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Abstract

Despite recent advances, evaluating how well
large language models (LLMs) follow user in-
structions remains an open problem. While
evaluation methods of language models have
seen a rise in prompt-based approaches, lim-
ited work on the correctness of these meth-
ods has been conducted. In this work, we
perform a meta-evaluation of a variety of met-
rics to quantify how accurately they measure
the instruction-following abilities of LLMs.
Our investigation is performed on grounded
query-based summarization by collecting a new
short-form, real-world dataset riSum, contain-
ing 300 document-instruction pairs with 3 an-
swers each. All 900 answers are rated by 3 hu-
man annotators. Using riSum, we analyze the
agreement between evaluation methods and hu-
man judgment. Finally, we propose new LLM-
based reference-free evaluation methods that
improve upon established baselines and per-
form on par with costly reference-based metrics
that require high-quality summaries.

1 Introduction

Large Language Models (LLMs) have shown
human-level performance in many NLP tasks. Re-
cent advances in instruction tuning (Ouyang et al.,
2022; Brown et al., 2020) and alignment (Stiennon
et al., 2020; Zhou et al., 2023) have dramatically
increased the ability of these models to follow in-
structions. In addition to being used to tackle un-
seen tasks in zero-shot setups (Chung et al., 2022),
these models are now also used as surrogates to
human annotators, especially for NLG tasks (Chi-
ang and Lee, 2023; Wu et al., 2023), where human
evaluations are time-consuming and expensive.

Consider the instruction “Briefly describe the
purpose of the assignment and assumption agree-
ment mentioned in the paragraph” from Figure 1.
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There are several dimensions to evaluate a gener-
ated output on: (i) Coherence: whether it is un-
derstandable and free of grammatical mistakes, (ii)
Faithfulness: whether facts in the output are sup-
ported by the document, (iii) Style: whether spe-
cific formatting requirements (lists, brevity, ...) are
met, and (iv) Alignment: whether it semantically
fulfills the instruction.

Analyzing these different facets for each model
output increases the cognitive load of annotators,
thereby increasing the likelihood of errors or low-
quality evaluations (Goyal et al., 2022). It also
increases the turnaround time and hence annota-
tions become expensive. An increasingly popular
alternative is to ask LLMs to evaluate the generated
outputs. Recent work like Liu et al. (2023a) and Fu
et al. (2023) show that LLMs can produce human-
like evaluations of text by using clever prompting
techniques (Wei et al., 2022b; Yao et al., 2023). But
preliminary studies have shown that LLMs can be
inconsistent in their evaluations and can easily be
influenced (Wang et al., 2023a; Shen et al., 2023).
Gehrmann et al. (2023) have also looked at evalua-
tion flaws and have recommended that metric de-
velopers should focus on metrics with smaller, but
better defined scopes (like instruction-following).

Hence, there is an urgent need for a standard
framework to analyze the specifics of instruction-
following abilities of LLMs. SummEval (Fab-
bri et al., 2021) proposes something similar for
vanilla summarization. Doing this for instruction-
following can be tricky because we would like to
not only evaluate the LLMs as task solvers “Sum-
marize this document in 20 words or less”, but
also as task evaluators “Does the summary sat-
isfy the conditions of the instruction?”. The meta-
evaluation framework should be robust and ideally
reference-free (Liu et al., 2023a). Reference-free
evaluation for text generation has been widely stud-
ied (Liu et al., 2022; Hessel et al., 2021; Ke et al.,
2022), but to the best of our knowledge, there has
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Document:
Lee, You should be receiving a package shortly containing the following: (...)
3. Assignment and assumption agreement to move the equipment from TurboPark to the CAED I. There will be one for
CAED II as well. This document is being reviewed by the bank, so I’m not convinced it is in final form. You will note
that there is an acknowledgement section for GE. I cut and pasted from the consent to assignment from the TurboPark
documents, but shortened the whole thing considerably. Here’s that document:
4. Signature pages (signed by Enron) from the ESA deal, both the facility agreement and the override letter. Obviously, we
need your signature. I will forward the final CA facility agreements to you once again, along with the blacklines against
what you initialled.
Instructions:
• Briefly describe the purpose of the assignment and assumption agreement mentioned in the paragraph.
• Explain the changes made to the GE acknowledgement section in the context of the TurboPark documents.
• Summarize the final steps regarding the CA facility agreements and signature pages.

Answers (for instruction #1):
F-PaLM 2-S The assignment and assumption agreement is to move the equipment from TurboPark to the CAED I.
F-PaLM 2-Sc The purpose of the assignment and assumption agreement is to move the equipment from TurboPark

to the CAED I.
GPT-3.5 (...) The purpose of the assignment and assumption agreement is not specified.

Figure 1: Randomly sampled example from riSum (data source: AESLC). Highlighted how GPT-4 transforms parts
of the input document into grounded instructions.

been no prior work on reference-free evaluations
for instruction-following.

In this work, we take the first steps towards
building such a framework. To make this prob-
lem tractable, we choose to limit our scope to the
task of query-based summarization. We consider
this to be an appropriate initial task since (i) numer-
ous domains to source documents from exist, (ii)
the space of appropriate instructions is broad, while
still (iii) maintaining groundedness of both instruc-
tions and answers into facts present in the docu-
ments. We leave the expansion of the dataset in
size and domain/instruction scope to future work.

Contributions For this purpose, we release a
rated, instructed summarization dataset riSum1,
consisting of 900 instruction-summary pairs with 3
human ratings each (Figure 1).

We introduce several reference-free evaluation
methods which perform on-par with expensive
reference-based methods and outperform existing
reference-free baselines in terms of correlation with
human judgement.

Lastly, we leverage riSum to perform an exten-
sive meta-evaluation, quantifying how well differ-
ent evaluation methods are able to replace human
judgments by statistically ranking model outputs.

Model naming In this work, we rely on different
LLMs for a variety of tasks. Specifically, we use
GPT-3.5 (Ouyang et al., 2022) and GPT-42 (Ope-

1 The dataset will be made available at goo.gle/risum.
2 OpenAI model id: gpt-4-0314

Data source Min Med Max

AESLC emails (Zhang and Tetreault, 2019) 118 172.0 469
arXiv abstracts (Clement et al., 2019) 122 145.5 224
BBC news (Narayan et al., 2018) 173 272.5 473
CNN/DM news (Hermann et al., 2015) 244 465.5 532
Common Crawl (Raffel et al., 2019) 127 282.5 506
ForumSum threads (Khalman et al., 2021) 158 320.0 519
Reddit posts (Völske et al., 2017) 156 299.0 552
SAMSum dialogues (Gliwa et al., 2019) 127 189.5 384
Task-Oriented dialogues (Lee et al., 2022) 161 329.5 605
Yelp reviews (Zhang et al., 2015) 119 140.5 357

Table 1: Data sources from which riSum is sampled
and the minimum (Min), median (Med), and maximum
(Max) sampled document length (in words). 10 docu-
ments were sampled without replacement from each of
the 10 data sources.

nAI, 2023) models from the GPT LLM family, and
PaLM 2-S and PaLM 2-L models from the PaLM
family (Anil et al., 2023). The models are also fine-
tuned on the Flan corpus as described in Anil et al.
(2023, Appendix A.2), denoted as F-PaLM 2-S and
F-PaLM 2-L. Finally, these models are further fine-
tuned using standard methods and data known to
improve instruction-following (Taori et al., 2023),
denoted as F-PaLM 2-Sc and F-PaLM 2-Lc.

2 Data Collection

2.1 Dataset collection
Data sourcing To create riSum, a total of 100
documents are chosen from 10 existing datasets of
different domains to ensure the data is as diverse
as possible. The documents are uniformly sampled

https://goo.gle/risum
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α method Follows Instruction? How Well?

Mean±SE ≥ 50% Mean±SE ≥ 50%

Globaln=900 54.3 11.4
Localn=295 62.1± 3.6 67.5 31.9± 4.5 56.9

Table 2: Krippendorff α values (in %) of riSum human
ratings. ≥ 50% denotes the % of pairs where α ≥ 0.5.

from each dataset, restricting to documents with a
word count between 100 and 500 words (Table 1).

Instruction generation To procure instructions
for each document, we first evaluate the quality
of generations from four models: F-PaLM 2-Sc,
F-PaLM 2-Lc, GPT-3.5, and GPT-4. We randomly
sample 10 documents from the dataset and let each
model generate 3 instructions per document. Each
of the 40 (10 × 4 models) document-instructions
pairs was rated “good”, “neutral”, or “bad” by three
evaluators in a side-by-side setting. In this evalua-
tion, GPT-4 outperformed the other models on 6/10
documents, therefore we used it to sample instruc-
tions for all documents in the dataset. This results
in a total of 300 document-instruction pairs.

Answer generation Subsequently, three differ-
ent models3 are used to generate answers for each
of the document-instruction pairs, yielding the final
dataset with 900 data points.

Human evaluation Finally, each document-
instruction-output triplet individually is evaluated
by at least three human annotators. They are asked
two questions:

1. Does the output follow the instruction? (Y/N).
2. Rate the output on a scale of 1 to 5. 1 indicates

the output does not follow the instruction at all,
5 indicates the instruction is followed strictly.

See Appendix C for a description of the annota-
tor UI, Appendix D for annotator guidelines, and
Appendix E for the instruction-generation prompt.

2.2 Analysis of Human Ratings

For analyzing annotator agreement (Table 2), we
leverage locally and globally computed Krippen-
dorff α (Krippendorff, 2019). For the first boolean
question, we use the nominal distance function (in-
dicator function) and for the second ordinal ques-
tion, we use the interval distance method (squared
difference). For local application, we compute a

3 F-PaLM 2-S, F-PaLM 2-Sc, and GPT-3.5. We do not use
GPT-4 as it was used to generate the instructions.
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200 Follows Instruction?
How Well? (1-5)

Figure 2: Histogram of local Krippendorff α for
document-instruction pairs.

localized α for each document-instruction pair and
then aggregate the results over all pairs. We omit
5 document-instruction pairs from the analysis for
which the Krippendorff α is not defined because
there is no annotator overlap among the 3 ratings
for each of the 3 model outputs.

We note that around 67% of the dataset has high
levels of agreement on the first question and 57%
on the second question. The tail of disagreement
is long (Figure 2), but we hypothesize that given
the difficulty of rating outputs in these diverse and
highly specific texts, disagreements would be non-
negligible even with higher replication rates. At
the expense of gathering only relative information,
ranking two responses against each other instead
of rating single responses may help. Given the
diversity of domains and instructions, hiring do-
main experts for future ratings could help increase
quality and agreement, whilst also increasing costs.

Additionally, factoring out independent rating
dimensions (e.g. language level, factuality) may
help quantify common mistakes types in LLM in-
struction following and identity misalignment areas
with respect to human expectations at the expense
of a slower and more expensive rating process.

In Table 3a, we present aggregate numbers for
annotator preferences among the three model out-
puts. We explore the mean of ratings, majority con-
sensus votes (ties broken randomly), and a global
mean over individual ratings (no aggregation). In
Table 3b, the three model outputs are ranked for
each document-instruction pair and the ranking in-
dices are then averaged across the dataset, with ties
broken randomly. Both tables are averaged over
100,000 runs to eliminate noise from tie-breaking.
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Label Agg. F-PaLM 2-S F-PaLM 2-Sc GPT-3.5

FI
Mean 80.8± 1.8 85.0± 1.6 94.0± 1.0
Maj. 81.3± 2.2 86.8± 2.0 96.7± 1.0
None 80.9± 1.3 85.0± 1.2 94.0± 0.8

HW
Mean 61.1± 1.8 65.0± 1.6 73.5± 1.2
Maj. 59.8± 2.2 64.4± 2.1 74.8± 1.5
None 61.1± 1.2 65.1± 1.2 73.6± 0.9

(a) Average annotator response per answer (%, higher is bet-
ter).

Label Agg. F-PaLM 2-S F-PaLM 2-Sc GPT-3.5

FI
Mean 2.12± 0.05 2.05± 0.05 1.83± 0.05
Maj. 2.10± 0.05 2.02± 0.05 1.87± 0.05
None 2.12± 0.05 2.05± 0.05 1.83± 0.05

HW
Mean 2.16± 0.05 2.09± 0.05 1.75± 0.05
Maj. 2.16± 0.05 2.04± 0.05 1.80± 0.05
None 2.16± 0.05 2.09± 0.05 1.75± 0.05

(b) Model ranking per (doc., instr.) pair (1–3, lower is better).

Table 3: Aggregate model quality according to human ratings. “Mean” aggregation takes the mean of human ratings
for each model output (n = 300), “Maj.” takes the majority vote with ties broken randomly (n = 300), and “None”
performs no aggregation (n = 900). Averaged across 100,000 runs. FI is the binary rating “Follows Instruction?”,
HW is the qualitative rating of “How Well?”. Ratings are normalized to 0–1 and reported as %.

3 Evaluation Methods

We propose and evaluate several methods that
model annotator preferences, focusing our anal-
ysis on reference-based vs. reference-free methods
and their effectiveness in different data regimes.

3.1 Reference-based methods
Reference-based methods require access to at least
one reference answer which can be considered the
“gold standard” for each document-instruction pair.
Given numerous prior work noting that summaries
written by crowd workers exhibit limitations as-
sociated with lack of annotator expertise in the
domain (Gillick and Liu, 2010), especially at nar-
rower tasks like query-based summarization (Jiang
et al., 2018), we use LLM-generated references for
benchmarking reference-based methods instead.

The requirement of having access to high-quality
references fundamentally limits the utility of the
methods. In all our reference-based experiments,
we use GPT-4 and F-PaLM 2-Lc generated sum-
maries as references. Since we use GPT-3.5 and
F-PaLM 2-S, and F-PaLM 2-Sc to generate candi-
date answers for evaluations, we use larger variants
of these models to generate the “gold” references,
which ensures that they are generally of higher
quality (see e.g. Table 19 of Anil et al., 2023).

BLEURT (model-based) Sellam et al. (2020)
take a (candidate, reference) answer pair as in-
put and aim to model semantic similarity between
the two texts. In all results below, we use the
BLEURT20 model (Pu et al., 2021). In scenarios
with multiple reference answers, we take the maxi-
mum BLEURT20 score across all reference answers.

ROUGE (n-gram-based) Lin (2004) also take
(candidate, reference) pairs as input and measure

n-gram overlap to provide a numerical estimate
of how well the candidate resembles the refer-
ence. We report the geometric mean of ROUGE1,
ROUGE2, and ROUGELsum and refer to this method
as ROUGEavg. Similar to BLEURT, in a scenario
with multiple reference answers, we report the max-
imum ROUGEavg score for a given candidate.

3.2 Reference-free baseline methods

We investigate popular heuristics (e.g. length of
the generated response) and several LM-based ap-
proaches, varying the amount of data used. Fine-
tuning a model on a subset of the collected data
would also yield a viable evaluation method, but
we leave that for future exploration.

Length-based heuristics The simplest reference-
free method we use is based on length heuristics.
The length of the model output is a common source
of bias in human ratings when evaluating the qual-
ity of summaries, where longer answers are often
preferred over shorter ones, since the former usu-
ally contains more information. Therefore, it is a
natural baseline for assessing the degree to which
the collected ratings suffer from this type of bias.
We simply count the words and sentences using
NLTK (Bird et al., 2009) and meta-evaluate how
they would behave if they were used as a proxy for
generated answer quality.

Model-based methods We benchmark the fol-
lowing state-of-the-art model-based methods
on the riSum dataset: (i) BARTSCORE and
BARTSCORECNN (Yuan et al., 2021), and (ii)
T5ANLI (Honovich et al., 2022). Both are encoder-
decoder Transformer models and have around
400M and 11B parameters respectively.
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3.3 LLM-based reference-free methods

The following methods depend on an underlying
LLM for evaluation. Though we use PaLM 2 mod-
els in our experiments, these methods are model
agnostic, and any LLM can be used in their place.
For the following methods, we leverage either the
base PaLM 2-S/L models, or the instruction-tuned
F-PaLM 2-Sc/Lc.

Constrained Softmax We feed the underlying
model two prompts: one for the “Follows instruc-
tion? (Y/N)” question, and another for the “How
well? (1-5)” question. The prompts used corre-
spond to the task descriptions provided to annota-
tors (Prompts presented in Figure 9 of Appendix E).

Instead of sampling tokens to obtain the rat-
ings, we use the model to compute the negative
log-likelihood of all the possible rating values
(“Yes”/“No” for the first question, {1, 2, 3, 4, 5}
for the second question) and pick the most likely
token as the rating. This approach has multiple
advantages over generating tokens directly:

1. Correctness: The model can never output a rat-
ing that is not from the list of options.

2. Efficiency: All our rating values are a single
token in the model’s vocabulary, which makes
the scoring extremely efficient. Additionally,
repeated sampling is not necessary to obtain a
more precise estimate of the model’s rating.

3. Uncertainty: By re-normalizing the likelihoods
across all rating values, we obtain a rating dis-
tribution, which lets us precisely quantify the
confidence the model assigns to ratings. For an
unbiased estimate with respect to the logits, we
fix the softmax temperature to 1.

Finally, we return the expected value for each of
the question’s distributions:

E[R] =

|r|∑
j=1

rj · softmax(r|d, i, a)j ,

where R is the random variable representing the
rating, r represents the rating values: {0, 1} for
Question 1, {1, 2, 3, 4, 5} for Question 2. (d, i, a)
represent the document, instruction, and answer.

Additionally, we discuss a variant called Con-
strained Softmax n-shot, where we contextualize
the model with n examples (document-instruction-
answer-rating tuples) in each of the prompts.

Self-Agreement In this method, we test if the
model is consistent with itself across rating gen-

Task
introduction

Example
(doc., instr.,

ans.)

"Agent i, what
do you think?"

"I think (...).
Rating: 3"

Repeated for all agents

Round
r < 3?

Consensus?

Unanimous
No

Yes

Final rating

No

Figure 3: Multi-LLM agreement communication flow.

erations by repeatedly sampling the rating from
the LLM n = 7 times. To diversify the samples,
we experiment with various softmax temperatures,
only to find that lower temperatures yield better re-
sults4. The final rating is the arithmetic mean of the
individual samples. We contextualize the model
with k = 3 examples in the prompt (see Figure 7
in Appendix E). We also investigate the following
variants:

• no intro Omitting the description of the task in
the prompt and using only the k examples.

• rationale Asking the model to generate Chain
of Thought-like “rationales” for the given rating
to each few-shot example (Wei et al., 2022b).

• random Using the same hand-crafted examples
(not occurring in the dataset) vs. picking k ran-
dom examples from the remaining documents in
the dataset.

Multi-LLM Agreement Recent works (Bakker
et al., 2022; Park et al., 2023) have used LLMs in
conversational settings where all participant LLMs
communicate with each other and try to achieve
a common goal. We propose a consensus-based
metric where k LLM instances5 debate amongst
each other and try to arrive at a common assess-
ment. Though there are no restrictions on the LLMs
to use, we evaluate the simplest case where each
instance is the same LLM. The rules of communi-
cation are set as follows (Figure 3):

1. The models communicate amongst each other
in a controlled manner for up to 3 rounds and try
to arrive at a consensus. After at most 3 rounds,
one of three outcomes occurs: (i) unanimous
agreement: all 3 models agree. If this happens

4 Temperature is set to 0.1 for all reported Self-Agreement
and Multi-LLM Agreement experiments.

5 k = 3 in all our experiments.
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in the earlier rounds, the process ends immedi-
ately, (ii) majority agreement: one model dis-
agrees with the other two, or (iii) disagreement:
all 3 models disagree with each other.

2. In each round, all models provide a rating and
a brief rationale. The models do not have ac-
cess to the other model outputs till the end of
a round6. Before the start of rounds two and
three, they receive the ratings and rationales of
all models from the previous rounds.

The prompt for the models is presented in Figure 8
of Appendix E. This method is referred to as Multi-
LLM Agreement henceforth. We repeat the process
n = 3 times for added stability.

4 Evaluating Agreement with Annotators

As discussed in Section 2, we asked annotators to
provide a binary Yes/No rating answering whether
a model output follows the instruction and a qual-
itative rating from 1 to 5, representing how well
it follows the instruction. Using meta-evaluation
methods described below, we then study agreement
between annotators and our evaluation methods.

4.1 “Follows Instruction?”

For the binary rating, we compute a macro-
averaged Area Under ROC Curve (AUC ROC)
statistic for each evaluation method. Using AUC
ROC, we analyze the effectiveness of each method
if they were used as binary classifiers for “Does the
output follow the instruction?”, thereby assessing
the degree to which they can replace human ratings.
Since our classes are imbalanced towards “Yes”
(Table 3a) we opt for the macro-averaged version
of ROC AUC so that we can better detect which
methods can accurately predict the “No” class.

4.2 “How well?”

Rank-based evaluation To analyze the ability of
evaluation metrics to rank model outputs in rela-
tion to each other, we compute Kendall’s Tb rank
distance dTb among the model outputs for each
document-instruction pair. When the ranking pro-
duced by a metric is independent from human rank-
ing, the value of dTb will be equal to 0.5 in expecta-
tion. Values below 0.5 represent rankings that are
similar to the human ranking, values above 0.5 rep-
resent orderings that are similar to the inverse of the

6 Empirically, models tend to agree more easily with each
other when shown other models’ ratings before the round ends.

human ranking. As opposed to the Tb rank correla-
tion coefficient, dTb has values in the range of [0, 1]
and can be interpreted as a distance function (lower
is better): dTb = (1− Tb) / 2. Compared to other
forms of T , Tb adjusts for ties: situations, where a
metric or annotators give the same rating to two or
more model outputs for one document-instruction
pair.

For our human ratings, Tb is not defined for 9 out
of 300 document-instruction pairs: the mean of the
3 annotators’ ratings is constant for all 3 models,
making it impossible to rank the models. We report
the mean and standard error of the rank distance
dTb across all non-constant pairs.

Linear value correlation Additionally, we
would like evaluation method outputs to align with
annotators’ notions of “good” or “bad”. To study
this, we compute Pearson’s distance across all
document-instruction-answer tuples: d|r| = 1−|r|,
where r is Pearson’s correlation coefficient be-
tween an evaluation method’s values and the mean
annotator rating. Values of d|r| range from 0 to 1;
the lower the value, the higher the linear correlation
with human ratings.

5 Results and Analysis

We compare the effectiveness of evaluation meth-
ods on the three rating dimensions, based on the
reported numbers for the binary rating “Follows
Instruction?” and for the qualitative rating “How
well?” in Table 4. For both rating tasks, the two
length-based heuristics perform the worst out of
all methods, which suggests that the instructions
are of good quality, as annotators are not strongly
influenced by the length of model outputs.

5.1 Predicting “Follows Instruction?”

First, we focus on how good of a binary classifier
the methods are. We report the AUC ROC and
its standard error (Section 4.1) with respect to the
human majority vote labels.

Reference-based methods Having access to sev-
eral reference answers that follow the instruction
continues to be a good indicator when combined
with ROUGE or BLEURT. However, the results
show that, when we have access to a capable LLM
like F-PaLM 2-Lc, it is better to use it directly as a
reference-free evaluator, than sampling reference
summaries from it and using reference-based met-
rics like ROUGEavg and BLEURT20.
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Evaluation Method
Follows Instruction? How Well?

AUC ROC % ↑ dTb% ↓ d|r|% ↓

Reference-based baseline methods (Section 3.1)

BLEURT20 [references: GPT-4] 78.5± 1.9 41.1± 1.9 50.9± 2.9
BLEURT20 [references: F-PaLM 2-Lc] 71.8± 2.3 48.8± 1.9 54.4± 2.8

ROUGEavg [references: GPT-4] 79.5± 1.9 35.4± 1.9 52.6± 2.8
ROUGEavg [references: F-PaLM 2-Lc] 71.1± 2.3 46.7± 1.9 60.8± 2.7

Reference-free baseline methods (Section 3.2)

Sentence Count 39.5± 3.1 54.8± 1.8 72.7± 2.3
Word Count 42.2± 3.1 51.4± 2.0 71.0± 2.4

BARTSCORE (Yuan et al., 2021) 68.4± 2.5 45.0± 1.9 74.7± 2.2
BARTSCORECNN (Yuan et al., 2021) 69.7± 2.4 43.7± 1.9 70.3± 2.4
T5ANLI (Honovich et al., 2022) 71.9± 2.3 38.8± 1.9 64.7± 2.5

LLM-based reference-free methods (Section 3.3)

PaLM 2-S Constrained Softmax 74.0± 2.2 43.6± 1.9 80.0± 2.0
PaLM 2-L Constrained Softmax 77.8± 2.0 39.9± 1.9 46.4± 3.0

F-PaLM 2-Sc Self-Agreement 67.2± 2.5 42.8± 1.7 56.7± 2.7
F-PaLM 2-Lc Self-Agreement 81.7± 1.7 37.1± 1.7 39.5± 3.1
F-PaLM 2-Lc Self-Agreement (+ no intro) 79.7± 1.9 38.4± 1.8 45.7± 3.0
F-PaLM 2-Lc Self-Agreement (+ rationale) 75.0± 2.1 43.2± 1.3 50.5± 2.9

F-PaLM 2-Sc Self-Agreement (random) 69.0± 2.4 42.7± 1.7 58.3± 2.7
F-PaLM 2-Lc Self-Agreement (random) 80.4± 1.8 37.0± 1.8 42.2± 3.0
F-PaLM 2-Lc Self-Agreement (random + no intro) 78.2± 1.9 39.5± 1.8 50.2± 2.9

F-PaLM 2-Sc Multi-LLM Agreement 66.4± 2.5 45.7± 1.2 61.8± 2.6
F-PaLM 2-Lc Multi-LLM Agreement 67.1± 2.5 46.0± 1.2 58.7± 2.7

Table 4: AUC ROC Curve measures how well methods predict Yes/No annotator responses on “Follows Instruction?”
(n = 900). For “How Well?” (1–5 rating), we report Kendall’s rank distance dTb

comparing evaluation methods’
ranking of answers to that of annotators’ (n = 291) and Pearson’s distance from mean annotator responses d|r|
(n = 900). All values are in %, ± signifies standard error, ↑ signifies higher is better (↓ lower is better). Methods
highlighted in bold have overlapping confidence intervals with the best method per column. Non-deterministic
methods (Self-Agreement, Multi-LLM Agreement) have been re-run 5× and the mean is reported.

Reference-free methods As expected, perfor-
mance of each evaluation method improves with
model size. We observe that standard error is usu-
ally higher (> 2.0) when using PaLM 2-S com-
pared to PaLM 2-L (< 2.0), across different meth-
ods. Combined with generally lower performance,
methods using PaLM 2-S as the underlying model
are more noisy and produce less meaningful evalu-
ations compared to methods using PaLM 2-L.

We also note that Multi-LLM Agreement ap-
proaches, while interesting, are outperformed by
both Self-Agreement and Constrained Softmax ap-
proaches, irrespective of the model size.

For scoring-based approaches (Constrained Soft-
max), non-instruction-tuned LLMs outperform
their instruction-tuned counterparts. When gen-
eration is involved, instruction-tuned models out-
perform their base versions. This applies to rat-
ing generation, but also for generating answers di-
rectly. We only report numbers of instruction-tuned
LLMs for generation-based methods and corre-

spondingly, only report numbers of non-instruction-
tuned LLMs for scoring-based approaches.

5.2 Predicting “How Well?”
In the case of qualitative ratings, obtaining a rank-
ing of answers that matches the annotators’ ranking
proves to be difficult. We note sensitivity in the
analysis with respect to how ratings are aggregated
per answer (majority vote or mean). To minimize
ties and maximize the use of annotator informa-
tion, we use mean aggregation for the following
analysis.

Observing dTb ranking performance, ROUGEavg
using GPT-4 model-generated answers seems to
perform on-par with F-PaLM 2-Lc Self-Agreement
based methods, as well as the 11B parameter
T5ANLI model from Honovich et al. (2022).

Reference-based methods In our experiments,
BLEURT performs worse than ROUGE at relative
ranking of model outputs. Since ROUGE is based
on surface form, there is reason to believe that sam-



228

Evaluation Perfect Disagree- Prefers own
Method agreement ment LM family

Constr. Softmax PaLM 2-L 35.7% 40.3% 56.2%

ROUGE F-PaLM 2-Lc 27.0% 48.0% 93.1%
Constr. Softmax F-PaLM 2-Lc 23.0% 54.3% 71.8%
Self-Agr. F-PaLM 2-Lc 25.7% 23.0% 72.5%

Table 5: Agreement analysis with respect to mean quali-
tative ranking (“How well?”).

ples from different models in a single LM-family
are closer in surface form than samples from dif-
ferent LM-families. In Table 5, we analyze the ef-
fectiveness of methods at picking the best answers
out of the 3 model outputs. Perfect agreement hap-
pens when the sets of annotator and metric “winner”
models is equal. Disagreement occurs when the
intersection between annotator and metric winners
is empty. Within disagreement, prefers own LM
family means the metric winners contained at least
one model output from the LM family the metric is
based on.

We observe that when the evaluation model is
sufficiently different from the rated models, the
likelihood of evaluation models preferring their
own LM family goes down. However, when using
a similar model, reference-based methods are more
biased towards preferring their own LM family. If
human-written reference answers are unavailable,
using a reference-free metric is preferable.

Reference-free methods Similarly to the binary
rating, we observe that methods with larger under-
lying models perform better. Likewise, reference-
free methods based on F-PaLM 2-Lc outperform
their reference-based counterparts when using the
same underlying model. The base PaLM 2-L
model with Constrained Softmax performs bet-
ter and at lower cost than using the instruction-
tuned F-PaLM 2-Lc to generate reference sum-
maries. With more available compute, one can
further improve performance by leveraging multi-
sampling Self-Agreement methods.

Interestingly, using random examples in Self-
Agreement decreases performance as opposed to
hand-crafting a small (k = 4) set of held-out exam-
ples. Contrary to intuition, using Chain-of-Thought
approaches (rationale) seems to degrade perfor-
mance, but when removing the task description (no
intro) we do not observe a big drop.

When linear correlation d|r| with human ratings
is required, methods that model the qualitative rat-

ing directly outperform more generic methods.

6 Related Work

Measuring instruction following with LLMs
Liu et al. (2023a) use GPT-4 as a backbone model
and study the correlation with human ratings on
non-query-based summarization, finding a bias to-
wards LLM-generated text. We do not study this as-
pect, as our rating task focuses on model-generated
text. Fu et al. (2023) propose a zero-shot approach
for multi-faceted evaluation of text generation.

An increase in interest for improving instruction-
following capabilities of LLMs has resulted in
the creation of multiple datasets. FLAN (Wei
et al., 2022a) and Natural Instructions (Mishra
et al., 2022) were two of the earlier datasets which
turned standard NLP tasks (e.g. sentiment classi-
fication, question-answering) into instruction fol-
lowing tasks. Other works like Self-Instruct (Wang
et al., 2023b), Super-NaturalInstructions (Wang
et al., 2022), and the H4 instruction dataset (Hug-
ging Face, 2023) curate human-written instruction
and answer pairs. Guo et al. (2023) and Qingyi Si
(2023) collect instruction-answer pairs from LLM
generations. All of them use standard NLP metrics
or human annotation to evaluate the model outputs.

Model-based metrics A large body of prior work
focuses on model-based approaches fine-tuned on
human ratings. Usually, encoder models such as
BERTSCORE (Zhang et al., 2020) or BLEURT (Sel-
lam et al., 2020) are used, but encoder-decoder
methods exist as well (BARTSCORE, Yuan et al.,
2021). We focus on low-resource zero/few-shot
methods using larger, decoder-containing models
from PaLM and GPT families.

Human evaluation Kryściński et al. (2018);
Huang et al. (2020); Shen et al. (2022b) and sev-
eral others have resorted to human evaluation for
analyzing the quality of reference summaries and
model outputs. They adopt a Likert-type scale for
rating individual aspects of generated text. Fan et al.
(2018); Fabbri et al. (2019); Shen et al. (2022a) and
others perform side-by-side comparisons of two or
more model-generated summaries and use Elo, or
other rating systems to build rankings of models.

LLM evaluation Many recent works use LLMs
as evaluators for summarization tasks. Wu et al.
(2023) use LLMs with “different persona” to evalu-
ate summaries from various perspectives. Luo et al.
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(2023) examine if LLMs can be used to detect fac-
tual inconsistencies. Concurrent to our work, Liu
et al. (2023b) curate a human-evaluation dataset
consisting of 22,000 summary-level annotations
and perform a study of various automatic and LLM-
based metrics for summarization and call for more
rigorous evaluation of LLM performance.

7 Conclusion

In this work, we investigate the effectiveness of
multiple evaluation methods in quantifying the de-
gree to which LLM-generated text follows user-
given instructions. We release riSum, a new short-
form dataset of 300 document-instruction pairs
with 3 answers each. All of the 900 answers are
rated by at least 3 human annotators. When analyz-
ing agreement between evaluation methods and
human judgment, we find that established met-
rics, such as ROUGE and BLEURT are not effec-
tive at quantifying LLMs’ instruction-following
ability. LLM-based evaluation methods tend to
have stronger correlation with annotator judgment,
without requiring high-quality reference answers.
We hope that the introduced evaluation frame-
work is adopted by the community for evaluating
instruction-following abilities of LLMs, possibly
expanding into more tasks, domains, and examples.
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A Limitations

While the presented data offers a variety (e.g. di-
verse origin texts), a drawback to our work is
that we only consider the task of instruction-based
summarization (e.g. long-form question answering,
query-driven summarization, stylistic summariza-
tion) as such. The extent to which metrics general-
ize to other tasks is not yet explored. Furthermore,
for language diversity, the proposed benchmarks
are restricted to English only. However, we hope
that this initial benchmark allows further work to
consider a larger range of tasks as well as explo-
ration for how these benchmarks generalize to other
languages.

Our correlation with human judgment analysis
on the qualitative rating (“How Well?”) has a lim-
itation where the annotators do not provide suffi-
cient signal to distinguish between the 3 answers.
This happens in only 9 out of the 300 document-
instruction pairs and we chose to skip those pairs in
the analysis for this rating task. The motivation for
doing this is that our focus is on the cases where
there is sufficient signal from the human annotators
when an answer is better than another.

We acknowledge that relying on human ratings
as a ground truth has drawbacks, especially as sum-
marization is notoriously difficult to evaluate due
to the subjective nature. To mitigate this, we pro-
vide extensive training and feedback to annotators
and are in active communication throughout the
annotation process to provide clarifications. The
annotators used in our experiment have over a year
of experience with rating NLU tasks. However,
a limitation is that our annotator pool represents
individuals from similar backgrounds, which may
mean other populations would have differing qual-
ity perspectives. The background statistics of anno-
tators can be found in Appendix C.2.

B Ethics Statement

The alignment of model behavior with user expecta-
tions is a crucial area of research, and we recognize
the importance of contributing to the development
of benchmarking methods for instruction following.
Our work represents a step towards benchmarking
how LLMs can self-evaluate their performance in
the task of summarization. However, there are still
many other aspects of summary quality, such as
factuality, that warrant further exploration due to
their significant downstream implications.
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Figure 4: Number of questions annotated by each hu-
man annotator. Annotator IDs pseudonymized to capital
letters.

A model’s ability to follow instructions for a spe-
cific task, such as summarization, may not reflect
the overall proficiency in instruction following. As
such, these metrics serve as proxies to estimate
the extent to which task instructions are adhered
to within the context of summarization. Given the
ongoing discussions regarding the risks associated
with LLMs, this distinction is relevant.

During dataset construction, it is important to
acknowledge the ethical concerns arising from the
use of publicly sourced data without explicit per-
mission from the original parties. While the data
we employ is derived from previously released
datasets, the examples are generated using LLMs
trained on large, uncurated, static datasets obtained
from the internet.

C Annotator methodology

C.1 Annotation UI

In Figure 5 we illustrate the user interface used for
collecting the dataset. Annotators follow a multi-
step process, by first answering “Does the output
follow the instruction?” followed by “Rate the
output on a scale of 1 to 5” to qualitatively assess
the answer.

The UI also allows annotators to navigate
through the provided content and highlight words
that appear either in the answer or in the original
text. Annotators can use this as a way to verify that
content is present in both the output and input.
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Figure 5: Example screenshot of the annotator UI.

C.2 Annotator demographics

Table 6 presents the results of an optional ques-
tionnaire given to our annotators, aimed at under-
standing their background factors. Out of a total of
14 annotators, we have received responses from 7
individuals, who collectively accounted for approx-
imately 65% of the annotation coverage for our
dataset (Figure 4). This information allows us to
gain a better understanding of the perspectives and
experiences of our annotators, which can impact
the annotation outcomes.

D Annotator Guidelines

D.1 Objective

The goal of this task is to evaluate the quality of
summaries generated based on given instructions.
You will be provided with a document, an instruc-
tion, and an output (summary). Your task is to
answer two questions:

1. Does the output follow the instruction?
(Yes/No), and

2. Rate the output on a scale of 1 to 5, with 1
indicating that the output does not follow the
instruction at all, and 5 indicating that the
output follows the instruction strictly.

D.2 General Guidelines

Understanding the Document Before evaluat-
ing the output, make sure you have a clear under-
standing of the document. The document can be
a news article, a chat conversation, an email, etc.
Read the document carefully and identify the main
points, themes, or ideas.

Analyzing the Instruction The instruction will
be related to summarization. It can be general
(e.g. “Summarize in 3 bullet points”) or specific to
the paragraph (e.g. “Summarize the main novelty
of the research work concisely”). Make sure you
understand the instruction and its requirements.

Evaluating the Output Compare the output with
the document and the instruction. Check if the
output follows the instruction and captures the main
points, themes, or ideas of the document.

Evaluation Criteria For Question 1, answer
“Yes” if the output follows the instruction and “No”
if it does not. Consider the following factors:
(i) does the output meet the format requirements
(e.g. bullet points, concise summary)? and (ii) does
the output address the specific focus of the instruc-
tion (e.g. main novelty, key findings)?

For Question 2, rate the output based on how
well it follows the instruction and captures the main
points, themes, or ideas of the document. Use the
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Proficiency Education Age range Hours reading
English per week

Native 1/7 Graduate 6/7 18–24 3/7 0–5 1/7
Near native 1/7 Undergraduate 1/7 25–34 4/7 5–10 2/7
Advanced 5/7 High School 0/7 35–44 0/7 10–15 1/7
Intermediate 0/7 Vocational Training 0/7 45–54 0/7 15–20 0/7
Beginner 0/7 No formal education 0/7 55+ 0/7 20+ 3/7

Table 6: Background statistics for annotators.

following scale:

1. The output does not follow the instruction at all.

2. The output somewhat follows the instruction but
misses important points or includes irrelevant
information.

3. The output follows the instruction moderately
well, capturing some main points but lacking
detail or clarity.

4. The output follows the instruction well, cap-
turing most main points and providing a clear
summary.

5. The output follows the instruction strictly, cap-
turing all main points and providing a concise,
accurate summary.

D.3 FAQs

What if the output is well-written but does not
follow the instruction? Rate the output based
on how well it follows the instruction, not on its
writing quality. If the output does not follow the
instruction, give it a low rating.

What if the output follows the instruction but
has grammatical errors or typos? Focus on the
content and adherence to the instruction. Minor
grammatical errors or typos should not significantly
impact the rating unless they affect the clarity or
accuracy of the summary.

What if the output is too long or too short?
Consider whether the output meets the require-
ments of the instruction. If the instruction specifies
a length (e.g. “Summarize in 3 bullet points”), the
output should adhere to that length. If the output
is too long or too short, it may not follow the in-
structions strictly, and you should adjust the rating
accordingly.

What if the output is accurate but not concise?
If the instruction requires a concise summary, the

output should be brief and to the point. If the out-
put is accurate but not concise, it may not follow
the instructions strictly, and you should adjust the
rating accordingly.

E Prompts

List of prompts used in different parts of the paper:

• GPT-4 prompt for generating riSum instructions:
Figure 6.

• Self-agreement prompt: Figure 7.

• Multi-LLM agreement prompt: Figure 8.

• Constrained Softmax prompt: Figure 9.
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Read the paragraph given by the user and generate a list of 3-5 instructions for human annotators. Each instruction must
be in a new line.

The instructions must be related to the task of summarization. Some general examples are: Summarize in 3 bullet points.
Write the main topics of the document in 2 sentences.
Summarize the paragraph in not more than 20 words.

However, you can ask them to perform something specific related to the content of the paragraph.
Summarize the main novelty of the research work concisely.
Summarize the cleaning tips using soap and sponge in details for me so I sound like a professional.
Summarize the purpose of the dialogue and then convert each person’s opinion into a bullet list while keeping their orders.

Be as creative as possible, and use the information present in the paragraph to make the instructions unique.

Figure 6: Prompt given to GPT-4 for creating the instructions.

You are given a document, an instruction, and a candidate answer.
You have to evaluate the answer based on how well it follows the instructions on a scale of 1 to 5 (larger is better), and
provide a rationale.
Carefully evaluate the various constraints that may be present in the instructions.

—-

Document:
{document}

Instruction:
{instruction}

Answer:
{answer}

Rating:

Figure 7: Self-agreement prompt. The bottom part under and including “—-” is repeated for n > 1-shot variants.

This is a chat room with AI assistants that specialize in summarizing and question answering.
You are given a paragraph of text, an instruction, and a candidate answer.
You have to evaluate the answer based on how well it follows the instructions on a scale of 1 to 5.
Carefully evaluate the various constraints that may be present in the instruction.
After evaluation, present a brief rationale not exceeding 2-3 sentences, and your rating, to the AI assistants.
If there is consensus among the AI assistants, the rating will be accepted.
If there is no consensus, you should read the rationale of the other AI assistants and try to reach a consensus by either
changing your rating or convincing the other assistants to change theirs.
You will be given 3 chances to reach a consensus.
Always try to reach a consensus.
Remember, end your response with ’Rating:’.

Document:
{document}

Instruction:
{instruction}

Answer:
{answer}

(User: Agent {aid}, please share your response.)
Agent {aid}: ... rationale ... Rating: 4.
...

Figure 8: Prompt given to the models before the consensus discussion.
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Question #1

Does the output follow the instruction? Rate “Yes” if the output follows the instruction and “No” if it does not. Consider
the following factors:
* Does the output meet the format requirements (e.g., bullet points, concise summary)?
* Does the output address the specific focus of the instruction (e.g., main novelty, key findings)?

Document:
{document}

Instruction:
{instruction}

Output:
{answer}

Rating:

Question #2

Rate the output on a scale of 1 to 5. Rate the output based on how well it follows the instruction and captures the main
points, themes, or ideas of the document. Use the following scale:
1. The output does not follow the instruction at all.
2. The output somewhat follows the instruction but misses important points or includes irrelevant information.
3. The output follows the instruction moderately well, capturing some main points but lacking detail or clarity.
4. The output follows the instruction well, capturing most main points and providing a clear summary.
5. The output follows the instruction strictly, capturing all main points and providing a concise, accurate summary.

Document:
{document}

Instruction:
{instruction}

Output:
{answer}

Rating:

Figure 9: Prompts for Constrained Softmax-based methods.


