead of consid-
ering the contextual cues in the examples below,
several participants relied on their presuppositions
about how to interpret the meaning of Arg 1. Here
is the phrase "the weather changed" that can carry
presuppositions as it can be to the better or to the
worse:

(a) One day it was nice and sunny so my
family and I decided to go on a trip. Sud-
denly the weather changed, [...] we de-
cided not to go.

(b) On the morning of the game, it was
cloudy and rainy. Suddenly the weather
changed, [...] we decided not to go.

Here is also the phrase "The time was short"
typically implies a negative outcome rather than a
positive one, especially when the second argument
indicates the result of the event:

(a) The guest lecturer we had this week was
much less long-winded than our usual
professor. The time was short, [...] I had
fun.
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so-but so-but so-but so-but
0

0.2

0.4

0.6

0.8

1

so but and

(1) The car is very cheap. It’s 100,000, [MASK] I’ll buy it.
The car is very expensive. It’s 100,000, [MASK] I’ll buy it.

(2) He prefers long movies. The movie was only 30 minutes, [MASK] he
did not like it.
He prefers short movies. The movie was only 30 minutes, [MASK] he
did not like it.

(3) She likes eating green apples. The apple was green, [MASK] She ate it.
She likes red apples. The apple was green, [MASK] She ate it.

(4) I really like mint. This tea had mint in it, [MASK] I drank it.
I do not like mint. This tea had mint in it, [MASK] I drank it.

Figure 3: Sample of results from the pilot experiment showing four examples of So/But groups in English along
with their respective scores
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Figure 4: Sample of results from the pilot experiment showing four examples of So/But groups in Egyptian Arabic,
which are the translations from English in the same order, and their respective scores

(b) I spent a great time with my family. The
time was short, [...] I had fun.

Consequently, we removed instances with con-
fusing or inconsistent results, modified some
phrases to improve clarity, and added new instances.
These changes led to a second iteration of human

validation.

5 Pilot experiment

Since human participants were able to identify the
intended implicit connectives in a set of examples,
we now investigate whether language models like
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BERT and ELECTRA will also be able to correctly
fill in the implicit connectives within the provided
examples.

5.1 English version

For English examples, we use the uncased version
of the bert-base and electra-base models from Hug-
ging Face2 by inserting a mask between Arg 1 and
Arg 2 to fill in the missing word, with setting up the
topk parameter to 3 to obtain the top 3 predicted
words.

5.2 Arabic version

We use CAMeLBERT-Mix (bert-base-arabic-
camelbert-mix) model (Inoue et al., 2021) from
Hugging Face as well, which is trained on a mix-
ture of Modern Standard Arabic (MSA), Dialectal
Arabic (DA) and classical Arabic (CA) variants, to
fill in the implicit words for Arabic examples by
inserting a mask between Arg 1 and Arg 2, with
setting up the topk parameter to 3 to obtain the
top 3 predicted words. we also use AraELECTRA-
base-generator (Antoun et al., 2021) from Hugging
Face, with the same setting.

5.3 Results and Analysis

The outcomes for the top three predicted words by
BERT and ELECTRA on paired English examples
are detailed in Appendix D. Figure 3 displays here
the top predictions and their corresponding scores
from BERT for 4 paired English examples with
masked connectives.

These results indicate that identifying implicit
discourse connectives is quite challenging for lan-
guage models due to not capturing the influence of
context on Arg 1 as there are small differences in
the predictions for both So/But groups.

The results of the top three predicted words
for Arabic examples, which encompass 25 and 33
different words in BERT and ELECTRA respec-
tively, are also illustrated in Appendix D. Figure 4
presents here the top predictions and their corre-
sponding scores from BERT for 4 paired Egyptian
Arabic examples that include masked connectives.
These examples are translations of the examples in
Figure 3, following the same order.

These results indicate that identifying implicit
discourse connectives for Arabic examples is quite
challenging as well, as context barely influenced
the choice made by these models. Furthermore, the

2https://huggingface.co/bert-base-uncased

performance of the models on Arabic examples is
extremely poor, as many of the predicted words
do not function as connectives. As shown in the
legend entries of the figures, the words enclosed
in black squares are connectives, while others are
not. This can be interpreted for several reasons:

1. There are potentially systematic differences in
the prevalence of implicit discourse relations
in spoken data compared to written texts (Re-
hbein et al., 2016).

2. A discourse relation can be communicated
by a pair of clauses conjoined by "and", but
the sentences are not connected asyndeti-
cally(Jasinskaja, 2009; Rohde et al., 2018),
For example, the Result relation can be com-
municated implicitly both with or without and,
such as (Jasinskaja, 2009):

(a) She fed him poisoned stew and so he
died.

(b) She fed him poisoned stew and he died.
(c) She fed him poisoned stew. He died.

The connective "so" in (a) explicitly indicates a
causal connection, but the same relation is success-
fully conveyed in (b) and (c), despite the absence
of "so" or even "and".

This can explain the appearance of "and" in both
the legend entries of English and Arabic results.
Since “wa/and” is proclitic in Arabic, which is
usually attached to the word (Habash, 2010), it
may provide an explanation for the appearance of
the words enclosed in red squares within legend
entries of the Arabic results.

6 Conclusion and Future Work

In this paper, we introduced principles of construct-
ing and inferring ambiguity in implicit discourse
relations, and created a dataset for ambiguous im-
plicit discourse relations, specifically causal and
concessive relations for both English and Egyptian
Arabic. We also validated both datasets by humans
and language models (LMs) to study whether con-
text can help humans or LMs resolve ambiguities of
implicit relations and identify the intended relation.
For future work, we plan to conduct a controlled
experiment on the impact of prosody to figure out
whether specific prosodic features correlate with
the disambiguation of implicit discourse relations.
We also intend to construct more examples to build
a classification model to identify the two implicit
discourse relations.
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A Human validation details

Figure 5 shows the results of the first iteration of
human validation on English examples. This fig-
ure consists of two vertically stacked plots, each
with four lines representing different categories:
"When" (green stars), "so" (red circles), "but" (blue
squares), and "in fact" (yellow triangles). The x-
axis corresponds to the number of paired examples,
labeled 1 to 31, while the y-axis represents the de-
gree of agreement in responses. Each example has
plotted points for each category.

In the first plot, the red "so" line has the highest
values overall, with many points above 50. The
green "When" line has some points above 20, but
the majority of its points are below 20 or at 0. The
blue "but" line has a few points above 10, but most
of its points are at 0. The yellow "in fact" line is
mostly below 20, with some points reaching above
20 or 30. On the other hand, the second plot shows
the blue "but" with the highest values, featuring
several points above 40 and the majority above 20.
The red "so" line has several points above 20, but

it is mostly below 40. The green "When" line is
mostly below 20, with some points reaching above
20 or 30. The yellow "in fact" line has a few points
above 20, but most of its points are at or near 0.

The results of the second iteration of human val-
idation on English examples are shown in Figure6.

In the first plot, the red "so" line has the highest
values overall, with many points ranging from 80
to 100. The green "When" line remains at 0 for all
data points. The blue "but" line has a few points
above 10, but most of its points are at 0. The yel-
low "in fact" line is mostly below 20, with some
points reaching above 20. On the other hand, the
second plot shows the blue "but" line with the high-
est values, featuring many points ranging from 80
to 100. The red "so" line is mostly below 40. The
green "When" line is mostly at 0. The yellow "in
fact" line has a few points above 10, but most of its
points are at 0.

There is a significant improvement in both the
"so" and "but" groups. As a result, we decided
to select the example pairs that scored above 80%
and translate them into Egyptian Arabic for further
validation.

Figure 7 shows the results of the first iteration
of human validation on Arabic examples. In the
first plot, the red "so" line has the highest values
overall, with many points ranging from 80 to 100.
The green "When" line has a few points, but most
of its points are at 0. The blue "but" line has some
points above 10, and the majority of its points are
below 20. The yellow "in fact" line is mostly below
20, with a few points reaching above 20. On the
other hand, the second plot shows the blue "but"
line with the highest values overall, featuring many
points ranging from 80 to 100. The red "so" line is
mostly below 40. The green "When" line is mostly
at 0. The yellow "in fact" line has a few points
above 10, but most of its points are at 0.

The findings indicate that using some Arabic
equivalents as fillers led to confusion, making it
challenging for participants to identify the correct
connective in these cases. Therefore, we tried to
avoid using ambiguous equivalents and proposed
alternative equivalents of the selection list. These
changes also led to a second iteration of human
validation.

The results of the second iteration of human
validation on Egyptian Arabic examples are shown
in Figure8, indicating a significant improvement in
both the "so" and "but" groups. In the first plot, the
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Figure 5: The validation results of the first iteration on So/But groups of English examples
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Dataset concessive causal concessive-causal pairs
English 22 22 22
Arabic 22 22 22

Table 3: Summary of the final examples for each discourse relation in each language

red "so" line has the highest values overall, with
many points ranging from 80 to 100. The green
"When" line has a few points, but most of its points
are at 0. The blue "but" line has some points above
10, and the majority of its points are below 20. The
yellow "in fact" line is mostly below 20, with a
few points reaching above 20. On the other hand,
the second plot shows the blue "but" line with the
highest values overall, featuring many points above
40 and the majority above 20. The red "so" line
has a few points above 20, but it is mostly below
40. The green "When" line has a few points above
10, but most of its points are at 0. The yellow "in
fact" line has a few points above 10, but most of its
points are at 0.

As a result, we obtained 19 (to which we later
added 3 more, totaling 22) and 22 examples of pairs
scoring above 80% for English and Egyptian Ara-
bic, respectively. Table 3 provides a summary of
the final examples count for each discourse relation
in each language.

B Agreement Evaluation among
Annotators

We use Krippendorff’s alpha, which is a statistical
measure to determine the degree of agreement or re-
liability among annotators/participants, by calling
krippendorff.alpha function from the krippen-
dorff Python package. Since each variant was only
scored by a subset of all participants, we calcu-
late it separately for each variant of each question,
based only on the choice given by the subset of
participants.

Table 8 shows the evaluation of inter-rater reli-
ability using Krippendorff’s Alpha calculation on
the final English examples. It provides insights into
the level of agreement among participants for each
variant of an example, the concessive and causal
relations. We observe that there are high agree-
ment levels among the participants for most of the
Causal and Concessive variants.

Table 9 illustrates the evaluation of inter-
annotator agreement using Krippendorff’s Alpha
calculation on the final Egyptian Arabic dataset.
The findings also reveal a substantial degree of
agreement among the participants for the majority

of the Causal and Concessive variants.

C Language-related questions

There were four language-related questions:

(1) What was the first language you learned as
an infant? Table 4 displays a summary of the
responses.

Dataset Validation en sv-SE ar-EG other

English 1st iteration 6 7 0 7
2nd iteration 7 5 0 12

Arabic 1st iteration 1 0 20 0
2nd iteration 1 0 27 0

Table 4: The summary of answers for this question

(2) Were any other languages spoken by your
cares at home before you were 6? Table 5
provides a summary of the responses.

Dataset Validation Yes No

English 1st iteration 8 13
2nd iteration 11 13

Arabic 1st iteration 0 21
2nd iteration 0 28

Table 5: The summary of answers for this question

(3) Did you attend daycare where a different lan-
guage was spoken before the age of 6? Table 6
shows a summary of the responses.

Dataset Validation Yes No en ar-EG

English 1st iteration 4 17 1 0
2nd iteration 6 14 4 0

Arabic 1st iteration 1 20 1 0
2nd iteration 3 25 3 0

Table 6: The summary of answers for this question

(4) What other languages do you speak fluently?
Table 7 shows a summary of the responses.

Dataset Validation No en fr other

English 1st iteration 2 15 2 2
2nd iteration 6 10 4 4

Arabic 1st iteration 9 12 0 0
2nd iteration 13 15 0 0

Table 7: The summary of answers for this question
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Dataset Sentence Pair No Causal Concessive
No. of Participants Agreement No. of Participants Agreement

English

1 11 0.57 10 0.74
2 12 0.67 9 0.71
3 6 1.00 15 1.00
4 13 0.63 8 0.67
5 6 1.00 15 0.67
6 13 1.00 8 1.00
7 12 1.00 9 0.71
8 13 0.79 8 1.00
9 13 0.79 8 1.00
10 12 0.78 9 1.00
11 13 0.79 8 0.67
12 11 1.0 10 1.00
13 11 0.76 10 0.74
14 15 1.00 6 0.57
15 6 1.00 15 0.55
16 11 0.70 10 1.00
17 7 1.00 14 0.81
18 7 1.00 14 1.00
19 11 0.76 10 1.00
20 2 1.00 2 1.00
21 2 1.00 2 1.00
22 2 1.00 2 1.00

Table 8: Evaluation of Inter-Rater Reliability: Krippendorff’s Alpha Calculation on the Final English Dataset Using
the Nominal Measurement Level

Dataset Sentence Pair No Causal Concessive
No. of Participants Agreement No. of Participants Agreement

Arabic

1 8 0.67 7 1.00
2 8 0.67 7 1.00
3 15 1.00 2 1.00
4 13 0.79 2 1.00
5 5 0.67 10 0.74
6 8 1.00 7 1.00
7 8 1.00 7 0.63
8 7 0.63 8 0.67
9 8 0.67 7 1.00

10 8 0.67 7 1.00
11 8 0.67 7 0.63
12 9 0.71 6 0.57
13 6 1.00 9 0.71
14 7 1.00 8 0.67
15 7 0.63 8 0.67
16 6 1.00 9 0.71
17 7 0.63 8 1.00
18 8 0.67 7 0.63
19 8 1.00 7 1.00
20 4 1.00 11 0.54
21 10 1.00 5 1.00
22 3 1.00 3 1.00

Table 9: Evaluation of Inter-Rater Reliability: Krippendorff’s Alpha Calculation on the Final Egyptian Arabic
Dataset Using the Nominal Measurement Level

D BERT and ELECTRA Validation

Figure 9 below shows the results of the top 3 pre-
dicted words on paired examples that scored above
80% in both cases in human validation for En-
glish. The figure presents the results of BERT
on grouped examples through a pair of vertically
aligned stacked bar charts. Each group represents
the top predictions for masked connectives and

their scores, which are the same in both groups (So,
But, and And). In the first bar chart, the values of
"so," "but," and "and" are distributed across the 22
bars/examples, with some bars showing a higher
proportion of "so" or "but," and others displaying a
higher proportion of "and." The second bar chart
exhibits a similar distribution pattern. This means
that identifying implicit discourse connectives is
quite challenging for language models due to not
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capturing the influence of context on Arg 1 as there
are no differences in the predictions for both So/But
groups.

The results of the top 3 predicted words for Ara-
bic examples are illustrated in Figure 9. The fig-
ure presents the outcomes of BERT on grouped
examples in Egyptian Arabic, utilizing a pair of
vertically aligned stacked bar charts. Each group
signifies the top three predictions for masked con-
nectives along with their respective scores, which
differ between the two groups. These predictions
cover a total of 25 categories, with only 8 of them
recognized as connectives.

In both plots, the highest values occur in cate-
gories 1, 4, and 19. Category 1 has the maximum
value of 0.544, followed by category 4 with 0.482,
and category 19 with 0.337. The results indicate
that the model’s performance on Arabic examples
is extremely poor since a considerable number of
the predicted words do not function as connectives.
In the Results and Analysis section, I presented
some interpretations for these results.

Figure 10 shows the results of the top 3 predicted
words, which are "so", "but", "and", "because" and
"where", by ELECTRA on paired examples for En-
glish. The figure shows the results of ELECTRA
on grouped examples through a pair of vertically
aligned stacked bar charts as well. The plot re-
veals that the outcomes for ELECTRA didn’t differ
much from the results of BERT. This observation
further confirms that this task remains a substantial
challenge for ELECTRA as well, primarily due to
its limitations in capturing context.

The results of the top 3 predicted words for Ara-
bic examples by AraELECTRA are illustrated in
Figure 12. The figure shows the outcomes of Ara-
ELECTRA on grouped examples in Egyptian Ara-
bic, utilizing a pair of vertically aligned stacked bar
charts as well. These predictions cover a total of
33 categories, with only 11 of them recognized as
connectives.

140



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

0.2

0.4

0.6

0.8

1

so but and

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

0.2

0.4

0.6

0.8

1

(but)

(so)

Figure 9: The validation results of BERT on So/But groups of English examples
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Figure 10: The validation results of ELECTRA on So/But groups of English examples
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wāšat/snitched kān/it was lākin/but lissah/still |yet
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Figure 11: The validation results of BERT on So/But groups of Egyptian Arabic examples
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Figure 12: The validation results of AraELECTRA on So/But groups of Egyptian Arabic examples
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Abstract

Transforming narrative structure to implicit
discourse relations in long-form text has re-
cently seen a mindset shift toward assessing
generation consistency. To this extent, summa-
rization of lengthy biographical discourse is of
practical benefit to readers, as it helps them
decide whether immersing for days or weeks
in a bulky book turns a rewarding experience.
Machine-generated summaries can reduce the
cognitive load and the time spent by authors to
write the summary. Nevertheless, summariza-
tion faces significant challenges of factual in-
consistencies with respect to the inputs. In this
paper, we explored a two-step summary gener-
ation aimed to retain source-summary faithful-
ness. Our method uses a graph representation
to rank sentence saliency in each of the novel
chapters, leading to distributing summary seg-
ments in distinct regions of the chapter. Bas-
ing on the previously extracted sentences we
produced an abstractive summary in a manner
more computationally tractable for detecting
inconsistent information. We conducted a se-
ries of quantitative analyses on a test set of
four long biographical novels and showed to
improve summarization quality in automatic
evaluation over both single-tier settings and ex-
ternal baselines.

1 Introduction

Text summarization is a principal tool for reasoning
about narrative structure and foretell the content
of a literary novel in a succinct form. Dated four
decades back, the earlier seminal work by Lehnert
(1981) pursued analytical summarization of nar-
ratives, and offered a graphical representation of
human-generated plot units. In this graph, plot
units are defined as conceptual elements referring
to propositions or states that are linked by charac-
ter relations. To produce a distilled version of the
original discourse, a vast amount of information
are selectively ignored by the reader. Similarly,
traversing the graph identifies complex elements

that are central to the story, and thus points of high
relevance for summaries, and ones considered pe-
ripheral details.

e-summary: (1) It was committed in the presence
of slaves, and they of course could neither insti-
tute a suit, nor testify against him; and thus the
guilty perpetrator of one of the bloodiest and most
foul murders goes unwhipped of justice, and uncen-
sured by the community in which he lives. (2) He
was, of all the overseers, the most dreaded by the
slaves. (3) He was just proud enough to demand
the most debasing homage of the slave, and quite
servile enough to crouch, himself, at the feet of the
master. [...]

a-summary: The guilty perpetrator of one of the
bloodiest and most foul murders goes unwhipped
of justice, and uncensured by the community in
which he lives . He was cruel enough to inflict the
severest punishment, artful enough to descend to
the lowest trickery.

Table 1: An example of text generation in our two-
stage summarization. In the first step, we extract top-
ranked sentences from an extended source chapter of
a biographical novel with an average length of over
15K tokens. Then, we produce from the extracted
summary (e-summary) an order-of-magnitude com-
pressed abstractive summary (a-summary) that faith-
fully rephrases its predecessor. Shown are the leading
three out of ten top ranked relevant sentences for the
e-summary.

Recently, the domain of narrative understand-
ing has gained interest of the research community
(Piper et al., 2021). A wide array of computational
models developed by language technology profes-
sionals provided for expressive generative textual-
summaries. Presently, the prevailing approach to
natural language generation (NLG) tasks, including
summarization, is data driven and uses a sequence-
to-sequence neural model pretrained on large text
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corpora. Our work centers on evaluating the qual-
ity of producing summaries from chapters of long-
form biographical novels. Unlike fictional narra-
tives that require concatenating chapter summaries
due to an inherit progressive plot nature, biographi-
cal chapters are relatively context independent and
thus more readily manageable individually. Auto-
matic generation of fluent summaries in the literary
domain can be useful to complement the short de-
scription of a book provided by the author and to a
certain extent assist in constructing expert critiques.
The work by Berov (2019) demonstrated that a
functional unit approach to summarizing compu-
tational storytelling can perform at around human
level and contribute to better framing. We note that
the narrative summarization task— while a rich
source of innovation— is by and large untapped.

Pretrained language models based on the Trans-
former network (Vaswani et al., 2017) have
achieved state-of-the-art performance generating
fluent summaries from short input text. However,
for long documents, model efficiency and summary
quality characterized by remaining faithful to the
respectful source present a challenge to natural
language generation practitioners (Huang et al.,
2021; Zhang et al., 2022). To mitigate the sever-
ity, NLG research applied both topical and generic
approaches to the task of summary generation, dis-
tinguishing extractive summarization that produces
high lexical overlap between a summary and the
source document, and hence tends to be factually
consistent. While abstractive summaries are prone
to unaligned content that is not obviously inferable
from the original text.

One of the more constraining facet of current
neural models tasked with producing abstractive
summarizations is that the generated text can con-
tain factually incorrect information with respect to
the grounding text they are conditioned on. Sum-
mary inconsistencies are diverse and may include
inversion, also known as negation, incorrect use of
an entity that transpires as object swapping, or the
introduction of an entity not in the original docu-
ment, recognized as hallucination. Maynez et al.
(2020) conducted a large-scale study and concluded
that hallucination is the most critical to the coher-
ence of abstractive summaries, while Cao et al.
(2022) developed a detection approach that sepa-
rates factual from non-factual hallucinations.

The complexity of the summarization task made
automatic evaluation particularly challenging. In

their recent line of work, Deng et al. (2021) pro-
posed the intuition of information alignment be-
tween input and output text, and developed uni-
fied and interpretable metrics across a multitude
of diverse NLG tasks. Distinctly for generative
summaries, they offered effective definitions of rel-
evance and consistency, widely identified as key as-
pects to characterize generation quality. Supported
by robust theoretical grounds, their prevailing defi-
nitions strongly correlate with human judgment on
how to concisely describe the most salient content
in the input document. We adopted their interpre-
tations in our empirical analysis and extended the
consistency measure to a chapter-level rather than
book-level over our test set of literary novels.

In Table 1, we present an overview of our two-
step framework for summary generation. Distin-
guishing our work from prior research on extract-
then-abstract methods, the approach we propose
uses Transformer language models end-to-end, and
experiments we conducted were run on exception-
ally long-form chapters drawn from biographical
literary novels. Our main contribution is twofold:
(1) a high-quality and sustainable biographical lit-
erary dataset with each chapter consisting of its
source text paired with both the extractive and ab-
stractive summary constructs, and (2) through ex-
tensive experiments on a diverse biographical liter-
ary dataset, we demonstrate the effectiveness of our
proposed approach and show similarity and consis-
tency results that are exceeding or comparable to
external baseline performance. Our biographical
dataset is publicly accessible online. 1

2 Related Work

We briefly survey existing methods that propose
multi-stage text summarization systems evaluated
on datasets from a broad range of domains.

Ling and Rush (2017) introduced a coarse-to-
fine attention model that reads a document hierar-
chically, using coarse attention to select top-level
blocks of text and fine attention to read the tokens
of the chosen blocks. Their proposed summarizer
scales linearly with the number of top-level chunks
and effectively handles long sequences. However,
their model performance lagged behind the stan-
dard instantiation baseline of the attention function
on ROUGE similarity metrics.

Xu and Lapata (2020) proposed a coarse-to-fine
modeling framework for extractive summarization

1https://github.com/bshalem/bns
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applied to query focused multi-document. Their
system incorporates a relevance estimator for re-
trieving textual segments– such as sentences or
longer passages associated with a query—an ev-
idence estimator which further isolates segments
likely to contain answers to the query, and a central-
ity estimator which finally selects which segments
to include in the summary. Our extractive summary
component is resemblant in spirit to their centrality
estimator, however we use a Sentence Transform-
ers (SBERT; Reimers and Gurevych, 2019) model
to generate contextual sentence embeddings that
follows producing a sentence similarity matrix for
computing graph centrality based ranking.

Pilault et al. (2020) explored Transformer
language models and proposed an extract-then-
summarize computational pipeline for long doc-
uments. Their model consists of an extractive ele-
ment comprising a hierarchical neural encoder that
outputs sentence representations of either a pointer
to input sentences or to the result of sentence clas-
sification; and a Transformer language model con-
ditioned on the extracted sentences as well as on
either a part of or the entire input document to
generate the summary. Their system was shown
to outperform several baselines on similarity met-
rics, however, a discussion on factual correctness
and consistency analyses of experimental results
appears relatively sparse.

Gidiotis and Tsoumakas (2020) proposed a
divide-and-conquer method by splitting the input
into multiple segments, summarizing them sepa-
rately, and combining the summary pieces. Bas-
ing on smaller source and target summary pairs
that are focused on a specific aspect of the text,
results in better alignment and considerable reduc-
tion of computation complexity. They used a basic
sequence-to-sequence model and incorporated a
rotational unit of memory (Dangovski et al., 2019)
in its decoder that led to a more stable training and
slightly improved F1 similarity scores. Content
quality of their generated summaries relies entirely
on ROUGE similarity metrics and could benefit
from a broader evaluation framework such as of-
fered by Deng et al. (2021).

More recently, Zhang et al. (2022) proposed
a multi-stage split-then-summarize framework to
generate summaries from long-form documents.
Each source text divides into segments, matching
each with a subset of target text. A coarse sum-
mary is generated for each segment and further

concatenated as input to the next stage. After mul-
tiple stages of compression and summarization, a
final stage produces a fine-grained summary. Their
improved performance across baselines renders rel-
atively low bi-gram scores, most likely owing to
over-compression of source text.

An effective abstractive text summarization ap-
proach that first compresses long input text into a
relatively short input sequence, and follows with
efficient long-form document finetuning demon-
strated comparable performance at a significantly
lower computational cost (Choi et al., 2019; Su
et al., 2020). Keen on a specific application, Pu
et al. (2022) generate movie plots given movie
scripts, by applying heuristic evaluation to extract
actions and essential dialogues, a representation
that reduces the average length of input movie
scripts by 66%. Their system outperforms base-
lines on various automatic metrics.

3 Chapter Summarization

Our summarization task commences with produc-
ing an extractive summary from the source text
of a book chapter, and follows with generating an
abstractive summary from the salient extractive
content (Table 1).

3.1 Importance Extraction

Extractive summarization generates text by select-
ing a subset of sentences in the original document.
To this task we applied LexRank (Erkan and Radev,
2004) that computes sentence importance based
on eigenvector centrality in a graph representation
of sentences. The graph uses a cosine similarity
matrix where each entry in the matrix is the sim-
ilarity between the corresponding sentence pair.
Formally, given n sentences in a novel chapter, we
use a colon notation s1:n = (s1, . . . ,sn) to denote the
collection of sentences. We used bag-of-words to
represent each sentence as a |V |-dimensional vec-
tor p, where V is the chapter vocabulary. Hence,
the similarity matrix M ∈ Rn×n contains elements
mi j = sim(pi, p j), where 1 ≤ i, j ≤ n and sim a
similarity function. LexRank hypothesizes that
sentences more similar to many other sentences
in the book chapter are more central, or salient to
the topic. The algorithm further emits the degree
centrality of a node in the similarity graph— the
count of similar sentences for each sentence.

Our extractive summarization task uses SBERT
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(Reimers and Gurevych, 2019). 2 SBERT derives
semantically meaningful sentence embeddings that
can be compared using cosine-similarity. We chose
the distilled RoBERTa (Liu et al., 2019) variant
of the BERT (Devlin et al., 2019) model, a pre-
trained Transformer network (Vaswani et al., 2017)
on a paraphrase dataset. This model generates a
dense embedding vector for each input sentence, of
which we construct a similarity adjacency matrix
M that stores a weighted graph of all sentence-pairs.
Matrix M is further provided to LexRank for sen-
tence importance ranking. The chapter extractive
summary produced thus comprises a collection of
top-ranked sentences with a sentence count that is
proportional to the chapter text length, and com-
monly defaults to a defined maximal saliency.

3.2 Factual Abstraction
Extractive summary generation contrasts with ab-
stractive summarization, where the information in
the text is rephrased. Consistent with the Trans-
former architecture, BART (Lewis et al., 2020),
considered a state-of-the-art model for the task of
abstractive summarization, introduced denoising
autoencoding objectives to pretrain sequence-to-
sequence models. As a result, input texts are cor-
rupted in two ways: (1) Text Infilling, where sam-
pled token spans are replaced with a sequence of
mask tokens [MASK], and (2) Sentence Permu-
tation that splits a document into declarative sen-
tences thereafter shuffled in random order.

Abstractive summary generation can be cast as
a typical sequence-to-sequence learning problem.
The pretraining objective of the core transformer
model is to minimize the negative log-likelihood
of the original document over corrupted text

LG (θ) =− 1
|Y | logp(Y |X ;θ) ,

where X is our extractive generated summary ren-
dered as a set of sentences, |Y | is the number of
tokens in summary Y , and θ denotes the model pa-
rameters. In our experiments, we used the distilled
version of BART, 3 from which we drew sentence
level representation for our automatic evaluation.

4 Information Alignment

The goal of a summarization task is to concisely
describe the most salient information of the input

2https://huggingface.co/sentence-transformers
3https://huggingface.co/sshleifer/distilbart-cnn-12-6

text. Thus, the summary generated should be con-
sistent and only contain content from the input, and
the included content must be relevant. Using the
intuition of information alignment, defined as the
extent to which the information in one generative
component is grounded in another, we can evaluate
summary consistency and relevance (Deng et al.,
2021).

More formally, let x1:n and y1:m be our respective
extractive and abstractive summary text-sequences
for each book chapter. Summary tokens are each
represented with contextual embeddings we ex-
tracted from pretrained BERT (Devlin et al., 2019).
Using embedding matching, the alignment vector
align(y→ x) consists of scores ∈ [0,1] for each
token in y, and amount to the maximum cosine
similarity with the tokens in x

(i, j) = argmax
i∈1:n, j

cossim(xi,y j),

where (i, j) is a pair of token indices pointing each
to a distinct summary text sequence, and 1≤ j≤m.
The consistency metric that measures faithfulness
thus follows naturally as the average of the align-
ment vector scores: mean(align(y→ x)). On the
other hand, relevance is implicit in our two-step
model that commences with ranking source sen-
tences by their importance.

Individual Chapters Tokens FRE

Frederick Douglass 11 154,293 77.5
Mark Twain 60 620,312 75.1
Ulysses Grant 70 1,269,660 65.3
Napoleon Bonaparte 115 2,238,248 65.5

Table 2: Metadata for our test set of biographical nov-
els.

Individual Sentences Min Max Mean

Frederick Douglass 1,812 69 703 164.7
Mark Twain 6,614 10 711 110.2
Ulysses Grant 12,139 67 301 173.4
Napoleon Bonaparte 20,514 19 861 178.4

Table 3: Chapter sentence distribution across our test
set of biographical novels.

5 Evaluation

Our proposed two-step summarization method is
evaluated on our curated biographical literary test-
set. Automatic evaluation results are reported using
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e-summary a-summary
Individual Tokens Min Max Mean STD Tokens Min Max Mean STD

Frederick Douglass 14,989 197 510 314.2 86.9 1,835 38 45 41.1 2.2
Mark Twain 98,059 63 744 369.9 144.7 9,458 21 46 38.1 4.3
Ulysses Grant 121,865 269 731 387.1 80.4 12,206 29 46 41.0 4.0
Napoleon Bonaparte 248,878 35 835 477.5 104.8 20,209 23 46 39.0 3.7

Table 4: Token-length distribution of e-summary and a-summary across our biographical narrative test set.

the canonical ROUGE measure (Lin, 2004), and
we have also experimented with the recently devel-
oped BARTScore metric (Yuan et al., 2021), more
suitable to NLG tasks. We compared our perfor-
mance with a handful of external baselines set to
reach similar objectives like ours, and analyzed
the newly proposed information alignment concept
and consistency metric (Deng et al., 2021). Unless
otherwise noted, we report novel-level summary
quality using the average of chapter scores.

Novel Test Set We obtained unicode encod-
ing of the literature text from Project Gutenberg,
and carried our work on four biographies includ-
ing Narrative of the Life of Frederick
Douglass, An American Slave by Frederic Dou-
glass (2006), 4 Life on the Mississippi by
Mark Twain (2004), 5 Personal Memoirs of
U. S. Grant by Ulysses S. Grant (2004), 6 and
Memoirs of Napoleon Bonaparte by Louis An-
toine Fauvelet de Bourrienne (2006). 7 These texts
total 256 chapters and over four million words (Ta-
ble 2). We also post for the literary set the Flesch
Reading Ease (FRE) score that identifies a diffi-
culty level range from standard to fairly easy.

In Table 3, we present chapter sentence distri-
bution across our narrative literary set. Per book
chapter there are on average 15,491 tokens (Table
2), and about 150 sentences with a little over 100
tokens per sentence. Chapter text is notably long in
form and present a challenge to generate fluent and
faithful summaries in a single computational pass.

Generated Summaries Our model provides two
user-settable parameters to control summary gen-
eration: (1) the number of top-ranked sentences
in a chapter ordered by their relevance to the in-
put source text and concatenated to construct the
e-summary. This number is set to ten by default;
(2) the maximum token-length of the predicted ab-

4https://www.gutenberg.org/files/23/23-0.txt
5https://www.gutenberg.org/files/245/245-0.txt
6https://www.gutenberg.org/cache/epub/4367/pg4367.txt
7https://www.gutenberg.org/cache/epub/3567/pg3567.txt

stractive summary set by the user to either fifty or
one hundred words. We conducted ablation experi-
ments and analyzed the impact of the bound token-
length parameter on the a-summary generation
quality. In Table 4, we provide token-length distri-
bution of both e-summary and a-summary across
our literary test set. On average, e-summaries con-
sist of 387 tokens, while a-summaries, set to a max-
imum length of 50 tokens, have a mean of close to
40 words. Thus, the first stage of our summariza-
tion system presents a compression ratio of roughly
40 between source chapter text and e-summaries.
In the second step, generated a-summaries are more
concise than their respective e-summaries by an al-
most order of magnitude.

Chapters
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Figure 1: Chapter sentence ranking for the biogra-
phy of Napoleon Bonaparte. Showing ten randomly
sampled chapters and for each we highlight its respec-
tive ten top-ranked sentences in descending order. The
brighter the tile, the higher the rank.

In Figure 1, we provide visualization of ten top-
ranked sentences extracted from ten randomly sam-
pled chapters in the Napoleon Bonaparte novel. We
formulate extractive summaries as a matrix∈Rm×n,
where m is the number of chapters in a book and
n the number of top-ranked sentences that are con-
catenated to found an extractive summary. In our
setup, LexRank is set to return a fixed number of n
most relevant sentences, noting that the extracted
list may contain ties. Over our experiments, we
observed on average a fairly low— a slight over six
percentage points— duplicated sentence salience
across our test set. Most ties were an occurrence
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Individual
maxlen=50 maxlen=100

ROUGE-2 ROUGE-L ROUGE-2 ROUGE-L
r p f r p f r p f r p f

Frederick Douglass 0.13 0.95 0.23 0.18 0.97 0.30 0.18 0.94 0.29 0.24 0.97 0.38
Mark Twain 0.11 0.91 0.19 0.16 0.96 0.26 0.17 0.91 0.27 0.22 0.96 0.35
Ulysses Grant 0.10 0.92 0.18 0.15 0.97 0.27 0.15 0.92 0.25 0.21 0.97 0.34
Napoleon Bonaparte 0.08 0.91 0.15 0.13 0.96 0.22 0.13 0.91 0.22 0.18 0.96 0.30

Table 5: ROUGE scores of a-summary generation (r - recall, p - precision, and f - F measure).

of two and a handful were of three sentences. Op-
erating as a modular component, we applied the
distilled RoBERTa-based pretrained SBERT model
to generate contextual sentence embeddings. This
model renders about 82 million trained parameters.

In our automatic evaluation we used the distilled
checkpoint of BART, DistilBART-CNN-12-6, pre-
trained and finetuned on the CNN/Daily Mail news
corpus (Nallapati et al., 2016) that comprises multi-
sentence summaries, and on the extreme summa-
rization dataset (XSUM; Narayan et al., 2018), both
sustain a strong abstractive property. To generate
a-summaries, we used the BART checkpoint model
with a neural network of over 305 million parame-
ters and ran inference on our biographical narrative
test set.

ROUGE Scores We compute an a-summary
from a reference e-summary. Rather than sentence-
level that could potentially result in overlapping
content and thus redundant summaries, we report
summary-level ROUGE scores (Lin, 2004). 8 Fol-
lowing standard practice, we chose F1 ROUGE
as our evaluation metric to estimate the genera-
tion quality of summaries. Concretely, we used
bi-gram ROUGE (ROUGE-2) that is a proxy for
assessing informativeness and the longest common
subsequence (ROUGE-L) to represent fluency. In
Table 5, we show recall, precision, and F1 scores
of produced a-summaries bound to a maximum
token-length (maxlen) of 50 and 100 over our bi-
ographical literary set. Consistently ROUGE-L
scores are higher than the respective bi-gram per-
formance by about twenty five percentage points,
on average. As expected, summary quality reduces
proportionally to the e-summary token count (Ta-
ble 4). Although limited to only two settings, our
results support the conjecture that the longer the
summary text sequence produced the higher the
performance by up to 36%.

8https://pypi.org/project/rouge/

Individual ROUGE-2 ROUGE-L

Frederick Douglass 0.06 0.11
Mark Twain 0.07 0.12
Ulysses Grant 0.04 0.08
Napoleon Bonaparte 0.03 0.07

Table 6: ROUGE F1 scores for a single-tier setting.
Summary maximum token-length is set to 500.

In Table 6, we report F1 ROUGE scores for a
single-tier setting. This method collapses our sum-
marizer stages and generates a-summary directly
from the grounded source text of a chapter in a
single computation pass. The summary maximum
token length is implicitly set to 500 to account for
the excessively long chapter document. Compared
to our two-step summarization method, single-tier
ROUGE-2 and ROUGE-L scores are shown to de-
cline quadruply and triply, respectively.

We compared our summary generative perfor-
mance with the quality of a half dozen of exter-
nal baselines, presenting top F1 scores for both
ROUGE-2 and ROUGE-L metrics in Table 7. At
0.29 F1, our ROUGE-2 measure exceeded state-
of-the-art Gidiotis and Tsoumakas (2020) by 0.11
F1, while for ROUGE-L we came closely second
with 0.38 F1 behind their best score of 0.41 F1.
At an average of 15,491 words per novel chapter
our dataset exceeded the token complexity of the
baselines by at least 1.7X.

BARTScore We leveraged BARTScore (Yuan
et al., 2021), 9 a recently introduced evaluation
metric for generated text that is unsupervised and
does not require human judgments to train. Owing
to its ability to utilize the entirety of the BART pre-
trained parameters, BARTScore can better support
evaluation from a factual perspective. BARTScore
relies on contextual word embeddings extracted

9We obtained code to calculate BARTScore from https:
//github.com/neulab/BARTScore
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System Domain Tokens Model ROUGE-2 ROUGE-L

Ling and Rush (2017) News 804 Finetuned 0.15 0.29
Xu and Lapata (2020) QA 400 Finetuned 0.12 0.17
Pilault et al. (2020) News 3,615 Pretrained 0.12 0.34
Gidiotis and Tsoumakas (2020) Sci,Med 5,069 Finetuned 0.18 0.41
Zhong et al. (2021) Meetings 9,070 Pretrained 0.11 0.31
Zhang et al. (2022) TV,Reports 8,883 Pretrained 0.09 0.29

Ours News 15,491 Pretrained 0.29 0.38

Table 7: Token complexity and ROUGE F1 scores comparison with external baselines. Neural models are at least
pretrained on a large text corpus and optionally finetuned on the target dataset.

from pretrained sequence-to-sequence models and
explores weighted conditional log-probabilities of
a summary sequence given source tokens. In Table
8, we report BARTScore figures in average log-
likelihood of probabilities ∈ [0,1]. The calculated
scores are less than zero, thus the higher the log-
likelihood, the higher the probability. BARTScore
appears far less affected by varying the maximum
token-length of the produced a-summary, suggest-
ing BARTScore captures aspects complementary
to ROUGE. Consistent with ROUGE, BARTScore
performance decreases with a higher e-summary
word count.

Individual
BARTScore

maxlen=50 maxlen=100

Frederick Douglass -10.89 -11.01
Mark Twain -11.07 -11.04
Ulysses Grant -11.12 -11.10
Napoleon Bonaparte -11.17 -11.19

Table 8: BARTScore metric in log-likelihood for our
biographical test set. The higher the measure the better
the performance.

Individual Pearson Kendall Spearman

Frederick Douglass 0.13 0.09 0.13
Mark Twain 0.24 0.19 0.27
Ulysses Grant 0.23 0.17 0.24
Napoleon Bonaparte 0.14 0.11 0.15

Table 9: BARTScore correlation between a-summary
generation of 50 and 100 limited token-length.

We also measured the BARTScore correlation
between a-summaries confined to 50 and 100 token-
length, respectively. The strength of association
between the two measures and the direction of the
relationship are outlined in Table 9. We present
Pearson, Kendall, and Spearman correlation types,
all indicating a stronger positive relation for the

books on Mark Twain and Ulysses Grant that share
a similar token complexity per chapter.

6 Discussion

Individual Min Max Mean SD

Frederick Douglass
0.41 0.75 0.61 0.11
0.62 0.92 0.81 0.11

Mark Twain
0.27 0.85 0.59 0.12
0.43 0.94 0.76 0.11

Ulysses Grant
0.42 0.89 0.63 0.10
0.49 0.94 0.77 0.12

Napoleon Bonaparte
0.48 0.89 0.67 0.07
0.43 0.96 0.77 0.10

Table 10: Factual consistency distribution across
our test set of biographical novels. The figures for
each title show consistency measures for generated a-
summaries, contrasting their alignment with the source
text (grayed) and to their respective e-summary.

Factual Consistency In this section, we offer
qualitative analysis of factual consistency as it
relates to biographical literary using embedding-
matching alignment estimation. To extract con-
textual embeddings we used a pretrained BERT
model that has nearly 109 million parameters.
Our extractive summarization step warrants tex-
tually grounded generation of a summary, thus the
following discussion pertains exclusively to the
abstractive-summary computational stage. In Table
10, we show the distribution of factual correctness
for aligning both (a-summary→ e-summary) and
(a-summary→ source) across our biographical lit-
erary test set. The Frederick Douglass narrative
scored the highest consistency of 0.81, along with
the rest of the novels slightly behind, however, we
contend that the three novels uphold a more faithful
score of 0.77 owing to a larger sample of chapters.
Using a comparable metric for compression tasks,
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Deng et al. (2021) report consistency performance
at 0.33 on the CNN/Daily Mail news corpus.

The impact on consistency performance gained
by contrasting alignment of a-summaries with
the source text and aligning a-summaries with e-
summaries is a considerable 25% on average (Ta-
ble 10). Evidently accurate automatic evaluation
of generated summaries from long-form literary
narratives is a multi-dimensional problem and pose
a key challenge for optimization.

We note that extending the maximal generative
token-length is not indefinite or else the summa-
rizer aim to effectively balance both fluency and
succinctness will be adversely affected.

Finetuned Pretrained
Individual Train Test F1 F1

Frederick Douglass 9 2 0.17 0.30
Mark Twain 48 12 0.14 0.26
Ulysses Grant 56 14 0.17 0.27
Napoleon Bonaparte 92 23 0.15 0.22

Unified 205 51 0.15 0.26

Table 11: Contrasting ROUGE-L F1 scores for fine-
tuned and pretrained BART models across our bio-
graphical novels. Finetuned narrative chapter alloca-
tions are shown for train and test subsets in individual
and consolidated datasets.

Finetuning We explored finetuning the BART
checkpoint on our biographical literary set and
looked at the model ability to generalize across
datasets. To this end, we built a distinct model for
each and all novels unified, and applied an 80/20
percent chapter split for training and testing, re-
spectively. We trained the BART model for three
epochs using a cross-entropy loss, the Adam op-
timizer, a batch size of 32, and a learning rate of
1e-3. In Table 11, we present finetuned ROUGE-L
F1 scores using a generation not to exceed a length
of 50 tokens, and contrast them with the pretrained
model (Table 5). Both finetuned and pretrained
results follow a similar performance decline with
a growing chapter token complexity. Finetuned
scores are lower than the pretrained measures by
about 1.75X on average, because the BART model
weights are fitting to a much smaller dataset that
is genre-different from the pretrained domain. Re-
sults of finetuning on the unified dataset appear
commensurate with the rates obtained on individ-
ual novel data.

Human Evaluation Perceived as the best prac-
tice to evaluate auto-generated summaries, human
judgment of long-form content similar to our scale
remains challenging, time consuming, and often de-
livers only moderately reliable results. In a more re-
cent study, Krishna et al. (2023) conducted a survey
to understand best practices for applying human
evaluation to summarization of large-scale docu-
ments. Their findings concluded that summaries
derived from greater length articles are rarely eval-
uated by humans and the results obtained are often
irreproducible.

Individual ROUGE-2 ROUGE-L

Frederick Douglass 0.56 0.61
Mark Twain 0.63 0.67
Ulysses Grant 0.66 0.72
Napoleon Bonaparte 0.63 0.69

Table 12: ROUGE F1 scores for a human evaluation.
Summary maximum token-length is set to 100.

To ameliorate these shortfalls, our text genera-
tion process for human evaluation of summaries of-
fers a span-based approach that resembles evidence
annotation in question answering systems. A sum-
mary is thus a set of non-overlapping spans of con-
tiguous text snippets from the chapter source. The
total number of tokens across the spans is bound to
the summary maximal token-length parameter. We
considered twenty five readers from a book club
as expert annotators, each assigned between ten to
eleven distinct chapters for span labeling. We were
less concerned about bias and avoided allocating
more than one reader to a chapter.

In Table 12, we outline ROUGE F1 scores for
human evaluation of span-based summaries. Top
human scoring is at 0.72 ROUGE-L exceeding ma-
chine generation performance (Table 5) by up to
about 2X. Given the current pace for developing
state-of-the-art NLG systems, this apparent perfor-
mance gap is expected to diminish rather precipi-
tously, as research continues to reason the trade-off
between cost and reward for conducting human
annotation.

Method Generalization To evaluate the gener-
alizability of our proposed two-step summariza-
tion method to other text genres or domains, we
explored NarrativeQA (Kočiský et al., 2018). Des-
tined for the reading comprehension (RC) problem
space, NarrativeQA is a large-scale question an-
swering dataset constructed from a collection of
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large documents in the form of full-length books
and movie scripts. Learning to understand books
through effective summarization modeling become
key to a successful RC system.

NarrativeQA comprises full-length books with
an average of slightly over 60K tokens per story.
While its human-curated abstractive summaries
has a token complexity of about 650 on average.
This suggests an end-to-end compression ratio of
roughly 100 from source to summary. In contrast to
our automatic method that yields a data compaction
rate of close to 400 across the two computational
steps on our biographical test set. We note that
a NarrativeQA book is represented as a cohesive
long sequence of text, rather than a collection of
chapter entities like ours, the result of performing
a data preprocessing step on each of our novels to
improve model scalability.

The authors of NarrativeQA performed question
answering quality experiments comparing the use
of a book in its entirety to its labor-intensive human-
created summary for retrieving an answer. Using
the ROUGE-L metric they achieved 0.37 for sum-
maries and 0.14 on full length stories. Although
for a different goal, these results highly resemble
our automatic evaluation scores of 0.38 and 0.12
for two-step and single-tier configurations, respec-
tively.

7 Conclusion

In this paper, we presented a summarization ap-
proach that ensures hallucination-free text gen-
eration in its first step, and follows by a more
regulated and manageable production of a final
abstractive summary. On a biographical literary
dataset with doubled to quadrupled chapter token
complexity, our method achieved superior or sim-
ilar performance compared to six baseline mod-
els. Empirical results show that our fact-unaware
summarization can produce abstractive summaries
with compelling factual consistency. Noting that
author-created book descriptions are often of less
than adequate quality, we encourage not only span-
based but also free-form reader-written chapter
summaries that are factually faithful and benefit
a plausible load sharing for curating annotations.

Limitations

Our proposed summarization model is pretrained
exclusively on news datasets, however, our experi-
ments and analysis were conducted on biographical

narratives. We only studied English summariza-
tion and our processes and in particular relevance
findings are likely not entirely applicable to long
multi-lingual documents. Moreover, single-domain
trained models may propagate inductive biases
rooted in the data they were pretrained on. This
was evidenced in finetuning on our target dataset
as the model demonstrated a moderate degree of
transferability in adapting the newswire domain to
our biographical discourse genre.

Our work studies generated summaries for long
narrative text. While our taxonomy appears gener-
alizable to other domains, investigating summariza-
tion quality of large-scale datasets, such as scien-
tific articles, patent documents, government reports
or meeting discourses was confined to the scope of
baseline performance comparison.

Ethics Statement

We assembled our biographical dataset for the
grounded source consistent with Project Gutenberg
permissions and terms of use. Emanating personal
identifiable information of the individual history
is unavoidable when obtained from biographical
literary. However, improving the faithfulness of
automatically generated summaries is essential to
ensure reliable and trusted factual accuracy. To the
extent of our judgment, produced narrative sum-
maries are free of harmful or offensive content, yet
we plan to restrict our dataset for research use only.
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Abstract

Time pressure and topic negotiation may im-
pose constraints on how people leverage dis-
course relations (DRs) in spontaneous conver-
sational contexts. In this work, we adapt a sys-
tem of DRs for written language to spontaneous
dialogue using crowdsourced annotations from
novice annotators. We then test whether dis-
course relations are used differently across sev-
eral types of multi-utterance contexts. We com-
pare the patterns of DR annotation within and
across speakers and within and across turns.
Ultimately, we find that different discourse con-
texts produce distinct distributions of discourse
relations, with single-turn annotations creating
the most uncertainty for annotators. Addition-
ally, we find that the discourse relation anno-
tations are of sufficient quality to predict from
embeddings of discourse units.

1 Introduction

Discourse relations (DRs) such as Elaboration,
Background and Explanation, hold between dis-
course units contributing to the coherence of a
text. Annotation of discourse relations has received
attention for its relevance to discourse parsers,
with applications in question answering systems
(e.g. Jansen et al., 2014), text summarization (e.g.
Liu and Chen, 2019), sentiment classification (e.g.
Kraus and Feuerriegel, 2019), and machine transla-
tion (e.g. Meyer and Popescu-Belis, 2012). How-
ever, most of the annotated data and systems have
focused on written language, with a few exceptions
(e.g., Tonelli et al., 2010; Zeldes, 2017; Scholman
et al., 2022). In spoken dialogue or multiparty con-
versation, participants must quickly juggle a variety
of tasks, such as responding to another person to
solve a problem (Levinson and Torreira, 2015) or
negotiating the question under discussion (Roberts,
2012), often under considerable time pressure that
is less present in written production. In addition
to these time demands, it is unclear whether spon-

taneous conversation demonstrates the same pat-
terns of discourse relations as observed in written
language (see Crible and Cuenca, 2017, for a dis-
cussion of spoken vs. written use of discourse
markers).

Perhaps unsurprisingly, the vast majority of work
on discourse relations has focused either on written
texts, especially news text (Carlson et al., 2003;
Prasad et al., 2008, 2018), or highly structured
conversations that are constrained by a particular
game (Afantenos et al., 2015; Asher et al., 2016).
Some recent corpora contain spoken monologues
(Scholman et al., 2022), and spoken conversations
(Tonelli et al., 2010; Zeldes, 2017), but the field
still largely lacks annotated corpora of spontaneous
dialogue.

Thus, our goal is to present the first efforts to-
wards an annotated corpus of DRs for spontaneous
spoken conversation, with particular attention to
relations across different contexts within a conver-
sation. We analyze the patterns of DR annotation
within and across speakers and within and across
turns and test the coherence of annotators’ deci-
sions.

2 Related Work

Most currently available corpora annotated with
DRs have focused on written language or spo-
ken monologues. An exception is the George-
town University Multilayer (GUM) corpus (Zeldes,
2017), which has a set of conversations annotated
within Rhetorical Structure Theory (RST, Mann
and Thompson, 1987), following the guidelines of
the RST Discourse Treebank (RST-DT, Carlson
et al., 2003). But it is an open question whether
the DRs that have been identified for news texts are
appropriate for conversational data. Tonelli et al.
(2010) adapt the PDTB framework to annotate a
subset of a corpus of Italian conversations about
software and hardware troubleshooting, and sug-
gest modifications to the framework to account for

156



spoken data.

Discourse relations corpora have usually been
annotated by experts, but some recent corpora have
been annotated by novice annotators, such as uni-
versity students, in the case of the GUM corpus
(Zeldes, 2017), or crowdsourced workers, in the
case of the DiscoGEM corpus (Scholman et al.,
2022). GUM was annotated using RST as part of
a Corpus Linguistics class, while DiscoGEM was
annotated following the Penn Discourse Treebank
(PDTB, Prasad et al., 2008, 2018) framework, us-
ing a method for crowdsourcing annotations intro-
duced in Yung et al. (2019), and using a multi-label
approach. The present work deviates from prior
work in its focus on conversational data and the
use of Segmented Discourse Representation The-
ory (SDRT, Asher and Lascarides, 2003) alongside
the STAC corpus (Asher et al., 2016) guidelines.

3 Discourse relation annotation

In this work, we focus on a subset of 19 dia-
logues from the Switchboard Corpus (Godfrey
et al., 1992). This corpus contains informal lan-
guage and has been the subject of study of numer-
ous analyses of dialogue within linguistics (Jaeger
and Snider, 2013; Reitter and Moore, 2014). In it,
two strangers are presented with a topic (e.g., child-
care) that they must discuss with each other, but the
dialogues are otherwise not tightly constrained. An-
notating Switchboard will provide us with a more
complete understanding of the use and generality
of discourse relations across linguistic contexts and
genres.

Following the annotation procedure in the STAC
corpus (Asher et al., 2016), we identified a subset
of suitable elementary discourse units (EDUs) for
annotation by parsing each turn into a dependency
structure and included only those turns with at
least two roots or verbs. Then, we segmented each
of these turns into their respective EDUs. Using
these segmentations, we identified EDU candidates
for discourse relations that were either within-turn
(same speaker) or across two turns (different speak-
ers, or the same speaker), where the two turns were
adjacent in the case of different speakers, or only
interrupted by one turn, in the case of same speaker.
We provide a representative set of these pair types
in Table 1 under the Explanation, Comment, and
Result examples, respectively.

3.1 Elementary Discourse Units

Elementary discourse units (EDUs) are typically
defined as non-overlapping text spans (Mann and
Thompson, 1987), which perform some basic dis-
course function (Asher and Lascarides, 2003), typ-
ically at the level of clauses. However, conversa-
tional EDUs may not necessarily contain a main
verb (e.g., clarification questions: “Saginaw?”) or
may be incomplete or interrupted (e.g., “and so–”).
So, we define EDUs in Switchboard similarly to
written text, with some modifications to account for
variability due to spoken language. In particular,
our modifications account for noise; non-linguistic
communication (e.g., laughter); restarts; and dis-
fluencies (e.g., “uh” or “um”). Additionally, we
use complex discourse units (CDUs), which are
combinations of EDUs which function together as
an argument to a DR (Asher and Lascarides, 2003).

3.2 Relation categories

Discourse relations (DRs) were selected from Seg-
mented Discourse Representation theory (SDRT,
Asher and Lascarides, 2003), following the anno-
tation manual for the STAC corpus (Asher et al.,
2012). 11 out of 16 relation labels used in Asher
et al. (2012) were selected, based on a pilot anno-
tation. We selected the most common relations in
an attempt to minimize the number of choices pre-
sented to annotators, but the set is non-exhaustive.
An "Other" category was added for cases in which
none of the selected labels applied. Table 1 shows
the list of DRs together with representative exam-
ples.

3.3 Annotators

The present study recruited 114 students enrolled in
a computational linguistics course grouped into 19
teams consisting of approximately 5 members who
annotated the dyads. Each team received a conver-
sation for annotation. Annotations were performed
individually, but groups then discussed their work
and submitted a report as a team. One team was
excluded because they completed their annotations
together and submitted a single set of labels. Stu-
dents were trained to identify discourse relations
using a short quiz and live training with the in-
structor of the course. Annotators were provided
with guidelines to which they could refer back, and
they had read and annotated the conversation in
three previous tasks before annotating discourse
relations, to ensure that they were familiar with the
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Relation Discourse Units
Acknowledgement A: || it starts recording now. ||

B: || Okay. ||
Background A: || I’m, we’re originally from another state || and I know || in the state we were from that they

did that t-, similar type thing. ||
Clarification Question A: || We live in the Saginaw area. ||

B: || Saginaw?||
Comment B: || They seem to be having a real good response. ||

A: || That’s pretty good. ||
Continuation A: || I work off and on just temporarily || and usually find friends to babysit, ||

Contrast A: || I don’t work, though, || but I used to work and, ||
Elaboration A: || in the state we were from that they did that t-, similar type thing. || The city brought ought, ||

you know, || set tr-, separate trash cans || and you separated your stuff ||
Explanation A: || and they discontinued them || because people were coming and dumping their trash in them.

||
Narration A: || and you put it in there || and they took it, ||

Question-Answer Pair B: || Saginaw? ||
A: || Uh-huh.||

Result B: || No, || I just, I noticed || it Iowa and other cities like that, it’s a nickel per aluminum can. ||
A: || Oh. ||
B: || So you don’t see too many thrown out around the || [laughter] || streets. ||

Other None of the labels applies

Table 1: Representative discourse unit pairs for annotated discourse relations. The first argument to the discourse
relation is shown in italics and the second one in bold. A and B correspond to speakers, and double pipes (||)
represent boundaries between elementary discourse units.

topics and speakers in each dyad.

3.4 Annotation procedure

Annotators were presented with pairs representing
either an EDU or CDU (π1) and another EDU or
CDU (π2). Annotators were shown two spans of
text π1 and π2 with π1 presented in italics and π2
presented in bold face font in the annotation soft-
ware Prodigy (Montani and Honnibal, 2018), with
two preceding and two subsequent turns for context.
Annotators were asked to determine the relation be-
tween π1 and π2 from a list of the DR categories
in Table 1. If annotators thought that no relation
was present, they were told to reject the item and
move on to the next pair. Critically for our research
question, annotators could mark several relations
for a pair of EDUs simultaneously. In addition to
labeling discourse relations, annotators were also
asked to provide a confidence rating on a scale from
1-5, but we leave these analyses for future work.
In total, each annotator provided judgments for an
average of 25 EDU pairs across 464 total pairs.

In the next section, we test whether annotators
show greater uncertainty about discourse relations
in different discourse contexts. We analyze the dis-
tribution of their labels to assess whether discourse
relations in conversation vary in their contexts of
use.

4 Uncertainty in the annotation of
discourse relations

Different EDU pairs in the present annotation task
were drawn either from the same turn, or across
turns but within or across speakers. Thus, we can
assess how much discourse relations vary by the
placement of an utterance in a dialogue. Given
the complex dynamics in dialogue, we expect to
find significant differences in discourse relation use
across different discourse contexts. We visualize
the distribution of the relations in Figure 1.

Annotators generally selected more discourse re-
lations per EDU pair in the single-turn case, with
an average of 8.16 relations per team or 1.60 per
annotator. When EDUs spanned turns within a
single speaker, groups selected significantly fewer
relations (average = 7.29, t(302) = −2.16, p <
.05). Groups likewise selected even fewer rela-
tions for EDUs between two speakers (average =
6.51, t(314) = −2.54, p < .05). On its face,
this pattern appears surprising, because it suggests
that annotators find more relations appropriate for
single-speaker productions. However, an alterna-
tive interpretation of these results is that annota-
tors may instead have been uncertain about the
distinctions between the different discourse rela-
tions. This second interpretation is corroborated by
post-hoc poll data from 35 annotators, of whom 32
(91.4%) stated that the selection of discourse rela-
tions was best suited to annotating cross-speaker
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Figure 1: Distribution of discourse relations across three EDU pair types. y axis represents proportions of EDU
pairs with a given label; numbers represent the count of a label within a discourse context category.

EDU pairs. Future work will require recruiting
greater numbers of annotators to be able to distin-
guish between these two hypotheses.

4.1 Inter-annotator agreement

We computed measures of inter-annotator agree-
ment for multilabel tasks using Marchal et al.
(2022). This approach uses bootstrap sampling to
estimate the chance frequencies of DRs in a multi-
label dataset to provide a baseline for agreement
between annotators.

We summarize the results of this analysis in Ta-
ble 2. Following Marchal et al. (2022), we com-
puted observed, expected and adjusted agreement
for six measures. Soft-match agreement uses the
intersection of labels selected by two annotators;
boot-match corrects the expected agreement by us-
ing the bootstrapping method (as opposed to ignor-
ing non-intersecting labels); augmented kappa uses
DR labels weighted according to the number of
labels annotated for each item; precision and recall
are calculated as the proportion of intersecting DR
labels over the set of labels selected by the first
and second annotator, respectively; F1 is the usual
harmonic mean between precision and recall.

Both observed and adjusted agreement metrics
were well above chance using the bootstrapping
method proposed by Marchal et al. (2022). Agree-
ment is in general modest (Landis and Koch, 1977),
which may be partly due to the challenging nature
of the DRs annotation task (Spooren and Degand,

observed expected adjusted kappa
soft-match 0.43 0.11 0.36
augmented 0.27 0.11 0.18
boot-match 0.43 0.21 0.27
boot-rec. 0.33 0.14 0.22
boot-prec. 0.36 0.17 0.23
boot-F1 0.32 0.13 0.21

Table 2: Outputs of Marchal et al. (2022) inter-annotator
agreement analysis.

Relation Intercept
Different
speaker

Within
turn

Background -2.73 1.96 0.24
Clarification Q. 0.02 0.41 -0.43

Comment -1.69 0.84 0.46
Continuation -1.60 2.35 0.31

Contrast -2.23 2.07 0.17
Elaboration -0.78 1.95 0.13
Explanation -1.40 2.00 0.09

Narration -3.29 2.68 0.53
Other -3.54 2.20 1.12

Q-A Pair -0.81 0.64 -0.01
Result -2.35 1.63 -0.00

Table 3: Coefficient estimates from a multiclass logistic
regression predicting each annotation label.

2010), and partly due to annotators’ uncertainty on
DR labels across different context types.

4.2 Predicting relation selection
We use a model comparison approach to un-
derstand the contributions of discourse context
(within/across speakers and within/across turns)
to relation annotation by first constructing a null
model that estimates the base rates of each dis-
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course relation. Then, we constructed a multiclass
logistic regression model containing the discourse
context variables of interest, which significantly
improved fit to the annotation data (X2(22) =
447.98, p < .001). This improvement in fit sug-
gests that the distribution of discourse relations that
are identified by annotators is distinct across con-
texts. Adding the annotator group/topic also signif-
icantly improved fit beyond the model containing
the contextual variables alone (X2(198) = 900.06
p < .001). We summarize the results of this final
model in Table 3.1

An informal evaluation of the coefficients sug-
gests that discourse relations are not uniformly
distributed across contexts. Intuitively, Acknowl-
edgements, Clarification Questions, Comments,
and Question-Answer Pairs are more likely across
speakers than within. Additionally, Continuations,
Elaborations, Explanations, and Narrations are
more likely to occur within a single speaker. The
pattern of results is more unclear when comparing
EDUs that are produced by a single speaker but
which occur either within or across turns. For ex-
ample, relations such as Clarification Questions are
less likely to occur within a turn than across turns.

4.3 Classifier for relations

To validate the quality of the annotations, we built
a model to classify EDU pairs into discourse rela-
tions. We reasoned that if annotators are following
the guidelines and use information about the EDU
pairs, then a classifier should be able to predict DR
labels. We encoded the first EDU or CDU (π1) and
the second (π2) as the two “sentences” in the next
sentence prediction architecture of BERT (Devlin
et al., 2019). This enables the classifier to represent
the π1 and π2 components somewhat separately.

We built a classifier head trained on the resulting
embeddings without fine-tuning to predict each
individual annotator label. We chose to model
each annotator label individually to learn agree-
ment/majority class implicitly because prior studies
have shown that this improves generalization (Yung
et al., 2022). We use a leave-one-conversation-out
training procedure, in which we test a ridge re-
gression classifier on all of the annotations from a
single conversation while we train it on all other

1Due to the multilabel nature of the annotation task and the
one-versus-rest training for the multiclass model, coefficients
for each DR are not independent, were not estimated jointly,
and should be interpreted broadly as representing separate
logistic regressions.

annotations across the other conversations. This
ensures minimal memorization of specific turns
within a conversation, which is critical given our
multilabel annotation approach.

Strict annotation-level accuracy to predict each
selected label from all annotators was quite poor,
with macro average precision at .21, recall at .19,
and F1 at .19. However, recall was substantially
higher when considering whether the top guess
belonged to the set of all labels provided by anno-
tators, at .76 overall and .71 averaged by group.

To quantify the uncertainty of the annotators
across different contexts, we leverage the classifier
to produce a label distribution for a given (π1, π2)
pair. We then compute the cross-entropy between
the model’s predictions and annotators’ gold label
distributions, collapsing across all annotations for
an EDU pair. Overall, cross entropy between model
predictions and annotator labels was highest for the
single-turn case, with (mean = 0.43), but lowest
for EDUs between two speakers (mean = 0.38),
suggesting greater uncertainty in label assignment.

5 Discussion

In two experiments, we demonstrated that novice
DR label annotations in a single turn are more dif-
ficult than across turns. We showed that includ-
ing discourse context (within/across speaker and
within/across turn) to a logistic regression model
significantly improves fit to our annotation data. A
classifier trained to predict DR labels from embed-
dings of (π1, π2) pairs showed modest success for
recall of any of the annotations, but poor precision
and recall overall. A comparison of this classifier’s
predictions and annotators’ gold label distributions
revealed greater uncertainty for the annotation of
discourse relations within a single turn.

These results demonstrate that different conver-
sational contexts are associated with different dis-
tributions of discourse relations. The uncertainty
of choice of discourse relations within a turn may
be due to several factors. DRs that typically occur
across adjacent turns and across speakers (e.g., Ac-
knowledgements) might have clearer signals. At
the same time, DRs that occur more frequently
within speakers, and, in particular, within a turn,
might be more ambiguous, or might co-occur with
other relations. More work is necessary to disen-
tangle uncertainty about the identity of the best fit
relation from whether multiple relations are appro-
priate.
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Limitations

The current work is limited by the size of the
dataset and the nature of spontaneous conversa-
tion. While the discourse relations proposed as
part of this work were selected to be general and
build on categories from the literature, the list is
not exhaustive and it is likely that these relations
may be culturally, linguistically, and situationally
specific. Future work in this area should validate
the generality of the discourse relation system used
in this work.

The selection of EDUs and CDUs for annotation
is also non-exhaustive; additional segments could
be included in future work.

Annotation quality is also a practical limitation.
Annotation for discourse relations typically results
in low-agreement data, even among expert anno-
tators (e.g., DiscoGEM; Scholman et al., 2022).
Even though our research questions focus on this
disagreement as a positive, other researchers may
require greater numbers of annotations in order to
obtain a gold label.
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We are not aware of ethical issues associated with
the texts used in this work. Students participated
in the annotation task as part of course credit but
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performance in the course.
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Abstract

Our paper investigates the use of discourse em-
bedding techniques to develop a community
recommendation system that focuses on mental
health support groups on social media. Social
media platforms provide a means for users to
anonymously connect with communities that
cater to their specific interests. However, with
the vast number of online communities avail-
able, users may face difficulties in identifying
relevant groups to address their mental health
concerns. To address this challenge, we explore
the integration of discourse information from
various subreddit communities using embed-
ding techniques to develop an effective recom-
mendation system. Our approach involves the
use of content-based and collaborative filtering
techniques to enhance the performance of the
recommendation system. Our findings indicate
that the proposed approach outperforms the use
of each technique separately and provides in-
terpretability in the recommendation process.

1 Introduction

The rise of social media as a platform has allowed
people all over the world to connect and communi-
cate with one another. Further, these communities
that exist online are able to keep their members
anonymous from one another, allowing new com-
munities to form which would have a hard time
existing without anonymity.

Specifically, this new and robust anonymity has
allowed an explosion of online communities with a
focus on giving each other advice on health issues.
While being involved in seeking peer support in
a community with people that have experienced
similar issues can provide a significant positive im-
pact on someone’s ability to navigate their personal
problems (Richard et al., 2022), finding commu-
nities with relevant discourse is not trivial. Often,
the platforms which host these communities have a

*These authors contributed equally to this work

very large quantity of them. There are over 100,000
different communities on Reddit alone. Further,
some communities are not easily found due to their
inherently anonymous nature, so the only way a
user can decide if they fit within the community
is by spending time reading through the discourse
happening within the community.

For these reasons, new users seeking others who
have experienced similar situations may have a
very hard time finding communities that would
help them the most, even if they are familiar with
the platform which hosts the communities.

Recently, embedding long sequences of text has
received lots of interest both from the research com-
munity and from practitioners. A number of studies
have shown embeddings can be useful for measur-
ing the similarity both between document pairs
and between question-document pairs (Karpukhin
et al., 2020; Xiong et al., 2020; Qu et al., 2021), al-
lowing for retrieval of the most similar documents
given a new question or document. However, little
work has been done investigating how the discourse
within a community, which represents the meaning
of that community, can be represented in a sin-
gle embedding. The discourse of a community in
this context can be all users’ posts in that specific
community or represented community’s descrip-
tion. This poses a unique challenge as discourse
within these communities is often in the form of
threads that, unlike documents, are not naturally
represented as a single block of text.

The goal of this work is to develop a system to
recommend support groups to social media users
who seek help regarding mental health issues us-
ing embeddings to represent the communities and
their discourse. Specifically, we aim to leverage
the text of a given user’s posts along with the de-
scription and posts in each subreddit community to
help recommend support groups that the user could
consider joining.

Our main research questions are as follows:
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1. In representing online communities through
discourse embeddings, what type of informa-
tion can be used?

2. To what degree do these representations im-
prove the accuracy of predicting users’ behav-
iors regarding their involvement in sharing
experiences within groups or communities?

3. Do different discourse embedding methods
change the prediction capacity of our commu-
nity recommendation model?

In exploring these research questions, we pro-
pose a hybrid recommendation approach that lever-
ages both content-based and collaborative filter-
ing to construct our community recommendation
model. As shown in Fig. 1, the content-based fil-
tering component investigates different methods of
embedding discourse within a community to rec-
ommend similar communities to users. It is then
combined with a matrix factorization model that
learns user engagement behavior in a community
to improve recommendation decisions. Utilizing
users’ past interactions as well as text-based infor-
mation about the communities, we show that our
model achieves promising accuracy while offering
interpretability.

2 Related Work

There are a number of studies related to our work.
Son et al. (2022) and Balusu et al. (2022) con-

structed discourse embeddings to find relations be-
tween short text segments. While the two studies
were similar in concept, they focused on short text
segments where this work instead focused on con-
structing discourse embeddings for entire social
media communities.

Garriga et al. (2022) showed NLP techniques
could be used with electronic health records to
predict mental health crises 4 weeks in advance.
While online communities were no replacement
for professional medical help, this suggested many
who had looming mental health problems seek help
before a crisis.

Low et al. (2020) experimented on the same
dataset we used with Natural Language Processing
techniques such as TF-IDF and sentiment analysis
to understand the effects of COVID-19 on mental
health. Although working on the same dataset, our
work studies a different task: to recommend mental
health-related support community to Reddit users.

Musto et al. (2016) adopted a similar approach to
ours in content-based filtering for recommendation.
Specifically, they mapped a Wikipedia page to each
item and generate its corresponding vector repre-
sentation using three feature-extraction methods -
Latent Semantic Indexing, Random Indexing, and
Word2Vec. We extended this method by exploring
more recent representations of text such as BERT
(Devlin et al., 2019) and OpenAI embeddings.

Halder et al. (2017) recommended threads in
health forums based on the topics of interest of
the users. Specifically, self-reported medical condi-
tions and symptoms of treatments were used as ad-
ditional information to help improve thread recom-
mendations (Wang et al., 2020; Jiang et al., 2012).
While our work is also situated in the health do-
main, we are interested in recommending a broader
support group to users rather than a specific thread.

Ghazarian et al. (2022) used sentiment and other
features to automatically evaluate dialog, showing
NLP techniques could be used to evaluate quality
of discourse. In doing so, they leveraged weak su-
pervision to train a model on a large dataset without
needing quality annotations.

3 Problem Definition

Suppose we have a Reddit’s "who-posts-to-what"
graph, which is denoted by G = (U, V,E) where
U is the set of users, V is the set of subreddit com-
munities, and E, a subset of U × V , is the set
of edges. The number of user nodes is m = |U |
and the number of subreddit communities is n =
|V |. So, U = {(u1, P1), (u2, P2), ..., (um, Pm)}
where Pi is the set of posts by user ui and V =
{(v1, P ′

1), ..., (vn, P
′
n)} where P ′

j is the set of all
posts in subreddit vj . If a user ui posts to subreddit
vj , there is an edge that goes from ui to vj , which
is denoted by eij = e(ui, vj). The problem is that
given G, predict if eij = e(ui, vj) exists. In other
words, will user ui post to subreddit vj?

4 Methodology

Figure 1 illustrates our recommendation pipeline,
which adopts a hybrid approach by incorporating
both content-based filtering (CBF) and collabora-
tive filtering, specifically matrix factorization (MF)
strategies. The CBF model recommends new sub-
reddits based on the average of a user’s previous
interactions, weighted by how similar the previous
subreddits are to the new ones. Meanwhile, users
and subreddits are represented in a k-dimensional
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Figure 1: Our recommendation pipeline, which linearly combines the prediction of a content-based filtering (CBF)
and a matrix factorization (MF) model. In the CBF model, recommendations of new subreddits are made through
the average of a user’s past interaction, weighted by how similar the past subreddits are to the new ones. In the
MF model, users and subreddits are represented in a joint latent space of k dimensions. Recommendations of new
subreddits are made based on the distance between users and subreddits in this latent space.

joint latent space in the MF model. The distance
between users and subreddits in this latent space is
used to provide recommendations for new subred-
dits. The predictions from these two components
are linearly combined to obtain the final recommen-
dation of subreddits to users.

The collaborative filtering component of our
solution leverages nonnegative matrix factoriza-
tion to represent our users and subreddits in lower-
dimensional latent space. In this sense, we rede-
fine the adjacency matrix A in our problem def-
inition so that it works with nonnegative factor-
ization. More specifically, users’ past interactions
with items are represented by the adjacency ma-
trix A ∈ {5, 1, 0}m×n. Aij = 5 if the user ui has
posted to subreddit j, Aij = 1 if the user ui has
NOT posted to the subreddit vj , and Aij = 0 is the
missing connection that needs predicting. Given
this adjacency matrix A, the task is to predict the
missing elements Aij = 0. In the following sec-
tions, we elaborate on each component of our rec-
ommendation model and then discuss how they are
combined to obtain our final solution.

4.1 Content-based Filtering

In recommending items to users based on their past
interactions and preferences, content-based filter-
ing methods represent each item with a feature

vector, which can then be utilized to measure the
similarity between items (Linden et al., 2003). If an
item is similar to another item with which a user in-
teracted in the past, it will be recommended to that
same user. Thus, in addition to the adjacency ma-
trix A, we utilize another matrix C of size m×m,
where Cab is the similarity between the embed-
dings for two subreddits with embedding vectors
a and b. In this paper, we use cosine similarity as
the similarity measure:

Cab =
a · b

∥a∥ ∥b∥ ,

To predict the value of the missing element
where Aij = 0 (whether user ui will post to sub-
reddit vj), we compute the average of user ui’s past
interactions (which subreddits user ui posted and
did not post to), weighted by the similarity of these
subreddits to subreddit vj . Mathematically,

A′
ij =

∑n
k=1AikCkj∑n

k=1Ckj
.

We can generalize the above formula to obtain the
new predicted adjacency matrix using matrix-level
operations:

A(CBF) = (AC)⊙D,

where
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• D = 1./(I ·C) (element-wise),
• I is an indicator matrix such that Iij = 1 if
Aij ̸= 0, otherwise Iij = 0,

• and ⊙ is the Hadamard product.

4.1.1 Representing Subreddit Discourse with
Description and Posts

It is helpful to consider the specific domain of the
application to represent each item as an embedding.
In the context of our subreddit recommendation
problem, we take advantage of two types of text-
based information about a subreddit to construct
the similarity matrix: (1) the posts within the sub-
reddit itself and (2) the general description about
the reddit provided by the subreddit moderators.

We then use a feature extraction method to ob-
tain two embeddings of a subreddit, one based on
its description and the other based on its posts. As
a subreddit contains many posts, each of which
has a different embedding given the same feature-
extraction method, we take the average of the em-
beddings across all posts within a subreddit to ob-
tain one embedding for the subreddit.

4.1.2 Feature Extraction
In this paper, we consider three feature-extraction
methods: Term Frequency-Inverse Document Fre-
quency (TF-IDF), Bidirectional Encoder Represen-
tations from Transformers (BERT) (Devlin et al.,
2019), and OpenAI.*

TF-IDF: The TF-IDF algorithm represents a
document as a vector, each element of which cor-
responds to the TF-IDF score of a word in that
document. The TF-IDF score for each word in the
document is dictated by (1) the frequency of the
word in the document (Sparck Jones, 1972), and
(2) the rarity of the word in the entire text corpus
(Luhn, 1957). That is, a term is important to a doc-
ument if it occurs frequently in the document but
rarely in the corpus. We use the implementation
from scikit-learn (Pedregosa et al., 2011) to obtain
the TF-IDF representations of our subreddits.

BERT: We employ BERT to generate sentence
embeddings as another feature extraction technique
(Devlin et al., 2019). BERT takes a sentence as in-
put and generates a fixed-length vector representa-
tion of the sentence. This representation is meant to
capture the syntactic and semantic meaning of the
input sentence in a way that can be used for various
natural language processing tasks, such as sentence

*OpenAI API Embeddings: https://platform.openai.
com/docs/guides/embeddings

classification or semantic similarity comparison. In
the context of our problem, we can treat each sub-
reddit description or each post as a sentence and
feed it to a pre-trained BERT model to generate
the embeddings that represent the subreddit. Long
posts are truncated to fit within the context limits of
pre-trained models. We experiment with 4 different
variations of BERT embeddings:

• BERT base and large (Devlin et al., 2019)

• Sentence-BERT, or SBERT (Reimers and
Gurevych, 2019)

• BERTweet (Nguyen et al., 2020)

OpenAI: Similar to BERT embeddings, OpenAI
embeddings take in a string of text and output an
embedding that represents the semantic meaning
of the text as a dense vector. To do this, the input
string is first converted into a sequence of tokens.
The tokens are then fed to a Large Language Model
(LLM), which generates a single embedding vector
of fixed size. OpenAI’s text-embedding-ada-002
can take strings of up to 8191 tokens and returns a
vector with 1536 dimensions.

4.2 Nonnegative Matrix Factorization for
Collaborative Filtering

Matrix factorization (MF) approaches map users
and items (subreddits in this case) to a joint latent
factor space of a lower dimension k (Koren et al.,
2009). The goal of this method is to recommend
to a user the subreddits that are close to them in
the latent space. More formally, MF involves the
construction of user matrix P of dimension n× k
and subreddit matrix Q of dimension m × k. In
this sense, the resulting term, pi

⊤qj , captures user
ui’s interest in item vj’s characteristics, thereby ap-
proximating user ui’s rating of item vj , or denoted
by Aij .

This modeling approach learns the values in P
and Q through the optimization of the loss fuction

min
P,Q

∑

Aij∈A
(Aij − p⊤

i qj)
2 + λ(∥pi∥2 + ∥qj∥2).

Matrix factorization offers the flexibility of ac-
counting for various data and domain-specific bi-
ases that may have an effect on the interaction be-
tween user ui and subreddit vj . In this paper, we
consider three types of biases: global average µ,
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user bias b(p)i , and subreddit bias b(q)j . The updated
loss function is given by:

min
P,Q

∑

Aij∈A
(Aij − µ− b

(p)
i − b

(q)
j − p⊤

i qj)
2+

λ(∥pi∥2 + ∥qj∥2 + b
(p)2

i + b
(q)2

j ).

(1)

After optimization, each element in the new pre-
dicted adjacency matrix AMF is given by:

A(MF)
ij = p⊤

i qj + µ+ bi + bj

4.3 Final Model: Hybrid Approach
Our main model leverages insights from both
content-based filtering and matrix factorization by
taking a linear combination of their predicted ad-
jacency matrix. Specifically, the new adjacency
matrix is given by:

A(MF+CBF) = βA(CBF) + (1− β)A(MF),

where β is a hyperparameter that controls how
much the CBF model (vs MF model) contributes
to the final prediction.

5 Data and Experimental Setup

For the experimental setup, we use the data from
Low et al. (2020) working on Reddit platforms in
mental health domains, particularly health anxiety.

5.1 Data Description
The dataset is collected from 28 mental health and
non-mental health subreddits. The dataset is suit-
able for studying how subreddits and social me-
dia platforms correlated with individuals’ mental
health and behavior. The original data comprises
952,110 Reddit posts from 770,176 unique users
across 28 subreddit communities, which include
15 mental health support groups, 2 broad mental
health subreddits, and 11 non-mental health subred-
dits. We also manually collect descriptions of the
28 subreddits and use that information along with
the posts to conduct the content similarity matrix.

5.2 Data Preprocessing
Although the original dataset has a large number
of unique users, the majority of them only con-
tribute posts to one or two different communities.
This presents a challenge when evaluating our spe-
cific task. As our objective is to examine users’

behavior over time and provide recommendations
for engaging in suitable subreddits, we have imple-
mented a filter to exclude users who post to fewer
than three subreddits. After filtering, the remaining
users and posts are 16,801 and 69,004, respectively,
while the number of subreddits remains to be 28.
We also seek to understand the distribution of in-
teractions between users and different subreddits.
The detailed distribution of post frequency across
subreddits is visualized in Figure 2.

COVID19_support
0.2%

EDAnonymous
1.5%

addiction
1.2%

adhd
4.5%

alcoholism
0.8%

anxiety
11.1% autism

1.3%

bipolarreddit
1.0%

bpd
3.8%

conspiracy
1.6%

depression
15.8%

divorce
0.8%

fitness
4.1%

guns
1.0%

healthanxiety
1.5%

jokes
2.7%

legaladvice
4.2%

lonely
3.4%

meditation
1.9%

mentalhealth
7.3%

parenting
2.3%

personalfinance
6.6%

ptsd
1.8%

relationships
4.8%

schizophrenia
1.5%

socialanxiety
4.4% suicidewatch

8.8%

teaching
0.3%

Figure 2: Distribution of post frequency across subred-
dits: r/depression, r/anxiety, and r/suicidewatch are the
three most popular subreddits.

5.3 Experimental Setup
5.3.1 Data Splits
To construct our data splits, for each user in our
dataset, we choose the most recent subreddit that
the user first posted to as the test example. For
example, if the user post history is [subreddit1, sub-
reddit2, subreddit3, subreddit1, subreddit2], then
subredddit3 will be used as the test example. For
each positive training example, we pair it with a
negative example randomly sampled from the list
of subreddits where the user has not posted to.

5.3.2 Evaluation Metrics
In assessing the performance of our recommenda-
tion method and the baseline, we use the following
evaluation metrics: Recall@K and Mean Recipro-
cal Rank (MRR).

5.4 Results
Table 1 presents the performance of our hybrid
recommendation system as well as its individual
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Figure 3: Model Performance on Recall@K

components (MF or CBF). For CBF, we report its
performance on different types of embeddings con-
structed using different information (posts or de-
scription) and different feature extraction methods
(TF-IDF, BERT, or OpenAI). Figure 3 visualizes
the results of exemplary models in a diagram for
better analysis using Recall@K.

According to Table 1, all variants of our recom-
mendation method outperform the random predic-
tor. Among all the variants, the hybrid solution
using the content similarity matrix generated from
OpenAI embeddings achieves the highest perfor-
mance in MRR (0.4244) and average Recall@K.

For CBF, operating a feature-extraction method
on subreddit posts results in higher performance
than operating the same method on description. For
example, the MRR for CBF - BERT base is 0.3140
when using posts and 0.3024 when using descrip-
tion. It can also be observed that given the same
information (either posts or information), deep-
learning-based feature extraction methods like Ope-
nAI and BERT bring about better performance for
CBF than TF-IDF.

As our recommendation model combines both
MF and CBF, we investigate the effect of hyper-
parameter β, which dictates how much CBF con-
tributes to the final prediction. Figure 4 illustrates
the performance of the hybrid models on varying
β. When β = 0, the hybrid model’s performance
is the same as that of MF. When β = 1, the hybrid
model’s performance is the same as that of CBF.
It can be seen from the peak of these curves that
this way of linearly combining MF and CBF brings
about significant improvement in MRR.

Figure 4: Hybrid Model Performance (MRR) across
different values of β

5.5 Case Studies
We perform a series of case studies to understand
why certain information and methods are more
helpful than others in recommending subreddits
to users. We present our findings by comparing the
behavior of the following models: (1) CBF models
using TF-IDF and OpenAI Embedding on Subred-
dit Descriptions, (2) CBF models using OpenAI
Embeddings on Subreddit Descriptions and Posts,
and (3) MF model and Hybrid model.

5.5.1 CBF models using TF-IDF and OpenAI
Embedding on Subreddit Descriptions

The objective of the first case study is to investigate
the impact of different types of embedding meth-
ods on the performance of recommendations. To
achieve this, we employ TF-IDF and OpenAI Em-
bedding approaches to analyze subreddit descrip-
tions and compare their predictions using content-
based filtering (CBF) approaches, as illustrated in
Figure 5. Specifically, we consider User A’s his-
torically interacted subreddits, which relate to de-
pression, loneliness, and anxiety, respectively, with
the ground truth of socialanxiety. For CBF mod-
els, the content similarity C between historically
interacted and ground truth subreddits is crucial
for accurate predictions. Hence, we evaluate the
similarity scores between them. According to the
result, the OpenAI Embedding technique outper-
forms TF-IDF in learning the representation of sub-
reddits. Based on the analysis of content similarity
matrices of the two approaches, we observe that
TF-IDF has low similarity scores among subreddits
due to its bag-of-words (BOW) approach, which
fails to capture semantic relationships in short texts
(Naseem et al., 2021), such as subreddit descrip-
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Approach MRR Recall@1 Recall@3 Recall@5 Recall@10

Random Predictor 0.1631 0.0429 0.1318 0.2221 0.4409

Matrix Factorization (MF) 0.3895 0.2300 0.4197 0.5585 0.7946

CBF - TF-IDF (Description) 0.2751 0.1503 0.2777 0.3634 0.5494
CBF - BERT base (Description) 0.3024 0.1807 0.3050 0.3799 0.5668
CBF - OpenAI (Description) 0.3113 0.1761 0.3233 0.4266 0.6093
CBF - SBERT (Post) 0.2865 0.1317 0.3109 0.4281 0.6545
CBF - BERT base (Post) 0.3140 0.1598 0.3446 0.4776 0.6651
CBF - BERT large (Post) 0.3168 0.1637 0.3436 0.4795 0.6674
CBF - BERTweet base (Post) 0.3154 0.1570 0.3516 0.4918 0.6700
CBF - OpenAI (Post) 0.3195 0.1642 0.3484 0.4815 0.6823

MF + CBF OpenAI (Description) 0.4039 0.2405 0.4491 0.5790 0.8093
MF + CBF BERT base (Post) 0.4114 0.2449 0.4613 0.5966 0.8023
MF + CBF BERTweet base (Post) 0.4221 0.2570 0.4809 0.6022 0.8056
MF + CBF BERT large (Post) 0.4237 0.2593 0.4832 0.6000 0.8059
MF + CBF OpenAI (Post) 0.4244 0.2571 0.4841 0.6063 0.8154

Table 1: Model Performance with different content similarity matrices generated by embedding methods evaluated
on MRR and Recall@K

User A depression
Timestamp 1

anxiety
Timestamp 3

lonely
Timestamp 2

Top 3 - TF-IDF (Description)
1. Alcoholism
2. adhd
3. COVID-19_Support

Top 3 - OpenAI (Description)
1. socialanxiety
2. alcoholism
3. EDAnonymous

True label
Timestamp 4
TF-IDF rank: 15 

Figure 5: Case Study 1: Top 3 TFIDF Predictions vs.
OpenAI Predictions. The higher the timestamp, the
more recent the interactions between the user under
study and the subreddits they engaged with.

tions. In contrast, OpenAI Embeddings, which can
capture semantic meanings, performs better for en-
coding the meanings of subreddit descriptions for
recommendation tasks.

5.5.2 CBF models using OpenAI Embeddings
on Subreddit Descriptions and Posts

The second case study aims to investigate the im-
pact of different types of information on the per-
formance and recommendations of CBF models.
To achieve this goal, we evaluate OpenAI Em-
beddings approaches on two types of information,
subreddit descriptions, and posts. Figure 6 illus-
trates the predictions using CBF approaches utiliz-
ing OpenAI Embeddings on posts and descriptions.

Specifically, we examine User B’s historical posts,
which are in depression and personalfinance, and
the ground truth label is legaladvice. To under-
stand the behavior of CBF on these two types of
information, we analyze the similarities between
historical subreddit interactions of User B and how
the ground truth label is correlated with these sub-
reddits. Our analysis shows that using OpenAI
Embeddings on subreddit posts can capture strong
relationships between personalfinance and legal-
advice, where many legaladvice posts are related
to financial information. However, when only us-
ing subreddit descriptions of legaladvice, which
is "A place to ask simple legal questions, and to
have legal concepts explained.", the model fails to
capture this relationship. Furthermore, as shown
in Table 1, the use of subreddit posts as represen-
tations for communities generally exhibits higher
performance across most metrics when compared
to using community descriptions. The reason is
that subreddit descriptions contain less information
than posts describing only the general purpose of
the subreddit. In contrast, using subreddit posts can
accurately learn the representations of the subred-
dits. Therefore, among the two types of informa-
tion, using subreddit posts to represent subreddits
helps models achieve better performance.
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User B
depression

Timestamp 1
personalfinance

Timestamp 2

1. suicidewatch
2. fitness
3. alcoholism

OpenAI (Description)

Peer support for 
anyone struggling 
with a depressive 
disorder..

Learn about budgeting, saving, 
getting out of debt, credit, 
investing, and retirement 
planning. Join our community, 
read the PF Wiki, and get on 
top of your finances!

True label: legaladvice 
(predicted rank = 15)

Timestamp 3
A place to ask simple legal 
questions, and to have legal 
concepts explained."

1. legaladvice
2. suicidewatch
3. teaching

OpenAI (Posts)

depression personalfinance

True label

I've been a wreck since my 
best buddy committed s**** 
last month. I've started 
treatment, and I sincerely 
hope it will help. What ought 
I to try? I'd do anything to 
regain my normal state.

How do I use Mint's weekly 
buckets? Because of 
Learnvest's technological 
difficulties, I recently 
switched to Mint. Anyone 
with knowledge of this 
process in Mint?

Friend promised in writing that 
they would reimburse me, but 
they are now refusing. [...] To 
cut a long story short, we got 
into a fight, and now he won't 

give me my money back. What 
alternatives do I have to get the 

money back?

Figure 6: Case Study 2: Top 3 OpenAI Description Predictions (Left) vs. OpenAI Post Predictions (Right). The
higher the timestamp, the more recent the interactions between the user under study and the subreddits they engaged
with. Post content has been paraphrased to protect user’s privacy.

5.5.3 MF vs MF + CBF model using OpenAI
Embeddings on Subreddit Discourses

The objective of the third study is to investigate the
performance improvement achieved by combining
MF and CBF. Specifically, we aim to explore how
the use of discourse embeddings to generate con-
tent similarity matrices among subreddits can ad-
dress challenges encountered by the MF approach.
To this end, we evaluate the MF and MF + CBF
approaches using OpenAI Embeddings on posts.
The predictions generated by the two models are
presented in Figure 7.

We further examine the construction of scores
using MF for this case study. The scores values
are generated using latent features P , Q, µ, b(p),
and b(q), representing user, item features, global
average, user, and item biases, respectively. How-
ever, due to the imbalance in the dataset, there are
more posts in some subreddits than others, leading
to a cold start problem for the MF approach to ac-
curately learn communities with a small number
of examples. In this case study, MF fails to gener-
ate correct predictions for the divorce community
due to the limited number of posts available. Ad-
ditionally, MF is biased towards subreddits with
more posts, as reflected by the b(q) values that have
strong correlations with the number of posts in the
subreddit communities, as depicted in Figure 8.

We demonstrate that the top three predictions
generated by MF are the subreddits with the high-
est item biases compared to other subreddits, which
are also the ones with the most posts. However, as
divorce only accounts for 0.78% of the dataset,
the performance of MF is limited. By utilizing

Top 3 - MF + CBF OpenAI (Post)
1. guns
2. jokes
3. divorce

User C parenting
Timestamp 1 legaladvice

Timestamp 3

personalfinance
Timestamp 2

Top 3 - MF
1. depression
2. anxiety
3. suicidewatch

True label
(MF rank = 20)

Real estate and possible 
divorce: a question [...] Are my 
residences included in the 
"50/50" divide if the wife and I 
had a divorce? Is there a way I 
can safeguard myself? [...]

Any other firemen here who 
have divorced and successfully 
negotiated child custody 
arrangements? I'm simply 
curious how custody works 
when someone has a peculiar 
job schedule, like a fireman.

Timestamp 4

Figure 7: Case Study 3: Top 3 MF Predictions vs. Top 3
MF + CBF Post Predictions. The higher the timestamp,
the more recent the interactions between the user under
study and the subreddits they engaged with. Post content
has been paraphrased to protect user’s privacy.

OpenAI Embeddings on Subreddit Discourses to
represent subreddit communities, we can integrate
semantic information into the prediction process,
thereby overcoming the cold start problem encoun-
tered by MF. Furthermore, this approach captures
the relationships between the target recommended
subreddit, historically interacted communities and
semantic similarities. In this case, the most simi-
lar subreddits to personalfinance are legaladvice
and divorce, while the most similar subreddits to
parenting are autism and divorce.

Overall, we showcase that integrating semantic
information into MF can address the cold start prob-
lem, and combining MF with CBF using discourse
embeddings can make better recommendations.
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6 Conclusion

This study aimed to investigate the effectiveness
of different types of discourse embeddings when
integrated into content-based filtering for recom-
mending support groups, particularly in the men-
tal health domain. Our findings showed that the
hybrid model, which combined content-based fil-
tering and collaborative filtering, yielded the best
results. Moreover, we conducted an extensive case
study to demonstrate the interpretability of our ap-
proach’s predictions.

Previous studies have brought to light the use of
past behaviors to make more accurate recommen-
dations in mental health (Valentine et al., 2022).
They also emphasize effective communication be-
tween the recommender system and the user as an
essential factor for users’ proper understanding of
mental health in general as well as in their own jour-
ney (Valentine et al., 2022). Through promising
prediction accuracy and interpretability, we believe
that this method can serve as a valuable tool to
support individuals, particularly those with mental
health concerns, to share and seek help regarding
their issues.

Limitations

In our current project, we have not taken into
account the temporal information that treats the
historical behavior of users as a sequence of ac-
tions. Thus, the model may not capture how user
behaviors change over time. To ensure full sup-
port to users in need, we recommend that future
work should address this limitation by consider-
ing users’ historical behaviors as a sequence of
actions. Moreover, although our pre-trained mod-
els achieved significant results without fine-tuning
discourse embeddings, we suggest that fine-tuning

these models can enhance performance by captur-
ing the nuances of the datasets’ distribution and
contexts. Furthermore, conducting a detailed com-
parison of additional open-source Large Language
Models (LLMs) would provide more comprehen-
sive insights into their performance. Additionally,
in addition to analyzing the efficiency of different
models, it is crucial to evaluate the cost associ-
ated with implementing these models. Therefore,
future work should consider both fine-tuning and
evaluating additional LLMs, while also taking into
account the costs of utilizing these models.
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Abstract
We present a corpus of parallel German-
language simplified newspaper articles. The
articles have been aligned at sentence level and
annotated according to the Rhetorical Structure
Theory (RST) framework. These RST anno-
tated texts could shed light on structural as-
pects of text complexity and how simplifica-
tions work on a text level.

1 Introduction

The goal of text simplification is to reduce the com-
plexity of a text whilst retaining the main infor-
mation, in order to make a text easier to under-
stand. In this paper, we present a corpus of German-
language parallel simplified newspaper articles, at
three different complexity levels. Each text has
been annotated according to the Rhetorical Struc-
ture Theory (RST, Mann and Thompson, 1988)
framework. RST posits that segments (or Elemen-
tary Discourse Units, EDUs) in a text are related
to each other and that one component of the pair
serves as a ‘nucleus’ and the other as a ‘satellite’, or
in some cases both components are considered to
have ‘nucleus’ status. An example of a relation that
connects EDUs is ‘evidence’ where the nucleus is
a claim and the satellite provides evidence for the
claim. RST therefore provides information about
the structure of texts; an area which has thus far not
been the focus of much research on text simplifica-
tion. Whilst much of previous work has focused on
sentence-level simplification, text-level simplifica-
tion is a promising area of research, as it represents
a ‘more real use-case scenario for a simplification
model’ (Alva-Manchego et al., 2020). For the Ger-
man language, Leichte Sprache is a term often used
in the context of simplified texts: Leichte Sprache
texts are written according to clearly defined rules,
however text-level aspects, including coherence,
are often neglected in the guidelines, even though
they are highly relevant when producing accessible
texts (Bock, 2019; Maaß, 2020).

Aside from contributing to the general collec-
tion of RST annotated texts, this corpus could
also be used to help carve out what text-level
simplification actually constitutes, how simplified
texts are structured and how this differs to their
standard counterparts, and could also be used to
answer questions surrounding the complexity of
different types of text structures. Section 2 pro-
vides an overview on previous work that has con-
sidered questions at the intersection of discourse
structure and text simplification, Section 3 pro-
vides details on the annotation process of the cor-
pus, Section 4 outlines some statistical analysis
on the corpus and Section 5 summarises the pa-
per and provides inspiration for potential use-cases
for the corpus. The corpus can be downloaded at
https://github.com/fhewett/apa-rst.

2 Related work

Datasets which combine discourse structure and
text simplification are relatively rare. LeiKo is a
German-language corpus of newspaper articles sim-
plified at various levels (including Leichte Sprache,
Jablotschkin and Zinsmeister, 2022). A subset of
40 articles from the corpus has (manual) Penn Dis-
course Treebank (PDTB) annotations. Ko et al.
(2023) expand their corpus of English-language
texts annotated according to the Questions un-
der Discussion (QUD) framework to include six
Newsela articles and their counterparts at middle
and elementary school level. In the context of text-
level simplification, the task of sentence deletion
has also been approached using various discourse
structures. Zhang et al. (2022) also look at Newsela
texts, and automatically annotate them with a ‘news
genre-specific functional discourse structure’ and
with sentence alignments. They train a model to
predict when a sentence should be deleted and find
that the discourse structure improves the accuracy.
Zhong et al. (2020) also focus on the task of sen-
tence deletion and analyse various discourse-based

173

https://github.com/fhewett/apa-rst


features (from RST and PDTB) for this purpose
and find that the position of a sentence in an RST
tree as well as some specific relations play a key
role. The link between discourse structure and
other aspects of text-level simplification have also
been considered; Siddharthan (2003) proposes a
rule-based system – using cue words, for example
– to help preserve coherence when restructuring
texts during the simplification process. Niklaus
et al. (2021, 2016) split complex sentences by us-
ing automatically parsed syntax trees. They use
a pre-determined list of cue words (such as ‘al-
though’) to determine the rhetorical relation within
sentences to ensure that the split sentences are still
coherent. Davoodi and Kosseim (2016) implement
pairwise classification of texts of varying complex-
ity using discourse features, using a subset of 30
articles from the PDTB which have been annotated
with a complexity level (Pitler and Nenkova, 2009)
and an automatically parsed subset of the Simple
English Wikipedia corpus (Coster and Kauchak,
2011).

3 Corpus creation

The data used in the corpus is from the Austria
Press Agency (APA), who publish four to six arti-
cles every weekday, (manually) simplified to two
language levels: B1 and A21, according to the Com-
mon European Framework of Reference for Lan-
guages (CEFR). More details on the APA data can
be found in Ebling et al. (2022); the version used
to create the APA-RST subset contains articles up
to April 2022. APA-RST covers a total of five ran-
domly selected days from a time-frame between
2018 and 2022, with five articles each day. The cor-
pus therefore consists of a total of 75 articles, with
25 at each level (original, B1 and A2), covering
different topics such as politics, culture and sport.

3.1 RST annotations

Each article has been annotated according to the
RST guidelines from Stede et al. (2017). In addi-
tion to the relations2 present in those guidelines, we
also include two additional relations from RST-DT
(Carlson and Marcu, 2001): sameunit and attribu-
tion. We also remove means from the relation set
(due to its similarity to enablement) as well as un-

1The A2 level corresponds (approximately) to Leichte
Sprache.

2For readers unfamiliar with RST, short descriptions of the
relations mentioned in the following Sections can be found in
the Appendix A.4.

Level OR OR
parts

B1 A2

Total sent. 558 558 184 204
Total tok. 9567 9567 2009 1871
Sent./text 22.3 9.1 7.4 8.2
Tok./text 382.7 156.8 81.0 74.2
Tok./sent. 17.1 17.1 10.9 9.2
Char./tok. 6.2 6.2 5.8 5.6
EDUs/text - 15 9 9

Table 1: General information on APA-RST. Sent. stands
for sentence(s), tok. for token(s), char. for characters
and OR for original level. The values which are not
totals represent averages.

less (due to its similarity to condition). The titles of
the newspaper articles were excluded from the an-
notation, as well as glossary entries for complicated
words, which were occasionally included in the A2
texts. Longer texts were (manually) split into sep-
arate parts for a total of 111 parts; information on
these parts can be found in Table 1. These texts
were segmented into EDUs and given to the anno-
tators in pre-segmented form. Five annotators used
rstWeb to annotate the texts (Zeldes, 2016). The
annotators were undergraduate students of compu-
tational linguistics, who were trained for the an-
notation task and had regular feedback sessions
during the annotation process.
Approximately one third of the corpus (36 texts)
has three sets of annotations. The inter-annotator
agreement (IAA) was calculated using RST-Tace
(Wan et al., 2019), which is based on a proposal
by Iruskieta et al. (2015), and considers four dif-
ferent aspects: nuclearity, relations, constituents
and attachment points. RST-Tace is designed for
comparing two sets of annotations, so to adapt it
for our three sets we simply calculated the IAA for
all possible combinations, i.e. between set 1 and
2, set 1 and 3, and set 2 and 3. Overall, the aver-
age Kappa score is 0.27, and the aspect with the
most disagreement between annotations was the
relations. Out of all non-matching relations, elab-
oration and e-elaboration are the main source of
disagreement, i.e. one annotator chose elaboration
whilst a second annotator chose e-elaboration for
the same set of EDUs. Although a certain level of
subjectivity is to be expected in RST annotations,
due to the relatively low agreement, all annotations
were manually checked by two doctoral students.
Additionally, the texts with multiple annotations
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Figure 1: The tree of the second part of an original level text (4-freitag-28-1-22-or-pt2).

have been manually harmonised and checked by
one annotator from the original group and two doc-
toral students.

3.2 Alignment annotations

The original articles and the B1 articles have also
been annotated with alignments to the simplified
levels. Two annotators (an undergraduate student
and a doctoral student) looked at the sentences in
the B1 and A2 texts and labelled the sentence(s)
in the original texts which provided the content
for the simplified sentences. The inter-annotator
agreement (Kappa) for aligning the sentences in
the original texts to their B1 counterparts was 0.77,
and 0.9 for B1 to A2. Information on the types of
alignments can be found in Table 3. An example
of an aligned text can be seen in Table 2; the B1
sentence [1] consists of content from two sentences
in the original, this is an n:1 alignment.

4 Corpus statistics

As we can see in Table 1, the simplified texts are
approximately a third of the length of the original
articles, showing that simplification of newspaper
articles mostly results in a shorter version. The A2
texts are slightly longer than the B1 texts, owing to
more descriptions and explanations of complicated
concepts.
Relation distribution. Figure 2 shows the distri-
bution of the relations at the different complexity
levels. The texts at levels B1/A2 contain more
elaborations and e-elaborations than the standard
texts. With regards to the multi-nuclear relations
– relations which consist of two nuclei segments
– the simplified texts contain more sequences and
slightly more conjunctions, whereas the original
texts contain almost the same amount of lists. For

the original texts, the list relations are found at a
higher level in the tree, as they encompass an aver-
age of 8.2 EDUs, as compared to approximately 4
in the simplified texts, as can be seen in Figure 3.
The example tree in Figure 1 shows a list relation
at the highest level in the tree. When it comes to
causal relations, the simplified texts contain more
causes, slightly more results but less reasons. Ac-
cording to the annotation guidelines, reason should
be used to link two subjective claims, which sug-
gests that the original texts have more subjectivity.
Attribution relations occur more frequently in the
standard texts. Attributing information or a quote
to an external source increases the number of per-
spectives in a text, whereas the simplified texts
have less attributions and therefore less perspec-
tives. Sameunits do not occur at all in the simpli-
fied versions. In the original texts they are used for
nested constructions; these are not present in the
simplifications.

Relations and nuclearity of aligned sentences.
Figure 4 shows the relations together with the nucle-
arity assignments for the original sentences which
align with the B1 version, i.e. the original sentences
which contain the content chosen for the simplifica-
tion. Only those that occurred at least 5 times were
included. Any bars above the line means that the
corresponding relation occurs over-proportionally
in the selected sentences. Elaboration N and e-
elaboration N feature heavily. As the simplified
texts are more concise, they mostly consist of more
salient information. E-elaboration S are also se-
lected more frequently, indicating that elaborations
on specific entities or examples are useful for a
simplified text. The high frequency of sequence
MN also suggests that the simplified texts may have
more of a linear tone; the standard deviation for the
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B1 sentences Original sentences
[1] In 2015, a rocket from the company
SpaceX was sent into space.

[1] A part of a SpaceX rocket could collide with the moon in early March,
according to calculations by scientists at the US space agency NASA. [3] The
rocket was launched from the Cape Canaveral Cosmodrome in 2015 and had
brought the "Deep Space Climate Observatory", an Earth observation satellite,
into space.

[2] The rocket’s fuel ran out before it
could return to earth, which is why it is
still in orbit.

[4] Afterwards, however, the rocket’s fuel ran out before it could return to
Earth, so it’s been in orbit ever since.

[3] According to the US space agency
NASA, a part of the rocket could collide
with the moon in early March.

[1] A part of a SpaceX rocket could collide with the moon in early March,
according to calculations by scientists at the US space agency NASA.

[4] NASA announced this on Thursday. [2] The trajectory of the "Falcon 9" rocket is currently being monitored, a NASA
spokeswoman told the Deutsche Presse-Agentur on Thursday.

[5] It will not be possible to observe the
collision live.

[8] It will not be possible to observe the collision live from the "Lunar Recon-
naissance Orbiter" probe, NASA said.

[6] However, it will be investigated if
there are any changes on the moon af-
terwards.

[9] However, it will be investigated whether changes on the moon and a
possible crater created by the collision could be analysed.

[7] The search for the crater could how-
ever take weeks or months.

[11] The search for the crater would be a major challenge and could take
weeks or even months.

Table 2: Example of an aligned text. The B1 sentences (on the left) were aligned with the original sentence (on the
right) that contains the content; the relevant content is highlighted in bold. The full original text can be found in
Appendix A.1.

Figure 2: Relation distribution at the three different complexity levels. The counts of relations have been normalised.
For readability purposes, only the top 17 relations are shown (out of a total of 30).

Level 1:1 n:1 1:n 1:0 0:1
OR:B1 85 5 33 430 30
B1:A2 123 1 33 26 10

Table 3: The types of alignments that were annotated,
where n is more than one.

depth of EDUs3 is in fact lower in the simplified
texts (1.18 at A2 level and 1.33 at B1 level, com-
pared to 1.4 in the original texts), indicating that
the RST trees for the simplified texts are slightly
more shallow. The mean depth of the trees of the
original texts is 4.7 EDUs, compared to 4.1 and 3.9

3For example, the depth of the EDUs 5 and 6 in Figure 1
are 5 and 4, respectively.

for B1 and A2, respectively.

5 Conclusion and outlook

We have introduced a new German-language cor-
pus of 75 parallel texts at three different complexity
levels. The texts have been annotated according
to the RST framework and have also been aligned
at sentence level. We have shown how the rela-
tion distribution differs across the complexity lev-
els, as well as how the relations differ in terms
of what level they are used in the tree. We have
also looked at the sentence alignments together
with the RST annotations and shown the specific
relations and nuclearity assignments of the con-
tent that is selected for a simplification. We pro-
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Figure 3: Average (mean) amount of EDUs that the relations encompass. Only relations that occur more than once
in the A2 texts are included.

Figure 4: Relations and nuclearity of aligned sentences,
out of the total amount of relations. Any relation ratio
above 30% (the line on the graph) is above average.
Relations and nuclearity assignments occurring less than
a total of 5 times are excluded. N stands for nucleus, S
for satellite, MN for nucleus in a multi-nuclear relation.

vide the corpus for download, enabling research
on German-language RST in general, but also on
specific questions which consider the interaction of
text complexity and discourse structure.

Limitations

The corpus presented in this paper is relatively
small and so the conclusions made should be con-
sidered in this context. We have also only focused
on the specific text type of the newspaper article;
other text types have different structures and are
also simplified in different ways.
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A Appendix

A.1 Translated example text
(4-freitag-28-1-22-or)

A part of a SpaceX rocket could collide with the
moon in early March, according to calculations
by scientists at the US space agency NASA. The
trajectory of the "Falcon 9" rocket is currently be-
ing monitored, a NASA spokeswoman told the
Deutsche Presse-Agentur on Thursday. The rocket
was launched from the Cape Canaveral Cosmod-
rome in 2015 and had brought the "Deep Space
Climate Observatory", an Earth observation satel-
lite, into space. Afterwards, however, the rocket’s
fuel ran out before it could return to Earth, so it’s
been in orbit ever since. On its current trajectory,
the rocket will hit the far side of the moon on 4
March, NASA said. Several US scientists had pre-
viously drawn attention to this fact. SpaceX, Elon
Musk’s private space company that works closely
with NASA, did not give any comment when con-
tacted. It will not be possible to observe the colli-
sion live from the "Lunar Reconnaissance Orbiter"
probe, NASA said. However, it will be investi-
gated whether changes on the moon and a possible
crater created by the collision could be analysed.
"This once-in-a-lifetime occurrence is an exciting
research opportunity." The search for the crater
would be a major challenge and could take weeks
or even months.

A.2 Original example text
(4-freitag-28-1-22-or)

Ein Teil einer SpaceX-Rakete könnte nach
Berechnungen von Wissenschaftern der US-
Raumfahrtbehörde NASA Anfang März mit dem
Mond zusammenstoßen. Die Flugbahn der "Fal-
con 9"-Raketenstufe werde derzeit beobachtet,
sagte eine NASA-Sprecherin am Donnerstag der
Deutschen Presse-Agentur. Die Rakete war 2015
vom Weltraumbahnhof Cape Canaveral gestartet
und hatte das "Deep Space Climate Observatory",
einen Erdbeobachtungssatelliten, ins All gebracht.
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Danach reichte jedoch der Treibstoff der Raketen-
stufe nicht aus, um zurück zur Erde zu kommen,
weswegen sie seitdem im All unterwegs ist. Auf
ihrer jetzigen Flugbahn werde die Raketenstufe am
4. März auf der Rückseite des Mondes einschla-
gen, hieß es von der NASA. Zuvor hatten mehrere
US-Wissenschaftler darauf aufmerksam gemacht.
Von SpaceX, der privaten Raumfahrtfirma von
Elon Musk, die viel mit der NASA zusammenar-
beitet, gab es auf Anfrage zunächst keine Reak-
tion. Der Aufprall werde von der Sonde "Lunar
Reconnaissance Orbiter" nicht live beobachtet wer-
den können, hieß es von der NASA. Es werde
aber untersucht, ob danach Veränderungen auf
dem Mond und ein möglicher durch den Aufprall
entstandener Krater analysiert werden könnten.
"Dieses einmalige Vorkommnis stellt eine aufre-
gende Forschungsmöglichkeit dar." Die Suche nach
dem Krater werde eine große Herausforderung und
könne Wochen oder sogar Monate dauern.

A.3 Original example text, B1
(4-freitag-28-1-22-b1)

2015 ist eine Rakete der Firma SpaceX ins All ges-
tartet. Der Treibstoff der Rakete reichte aber nicht
mehr aus um zur Erde zurückzukehren, weshalb sie
seither im All unterwegs ist. Laut Berechnung der
US-Weltraumbehörde NASA könnte nun Anfang
März ein Teil der Rakete in den Mond krachen.
Das gab die NASA am Donnerstag bekannt. Der
Aufprall wird nicht live beobachtet werden kön-
nen. Allerdings wird untersucht werden, ob danach
Veränderungen auf dem Mond erkennbar sind. Die
Suche nach dem Krater könnte aber Wochen bis
Monate dauern.

A.4 Descriptions of RST relations

Relation Description
elaboration ‘S provides details or more in-

formation on the state of affairs
described in N’

e-elaboration ‘S provides details or more in-
formation on a single entity
mentioned in N’

sequence ‘the nuclei describe states of af-
fairs that occur in a particular
temporal order’

conjunction ‘the nuclei provide information
that can be recognized as re-
lated, enumerating [...] and
they are linked by coordinating
conjunctions’

list ‘the nuclei provide information
that can be recognized as re-
lated, enumerating’

cause ‘the state/event in N is being
caused by the state/event in S’

result ‘the state/event in S is being
caused by the state/event in N’

reason S and N are ‘subjective state-
ment[s]/thes[e]s/claim[s]’ and
‘understanding S makes it eas-
ier for [the reader] to accept N’

attribution the attribution predicate is the
S, the attributed material the N

sameunit used for linking two discontin-
uous text fragments that are re-
ally a single EDU, but which
are broken up by an embedded
unit

Table 4: These descriptions are taken from the Annota-
tion Guidelines from Stede et al. (2017); more detailed
information can be found there. The descriptions for
sameunit and attribution are adapted from the RST-DT
guidelines (Carlson and Marcu, 2001).
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