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Abstract

A line of work on Transformer-based language
models such as BERT has attempted to use syn-
tactic inductive bias to enhance the pretraining
process, on the theory that building syntactic
structure into the training process should re-
duce the amount of data needed for training.
But such methods are often tested for high-
resource languages such as English. In this
work, we investigate whether these methods
can compensate for data sparseness in low-
resource languages, hypothesizing that they
ought to be more effective for low-resource lan-
guages. We experiment with five low-resource
languages: Uyghur, Wolof, Maltese, Coptic,
and Ancient Greek. We find that these syn-
tactic inductive bias methods produce uneven
results in low-resource settings, and provide
surprisingly little benefit in most cases.

1 Introduction

Many NLP algorithms rely on high-quality pre-
trained word representations for good performance.
Pretrained Transformer language models (TLMs)
such as BERT/mBERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLM-R (Conneau
et al., 2020), and ELECTRA (Clark et al., 2020)
provide state-of-the-art word representations for
many languages. However, these models require
on the order of tens of millions of tokens of train-
ing data in order to achieve a minimum of quality
(Micheli et al., 2020; Warstadt et al., 2020), a data
requirement that most languages of the world can-
not practically satisfy.

There are at least two basic approaches to ad-
dressing this issue. The first, which is at least as old
as BERT, exploits multilingual transfer to reduce
the data requirements for any individual language.
The second aims to reduce TLMs’ data require-
ments by modifying their architectures and algo-
rithms. For example, Gessler and Zeldes (2022)
more effectively train low-resource monolingual

TLMs with as few as 500K tokens by reducing
model size and adding supervised pretraining tasks
with part-of-speech tags and syntactic parses.

We take up the latter direction in this work, look-
ing specifically at whether the addition of syntactic
inductive bias (SIB) during the pretraining pro-
cedure may help improve TLM quality in low-
resource, monolingual settings. Specifically, we
examine two methods which have been proposed
for high-resource settings: the two syntactic con-
trastive loss functions of Zhang et al. (2022b), and
the modified self-attention algorithm of Li et al.
(2021), wherein a modified self-attention mecha-
nism, restricted so that tokens may only attend to
tokens that are syntactically “local”, complements
the standard self-attention mechanism.

At a high level, SIB is of interest in the context of
TLMs because of how crucial self-attention is for
TLMs’ syntactic knowledge. In studies on an En-
glish TLM, BERT, Htut et al. (2019) and Clark et al.
(2019) show that while syntactic relations are not
directly recoverable from self-attention patterns,
many self-attention heads seem to be sensitive to
particular syntactic relations, such as that of a direct
object or or a subject. But self-attention is com-
pletely unbounded: during pretraining, the model
has to learn from scratch how to decide which other
tokens in an input sequence a token should attend
to. We therefore observe that if SIB could be ef-
fectively applied, then presumably self-attention
weights would converge more quickly and learn
more effectively, since their behavior has been ob-
served to be so heavily syntactic in nature.

Moreover, we expect that this effect would be
greater for low-resource languages, where the com-
parative lack of data is known to hamper models’
ability to form robust linguistic representations.
We find additional motivation for our interest in
SIB given the nearly universal view held by lin-
guists that the human mind does not start with the
equivalent of a totally unconstrained self-attention
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mechanism: for example, psycholinguists such
as Hawkins (2014) have extensively documented
processing-related constraints on syntax, and Gen-
erative linguists such as Ross (1967) have observed
that many syntactic constructions which might have
been possible are in fact not attested in English or
any other language, and postulate that these con-
structions are at least in some cases “impossible”
because of biologically-determined properties of
the human mind. Our goal is therefore to give our
models something like the constraints the human
mind has in order to help them learn more effec-
tively with less data.

We use a standard BERT-like TLM architecture
as our base model, though we heavily reduce model
size, following the results of Gessler and Zeldes
(2022) which showed that this is beneficial in low-
resource monolingual settings. We pretrain TLMs
for five low-resource languages—Wolof, Coptic,
Maltese, Uyghur, and Ancient Greek—varying
which SIB methods are used. We then use Univer-
sal Dependencies (UD) (Nivre et al., 2016) syntac-
tic parsing and WikiAnn (Pan et al., 2017) named
entity recognition as representative downstream
tasks that allow us to assess the quality of our mod-
els. Additionally, we evaluate our models using
PrOnto (Gessler, 2023), a suite of downstream task
datasets for low-resource languages. We find that
these SIB methods are not very effective in low-
resource languages, with small gains in some tasks
and degradations or no effects in others. This is sur-
prising given the intuition that SIB ought to help
more in low-resource settings, and we speculate
that other methods for SIB may be more effective
in low-resource settings.

We summarize our contributions as follows:

1. We conduct what is, to the best of our knowl-
edge, the first work examining whether SIB is help-
ful for pretraining low-resource Transformer LMs.
2. We reimplement SynCLM (Zhang et al., 2022b),
SLA (Li et al., 2021), and MicroBERT (Gessler
and Zeldes, 2022) in plain PyTorch and make it
openly accessible.1

3. We present evidence from seven downstream
evaluation tasks wherein the two SIB methods we
examine are basically ineffective in our experimen-
tal settings, yielding only scattered and small gains.

1Our code is publicly available at https://github.com/
lgessler/lr-sib .

2 Previous Work

Pretrained word representations have been essential
ingredients for NLP models for at least a decade,
beginning with static word embeddings such as
word2vec (Mikolov et al., 2013b,a), GloVe (Pen-
nington et al., 2014), and fastText (Bojanowski
et al., 2017). Contextualized word representations
(McCann et al., 2018; Peters et al., 2018; Devlin
et al., 2019) from Transformer-based (Vaswani
et al., 2017) models have since overtaken them.

Throughout this period, high-resource languages
have received the majority of attention, and al-
though interest in low-resource settings has in-
creased in the past few years, there remains a large
gap (in terms of linguistic resources, pretrained
models, etc.) between low- and high-resource lan-
guages (Joshi et al., 2020).

2.1 Multilingual Models

The first modern multilingual TLM was mBERT,
trained on 104 languages (Devlin et al., 2019).
mBERT and other models that followed it, such as
XLM-R (Conneau et al., 2020), demonstrated that
multilingual pretrained TLMs are capable of good
performance not on just languages represented in
their training data, but also in some zero-shot set-
tings (cf. Pires et al. 2019; Rogers et al. 2020,
among others). But this is not without a cost: it
has been shown (Conneau et al., 2020) that when
a TLM is trained on multiple languages, the lan-
guages compete for parameter capacity in the TLM,
which effectively places a limit on how many lan-
guages can be included in a multilingual model be-
fore performance significantly degrades for some
or all of the model’s languages. Indeed, the lan-
guages which had proportionally less training data
in XLM-R’s training set tended to perform more
poorly (Wu and Dredze, 2020).

A possible solution to this difficulty is to adapt
pretrained TLMs to a given target language, rather
than trying to fit the target language into an
ever-growing list of languages that the model is
pretrained on. One popular method for doing
this involves expanding the TLM’s vocabulary
with additional subword tokens (e.g. BPE tokens
for RoBERTa-style models), which has been ob-
served to improve tokenization and reduce out-of-
vocabulary rates (Wang et al., 2020; Artetxe et al.,
2020; Chau et al., 2020; Ebrahimi and Kann, 2021),
leading to downstream improvements in model per-
formance. But these and other approaches struggle

https://github.com/lgessler/lr-sib
https://github.com/lgessler/lr-sib


240

when a language is very far from any other lan-
guage that a multilingual TLM was pretrained on.

Multilingual models like XLM-R which are
trained on over 100 languages could be described
as massively multilingual models. A more recent
trend is to train multilingual models on just a few
to a couple dozen languages, especially in low-
resource settings. For example, Ogueji et al. (2021)
train an mBERT on data drawn from 11 African
languages, totaling only 100M tokens (cf. BERT’s
3.3B), and find that their model outperforms mas-
sively multilingual models such as XLM-R, pre-
sumably because the African languages in ques-
tion were quite unrelated to most of the languages
XLM-R was trained on.

2.2 Monolingual Models
There has been comparatively little work explor-
ing pretraining monolingual low-resource TLMs
from scratch, and this lack of interest is likely ex-
plainable by the fact that monolingual TLMs re-
quire copious training data in order to be effective.
Several studies have examined the threshold under
which monolingual models significantly degrade,
and all find that using standard methods, more data
than is available in “low-resource” settings (defi-
nitionally, if we take “low-resource” to mean ‘no
more than 10M tokens’) is required in order to ef-
fectively train a monolingual TLM. Martin et al.
(2020) find at least 4GB of text is needed for near-
SOTA performance in French, and Micheli et al.
(2020) show further for French that at least 100MB
of text is needed for “well-performing” models on
some tasks. Warstadt et al. (2020) train English
RoBERTa models on datasets ranging from 1M
to 1B tokens and find that while models acquire
linguistic features readily on small datasets, they
require more data to fully exploit these features in
generalization on unseen data.

Gessler and Zeldes (2022) is the only work we
are aware of which attempts to develop a method
for training “low-resource” (<10M tokens in train-
ing data) monolingual TLMs. They extend the
typical MLM pretraining process with multitask
learning on part-of-speech tagging and UD syntac-
tic parsing, and also radically reduce model size to
1% of BERT-base, yielding fair performance gains
on two syntactic evaluation tasks. They find that
their monolingual approach generally outperforms
multilingual methods for languages that are not rep-
resented in the training set of a multilingual TLM
(mBERT, in their study).

2.3 Syntactic Inductive Bias

Other work has investigated the syntactic capa-
bilities of TLMs, and whether these capabilities
could be enhanced with additional inductive bias.
In an influential study, Hewitt and Manning (2019)
find that structures that resemble undirected syntac-
tic dependency graphs are recoverable from TLM
hidden representations using a simple “structural
probe”, consisting of a learned linear transforma-
tion and a minimum spanning tree algorithm for
determining tokens’ syntactic dependents based on
L2 distance. Kim et al. (2020) find similar results
with a non-parametric, distance-based approach
using both hidden representations and attention dis-
tributions. Both of these works attempt to find
syntactic representations within a TLM without
ever exposing a TLM to a human-devised represen-
tation. The quality of the recovered trees is usually
poor relative to those obtainable from a syntactic
parser, though their quality is consistently higher
than random baselines.

Some works have attempted to provide
models with direct access to human-devised
representations—e.g., a syntactic parse provided
in the Universal Dependencies formalism, which
may have been produced by a human or by an au-
tomatic parser. Zhou et al. (2020) extend BERT
by adding dependency and constituency parsing
as additional supervised tasks during pretraining.
Bai et al. (2021) assume that inputs are paired with
parses, and use the parses to generate masks which
restrict an ensemble of self-attention modules to at-
tend only to syntactic children, parents, or siblings.
Xu et al. (2021) use dependency parses to bias self-
attention so that self-attention between tokens is
weighted proportionally to the tokens’ distance in
the parse. In this paper, we examine the methods
of Li et al. (2021) and Zhang et al. (2022b), which
we describe below.

In sum, there are very many ways in which one
could encourage a TLM to either learn a human
representation of syntax, or to come up with (or re-
veal) its own. To our knowledge, none of the works
on SIB have been examined in a low-resource TLM
pretraining setting.

3 Approach

This work investigates whether methods for SIB
that have succeeded in high-resource monolingual
TLM pretraining settings could also be useful in
analogous low-resource settings. As we have seen,
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monolingual TLMs tend to have very poor qual-
ity when less than ≈10M tokens of training data
are available for pretraining, and moreover, it has
been observed that at least one dimension of this
poor quality is models’ inability to make grammat-
ical generalizations without a large (≈1B tokens,
Warstadt et al. 2020) pretraining dataset. Since it is
(almost definitionally) difficult to get more data in
low-resource settings, it is especially important to
find other ways of improving model quality. It is
therefore worthwhile to examine whether supply-
ing some kind of SIB could help a low-resource
TLM form better linguistic representations.

As discussed in §2.3, there are many ways to
introduce SIB into a TLM. In this work, we look
specifically at two methods: SynCLM (Zhang et al.,
2022b) and SLA (Li et al., 2021), which is also
used by Zhang et al. Li et al. (2021) extend the self-
attention module with “local attention”, wherein
tokens may only attend to tokens which are ≤ k
edges away in the dependency parse tree. Zhang
et al. (2022b) devise two contrastive loss functions
which are intended to encourage tokens to attend to
sibling and child tokens, and in their experiments,
they find success in combining these with SLA. A
concise description of the details of each method
is available in Appendix A.Both of these methods
have only been evaluated on English, and both as-
sume a UD syntactic parse as an additional input
for each input sequence and use the parse in dif-
ferent ways to attempt to guide the model to better
syntactic representations.

We use these two SIB methods with the model
of Gessler and Zeldes (2022), MicroBERT, as a
foundation. MicroBERT is a BERT-like model
that has been scaled down to 1% of BERT-base,
and that optionally employs part-of-speech tagging
and syntactic parsing as auxiliary pretraining tasks.
As shown by experiments on 7 low-resource lan-
guages conducted by Gessler and Zeldes (2022),
MicroBERT performs much better than an unmodi-
fied BERT-base TLM, so we adopt it as our base-
line model for most experiments in this work.

We now state our two main research questions:
• (RQ1) Do these SIB methods improve model

quality when applied to a low-resource lan-
guage?

• (RQ2) Are there any gains complementary
with the part-of-speech tagging component of
MicroBERT for training low-resource mono-
lingual TLMs?

Language Unlabeled UD NER
Wolof 517,237 9,581 10,800
Coptic 970,642 48,632 –
Maltese 2,113,223 44,162 15,850
Uyghur 2,401,445 44,258 17,095
Anc. Greek 9,058,227 213,999 –

Table 1: Token count for each dataset by language from
Gessler and Zeldes (2022), sorted in order of increasing
unlabeled token count.

4 Methods

4.1 Data and Evaluation

We reuse the datasets and evaluation setup of
Gessler and Zeldes (2022), using five of their seven
“truly”2 low-resource languages’ datasets. Each
language’s data includes a large collection of un-
labeled pretraining data sourced from Wikipedia,
as well as two datasets for downstream tasks for
evaluation: UD treebanks for syntactic parsing,
and WikiAnn (Pan et al., 2017) for named entity
recognition (NER). We refer readers to Gessler and
Zeldes’ paper for further details on these datasets
and the models for UD parsing and NER. In ad-
dition, we assess models on all five tasks in the
PrOnto benchmark (Gessler, 2023), which will be
described below.

4.2 Models

We reimplement the MicroBERT model of Gessler
and Zeldes (2022), as well as the work of Zhang
et al. (2022b) and Li et al. (2021). In all cases, we
reuse code wherever possible and closely check
implementation details and behavior in order to
ensure correctness. As a foundation, we use the
BERT implementation provided in HuggingFace’s
transformers package (Wolf et al., 2020), and we
also use AI2 Tango3 for running experiments. We
obtain all of our parses for the unlabeled portions
of our datasets automatically using Stanza (Qi et al.,
2020), following Zhang et al.

In order to answer our research questions, for
each language, we examine the following condi-
tions:
1. MBERT – plain multilingual BERT
(bert-base-multilingual-cased). A baseline;
numbers taken from Gessler and Zeldes.

2The Indonesian and Tamil Wikipedias were larger than
Gessler and Zeldes’ cutoff of 10M tokens for “low resource”,
and Indonesian and Tamil are also included in mBERT’s pre-
training data. We exclude them for the purposes of this study
in the interest of examining these five truly low-resource lan-
guages in more depth.

3https://github.com/allenai/tango

https://github.com/allenai/tango
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Model Wolof Coptic Maltese Uyghur An. Gk. Avg.
MBERT 76.40 14.43 78.18 46.30 72.30 57.52
MBERT-VA 72.94 82.11 72.69 42.97 65.89 67.32
µB-M 77.71 88.47 81.40 59.97 81.94 77.90
µB-MP 75.88 87.90 80.88 59.42 81.15 77.05
µB-MT 77.29 88.32 81.06 59.79 81.42 77.58
µB-MPT 77.05 88.38 80.07 58.94 81.35 77.16
µB-MPT-SLA 76.25 87.87 79.52 58.37 80.77 76.56
µB-MX 77.74 88.00 81.25 61.23 82.02 78.05
µB-MXP 77.90 88.63 82.21 60.62 81.34 78.14
µB-MXT 77.30 88.34 81.87 60.44 82.11 78.01
µB-MXPT 78.19 88.48 81.30 61.41 81.80 78.24
µB-MXPT-SLA 76.89 87.90 80.87 59.35 81.17 77.24

Table 2: Labeled attachment score (LAS) by language and model combination for UD parsing evaluation. Results
for MBERT and MBERT-VA are taken from Gessler and Zeldes (2022).

Model Wolof Maltese Uyghur Avg.
MBERT 83.79 73.71 78.40 78.63
MBERT-VA 79.37 78.11 77.03 78.17
µB-M 83.40 82.98 86.70 84.36
µB-MP 86.38 84.16 87.44 86.00
µB-MT 87.16 89.46 87.33 87.98
µB-MPT 88.89 86.83 87.67 87.80
µB-MPT-SLA 86.38 84.85 84.81 85.35
µB-MX 77.65 86.09 89.75 84.49
µB-MXP 81.45 87.74 87.41 85.54
µB-MXT 85.94 84.67 87.98 86.19
µB-MXPT 87.06 84.37 87.53 86.32
µB-MXPT-SLA 83.72 85.35 88.07 85.71

Table 3: Span-based F1 score by language and model
combination for NER evaluation.

2. MBERT-VA – MBERT, but with vocabulary aug-
mentation. A baseline; numbers taken from Gessler
and Zeldes.
3. µB-M – plain MicroBERT trained only using
MLM. We obtain our own numbers to verify the
correctness of our implementation.
4. µB-MP, µB-MT, µB-MPT – MicroBERT with
either one or both of the SynCLM loss functions:
P indicates the phrase-guided loss, and T indicates
the tree-guided loss.
5. µB-MPT-SLA – µB-MPT, with the addition of
SLA. We follow Zhang (2022) in using SLA only
in conjunction with both contrastive losses.
6. µB-MX, µB-MXP, µB-MXT, µB-MXPT, µB-
MXPT-SLA– the conditions in (3–5), but with the
addition of part-of-speech tagging (X) as an auxil-
iary pretraining task. This is done using the same
methods of Gessler and Zeldes: PoS tagging is
only performed on gold-tagged data from the UD
treebank, and tagged sequences are mixed into the
pretraining data at a 1 to 8 ratio.

Revisiting our research questions, we intend for
the conditions in (3–5) to provide evidence for
(RQ1), and for the additional information from the
conditions in (6) to provide evidence for (RQ2).

5 Results

Parsing Our results for UD syntactic parsing are
given in Table 2. While all models beat the multi-
lingual baselines, neither SynCLM nor SLA seems
to improve model quality. In the -M variant models,
the top-performing model is always the one trained
with plain masked language modeling. This is not
so for the -MX variant models, where the -MXP and
-MXPT models do slightly better on average, though
this difference is small enough to be within the
range of experimental noise. Surprisingly, -MPT-
SLA models do worst of all. Finally, comparing
-M variants to their -MX counterparts, we do find
that in all cases the -MX counterpart is better on
average, and that the difference is about 1% LAS.

NER Our results for WikiAnn NER are given
in Table 3. Considering the -M variant models
first, we see that in all cases the model trained
using only MLM performs the worst, and the -MPT-
SLA variant, while always no better than the -MP,
-MT, and -MPT variants, also outperforms the plain
MLM model. The -MP, -MT, and -MPT variants
do best with a difference of up to 4 points F1 on
average.

Turning now to the -MX variants, while it is still
true that on average the plain MLM model per-
forms worst and the non-SLA SynCLM models
perform best, there is more variation within indi-
vidual languages. The best model for Uyghur is
the plain MLM model, and for Maltese, the plain
MLM model outperforms µB-MXT and µB-MXPT.

Considering now all the NER results, two pat-
terns are worth noticing. First, unlike in parsing,
a -MX variant does not always outperform its -M

counterpart: for example, µB-MP for Wolof is bet-
ter than µB-MXP by a difference of 5 points F1.
We can see further that the -M models beat the -MX
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Non-pronominal Mention Count Same Sense All 5
Model An. Grk. Coptic Uyghur Wolof Avg. An. Grk. Coptic Uyghur Wolof Avg. Avg.
µB-M* 52.59 50.75 49.37 51.47 51.04 60.58 61.32 60.65 59.78 60.58 68.65
µB-MX* 56.81 53.34 51.19 59.24 55.14 60.95 61.30 61.51 63.08 61.71 70.01
MBERT 57.36 49.52 51.46 57.35 53.92 65.34 52.79 62.73 66.49 61.84 67.92
µB-M 56.68 52.52 52.72 53.78 53.93 58.51 56.65 57.97 58.54 57.92 68.25
µB-MP 56.13 51.98 54.39 54.41 54.23 58.41 58.15 59.54 58.95 58.76 68.40
µB-MT 50.41 48.98 49.37 51.47 50.06 58.48 58.08 57.99 57.03 57.90 66.88
µB-MPT 53.68 48.98 51.74 51.47 51.47 53.36 54.19 59.32 58.07 56.23 66.39
µB-MX 57.49 53.07 54.39 53.57 54.63 56.71 56.01 58.88 58.18 57.44 68.39
µB-MXP 54.09 53.34 54.39 53.78 53.90 55.61 55.02 59.47 58.47 57.14 67.84
µB-MXT 53.95 51.02 49.37 51.47 51.45 57.44 56.37 59.56 57.93 57.83 66.89
µB-MXPT 52.72 51.71 50.91 51.47 51.70 57.19 56.17 56.81 58.14 57.08 67.30

Table 4: Accuracy by language and model combination for two tasks in PrOnto: the Non-pronominal Mention
Count, and Same Sense tasks. For non-baseline models, an underline indicates the best performance for a language–
task combination for a particular model variant (-M or -MX), and boldface indicates the best performance across
either model variant. Scores for MBERT, µB-M*, and µB-MX* are taken from Gessler (2023)—the asterisk indicates
that the latter two models are not our implementation but the one provided in Gessler and Zeldes (2022), which is
reported in Gessler (2023). Rightmost column contains an average over all languages and tasks for a given model.
Results for PrOnto’s other three tasks are given in Appendix D.

models on average by about 4 points F1. This indi-
cates that when combined with SLA and SynCLM,
the PoS tagging pretraining task does not appear
to be helpful for dimensions of model quality that
are implicated in NER. Second, the addition of
-SLA never results in a gain relative to any of the
SynCLM models, except for Uyghur, where it pro-
duces a gain of 0.09, which is within the range of
experimental noise.
PrOnto We run our SynCLM models4 on all five
tasks of PrOnto (Gessler, 2023) on all languages
except Maltese, which is not represented in PrOnto
because of the lack of an open-access Maltese
Bible. For each language in PrOnto, a dataset for
five sequence classification tasks is available which
was constructed by aligning New Testament verses
from the target language with the English verse in
OntoNotes (Hovy et al., 2006) and projecting an-
notations from English to the target language. All
5 tasks are sequence classification tasks. Each task
requires a model to predict a certain grammatical
or semantic property—these are, respectively: the
number of referential noun phrases in a sequence;
whether the subject of a sentence contains a proper
noun; the sentential mood of a sentence; whether
two input sequences both contain a usage of a verb
sense; and whether two input sequences both con-
tain a usage of a verb sense with the same number
of arguments. We refer readers to the PrOnto pub-
lication for further details.

Results from two of the five tasks are given in

4It was not possible to run our SLA models on PrOnto due
to considerable implementation effort that would have been
required, so we omit those models from this evaluation.

Table 4.5 Broadly, we may observe that the -MPT

and -MXPT models never perform best within a
language, with either variant being in many cases
worse by a few absolute points compared to other
models. Looking at -M-family models, -MP is the
clear winner, doing a little better than -M and much
better than -MT or -MPT on both tasks. By contrast,
for -MX-family models, the -MXP variant does a
bit worse on average than -MX, and for the Same
Sense task, the -MXT model does a bit better than
-MXP. Looking to the rightmost column in Table 4,
we can see that when we average accuracy scores
for a model across all languages and all 5 tasks
in PrOnto, the -MP model has the highest score
overall, with -MX and -M very close behind and all
other model variants quite a ways behind.

Overall, it seems that for the PrOnto tasks, of
all the syntactic bias methods we have tried, only
the use of the phrase-based contrastive loss (-MP)
or the tree-based contrastive loss in combination
with PoS tagging (-MXT) showed much improve-
ment over the baselines. In individual language–
task combinations, models sometimes had multiple-
point performance differences over others, but
when considered in aggregate, only -MP shows any
improvement over -M and -MX—by 0.15% and
0.01% accuracy, respectively.

6 Discussion

Considering first whether SynCLM and SLA
yield benefits for low-resource monolingual TLMs

5We omit results from the other 3 from the main body for
space reasons—see Appendix D for these results.
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(RQ1), we have found positive evidence from the
WikiAnn NER experiments, and weak positive evi-
dence from the PrOnto experiments. It is true that
the same methods did not produce measurable gain
for the UD parsing task, but this is in line with
previous findings for these two methods, where on
some downstream evaluations, gain was very small
or slightly negative—we return to this matter in the
following paragraph. For the question of whether
these benefits are complementary with the PoS tag-
ging pretraining strategy introduced in Gessler and
Zeldes (2022) (RQ2), we do not find consistent
evidence in any of our experiments that both PoS
tagging and SynCLM or SLA yield complemen-
tary benefits. The only positive evidence we find
for this is in the PrOnto experiments, where the
-MXT model variant does better than -MX in some
task–language combinations, though worse overall.

The difference in the way model variants be-
haved in these seven evaluation tasks is striking,
and it is difficult to understand why models exhib-
ited these different behaviors. It is worth compar-
ing these results with those reported by the Syn-
CLM authors (Zhang et al., 2022b). For many
of the GLUE tasks that they assess their models
on (their Table 3), there is little or no improve-
ment from adding -P, -T, or -PT-SLA. For exam-
ple, considering their models based on RoBERTa-
base, none of their model variants outperform the
MLM-only baseline for the QQP (Quora Ques-
tion Pairs2), STS (Semantic Textual Similarity),
or MNLI-m (Multi-Genre Natural Language In-
ference, matched). This situation is more or less
analogous to the one we observed in our experi-
ments for the UD parsing downstream task, where
the addition of SynCLM and SLA had basically no
effect.

On the other hand, the GLUE task with the great-
est gain, CoLA (Corpus of Linguistic Acceptabil-
ity), shows a difference of only 1.7% Matthews
correlation coefficient, and a couple of other tasks
like SST (Stanford Sentiment Treebank), show an
improvement of only 0.3% accuracy. It would be
naïve to directly compare percentage points of dif-
ferent metrics in totally different experimental set-
tings and make conclusions about effect sizes, we
nevertheless point out that we observe improve-
ments of 1–4% F1 in our NER experiments for -M

models. In light of this, we consider our results to
be broadly in line with the trend for previous works’
results on English: there is no improvement that

is wholly consistent across evaluations, and only
modest gains for the benchmarks that do improve.

In summary, we find that SynCLM and SLA
produce uneven results in low-resource settings,
though we also find that when they do succeed, they
can yield gains that appear greater than anything
observed for high-resource languages: we saw that
when we take a pure MLM pretraining regimen as
a base and add SynCLM and/or SLA, we are able
to improve the quality of pretrained TLMs by 1 to 4
absolute points F1 in NER. While a similar benefit
was not observed for UD parsing, it is also true that
there was a noticeable degradation on UD parsing
in only a couple cases, and in most cases simply
had no effect.

7 English Experiments

One might have expected SIB to be a knockout suc-
cess for low-resource languages given the intuitive
feeling that at lower data volumes, additional bias
ought to be more helpful. We considered reasons
why our attempts to do this might not have panned
out—perhaps, for example, tree structure matters
most for highly analytic languages like English, or
perhaps the tasks used to evaluate English in GLUE
are more sensitive to high-level sentence structure,
or perhaps sensitivity to syntax is only advanta-
geous given a base model with sufficiently rich
distributional information. Here, we consider an-
other possible explanation: that the inductive bias
with these methods only helps given high-quality
syntactic parses. An obvious difference between
English and the languages we have examined in
this study is that UD parsers for English generally
achieve much higher performance given the size
and annotation quality of English UD treebanks.
This is a potentially consequential difference, given
that both the SynCLM and SLA methods rely on
UD parse trees as inputs. In addition, the models
we have developed here differ from common kinds
of English BERTs in that they are much smaller
and were trained on much less data, and it is pos-
sible that the SynCLM and SLA methods might
have interactions with these two variables of model
construction.

In order to investigate whether parse tree qual-
ity, model size, and pretraining data size might
be consequential for these SIB methods, we run
several additional experiments on English datasets.
We choose English because its status as a high-
resource language allows us control over several
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independent variables which we do not have control
over in low-resource settings, namely data quantity,
syntactic parse quality, and model size.6 We can
frame an additional research question that we wish
to answer:

• (RQ3) Are SynCLM and SLA sensitive to
parse tree quality, model size, or pretraining
dataset size?

For our English dataset, we use AMALGUM
(Gessler et al., 2020) as our source of pretraining
data. AMALGUM contains around 2M tokens and
contains automatic parses with quality that exceeds
what can normally be obtained from a standard
parser. For downstream evaluation, we use the
English Web Treebank (Silveira et al., 2014), which
contains around 250K tokens, and the English split
of WikiAnn, downsampled to around 50K tokens
in order to bring it closer to the quantities for our
other 3 languages (cf. Table 1). In addition, we
use a 100M subset of BERT’s pretraining data as a
larger source of unlabeled pretraining data.

We frame these additional conditions for English,
extending our model naming scheme from above:
1. -NP – syntax trees are taken from Stanza in the
same way as before.
2. -HQP – syntax trees are taken from AMAL-
GUM’s annotations, made by a high quality parser.
3. -BD – pretraining is done using the big dataset
instead of AMALGUM.
4. -BD-BM – like -BD, and in addition, the model
size is set to half of BERT-base (6 layers instead of
12).
Evidence from these conditions could tell us more
about how and when SynCLM and SLA can suc-
ceed in low-resource scenarios. We pretrain these
models as we did in our main experiments and
evaluate them on UD parsing and WikiAnn NER.

A full description of our results is given in Ap-
pendix B, and we give a description of our key
finding here: that SynCLM and SLA are not very
sensitive to parse quality or model size, but are
sensitive to quantity of pretraining data. The insen-
sitivity to parse quality may come as a surprise, and
we reason that this is actually understandable, since
both methods focus mostly on low-height subtrees
(often corresponding to phrase- or sub-phrase-level
constituents) which are more likely to be correct
even when overall parse quality is bad. We find

6Model size is not controllable in low-resource settings in
the sense that, as Gessler and Zeldes (2022) argued, mono-
lingual low-resource TLMs exhibit severe degradations when
they get too large.

evidence for sensitivity to data size in the fact that
SynCLM and SLA provide gains of up to 1% F1
for the NER evaluation in the two low-data condi-
tions, while in the higher-data conditions, all but
one of the bias-enhanced models lead to degrada-
tions relative to the baseline. In sum, we take this
to show that lower parse quality is not the major
reason for the ineffectiveness of SynCLM and SLA
in low-resource settings.

8 Conclusion

In this work, we have taken two methods for SIB
that have succeeded in English, SynCLM and SLA,
and we have investigated whether they may also
be beneficial in low-resource monolingual settings.
We find that in most cases these methods do not
result in an improvement in model quality as mea-
sured on seven tasks. Further, in our auxiliary ex-
periments on English, we found evidence suggest-
ing that the lower quality of parses in low-resource
settings is probably not what is driving the ineffec-
tiveness of these SIB methods.

Considering all of our results, we conclude that
these two specific methods—SynCLM and SLA—
are not well suited to supporting the pretraining
of language models in low-resource settings, but
we also view it as a yet open question whether any
method for SIB could succeed in this role. There
are some reasons why SynCLM and SLA might
have been unhelpful. First of all, recall the fact
that SynCLM limits its application to only short
subtrees (no taller than 3 nodes). This would mean
that most of the time, the contrastive loss func-
tions would only be operating on basic phrase-level
constituents, such as noun phrases, and not higher,
clause-level phenomena such as relations between
the main clause’s predicate and its arguments. If it
were the case that the former kind of syntax is rel-
atively easy for models to learn even with limited
data, and that the latter kind of syntax is what is
hard and therefore where SIB really ought to help,
then we would expect to see the results we found in
this work, where neither method did much to help.

Therefore, while we find little reason to be opti-
mistic about these two particular methods in low-
resource settings, we don’t view the evidence in
this paper as an indictment of SIB in low-resource
settings in general, and suggest that SIB methods
which are better able to provide bias for higher,
clause-level syntactic dependencies may produce
better results for low-resource languages.



246

Acknowledgments

We thank Amir Zeldes for very helpful comments
on this work.

References
Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.

2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4623–4637, Online. Association
for Computational Linguistics.

Fan Bai, Alan Ritter, and Wei Xu. 2021. Pre-train or
Annotate? Domain Adaptation with a Constrained
Budget. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 5002–5015, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Ethan C. Chau, Lucy H. Lin, and Noah A. Smith. 2020.
Parsing with Multilingual BERT, a Small Corpus,
and a Small Treebank. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1324–1334, Online. Association for Computational
Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training Text Encoders as Discriminators Rather
Than Generators.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Abteen Ebrahimi and Katharina Kann. 2021. How to
Adapt Your Pretrained Multilingual Model to 1600
Languages. arXiv:2106.02124 [cs].

Dominik Maria Endres and Johannes E Schindelin.
2003. A new metric for probability distribu-
tions. IEEE Transactions on Information theory,
49(7):1858–1860.

Luke Gessler. 2023. Pronto: Language model evalua-
tions for 859 languages.

Luke Gessler, Siyao Peng, Yang Liu, Yilun Zhu, Shab-
nam Behzad, and Amir Zeldes. 2020. AMALGUM –
a free, balanced, multilayer English web corpus. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 5267–5275, Marseille,
France. European Language Resources Association.

Luke Gessler and Amir Zeldes. 2022. MicroBERT: Ef-
fective training of low-resource monolingual BERTs
through parameter reduction and multitask learning.
In Proceedings of the The 2nd Workshop on Multi-
lingual Representation Learning (MRL), pages 86–
99, Abu Dhabi, United Arab Emirates (Hybrid). As-
sociation for Computational Linguistics.

John A. Hawkins. 2014. Cross-Linguistic Variation
and Efficiency. Oxford University Press. Publication
Title: Cross-Linguistic Variation and Efficiency.

John Hewitt and Christopher D. Manning. 2019. A
Structural Probe for Finding Syntax in Word Repre-
sentations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
the 90% solution. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers, NAACL-Short ’06,
pages 57–60, New York, New York. Association for
Computational Linguistics.

Phu Mon Htut, Jason Phang, Shikha Bordia, and
Samuel R. Bowman. 2019. Do attention heads
in BERT track syntactic dependencies? CoRR,
abs/1911.12246.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://aclanthology.org/2021.emnlp-main.409
https://aclanthology.org/2021.emnlp-main.409
https://aclanthology.org/2021.emnlp-main.409
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.18653/v1/2020.findings-emnlp.118
https://doi.org/10.18653/v1/2020.findings-emnlp.118
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.48550/arXiv.2003.10555
https://doi.org/10.48550/arXiv.2003.10555
https://doi.org/10.48550/arXiv.2003.10555
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2106.02124
http://arxiv.org/abs/2106.02124
http://arxiv.org/abs/2106.02124
http://arxiv.org/abs/2305.12612
http://arxiv.org/abs/2305.12612
https://aclanthology.org/2020.lrec-1.648
https://aclanthology.org/2020.lrec-1.648
https://aclanthology.org/2022.mrl-1.9
https://aclanthology.org/2022.mrl-1.9
https://aclanthology.org/2022.mrl-1.9
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199664993.001.0001/acprof-9780199664993
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199664993.001.0001/acprof-9780199664993
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
http://arxiv.org/abs/1911.12246
http://arxiv.org/abs/1911.12246
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560


247

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-goo
Lee. 2020. Are pre-trained language models aware
of phrases? simple but strong baselines for gram-
mar induction. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Zhongli Li, Qingyu Zhou, Chao Li, Ke Xu, and Yunbo
Cao. 2021. Improving BERT with syntax-aware local
attention. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
645–653, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692 [cs]. ArXiv:
1907.11692.

Louis Martin, Benjamin Muller, Pedro Javier Or-
tiz Suárez, Yoann Dupont, Laurent Romary, Éric de la
Clergerie, Djamé Seddah, and Benoît Sagot. 2020.
CamemBERT: a Tasty French Language Model. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7203–
7219, Online. Association for Computational Lin-
guistics.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2018. Learned in Translation: Con-
textualized Word Vectors. arXiv:1708.00107 [cs].
ArXiv: 1708.00107.

Vincent Micheli, Martin d’Hoffschmidt, and François
Fleuret. 2020. On the importance of pre-training data
volume for compact language models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7853–7858, Online. Association for Computational
Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. arXiv:1301.3781 [cs].
ArXiv: 1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed Represen-
tations of Words and Phrases and their Composition-
ality. arXiv:1310.4546 [cs, stat]. ArXiv: 1310.4546.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
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Figure 1: Figure 1 from Li et al. (2021). The standard
self-attention mechanism is complemented by another
self-attention mechanism in which tokens may only at-
tend to tokens close to it in a parse tree. A gated unit
with learnable parameters interpolates the two attention
distributions before the distribution is combined with
the Value representation.

A Summary of SLA and SynCLM

Our approach critically relies on two previous re-
sults, which we summarize here.

A.1 Syntax-aware Local Attention
Li et al. (2021) introduce Syntax-aware Local At-
tention (SLA), a variation on a standard TLM
self-attention mechanism that retains standard self-
attention and complements it with a separate self-
attention mechanism where each token may only
attend to “syntactically local” tokens.

Recall that BERT and most other TLMs use
scaled dot-product attention in every attention head,
where the attention distribution A can be computed
with query and key representations Q and K, d is
the size of an individual attention head’s hidden
representation, and the attention head’s output O is
the product of A and the value representation V:

A = softmax(
QK⊺
√

d
) (1)

O =AV (2)

Now, assume an input sequence W =w1, . . . ,wn

with an unlabeled dependency parse H = h1, . . . ,hn

where hi indexes token wi’s syntactic head. Define
syntactic distance between two words, D(wi,w j),
as the length of the shortest path between the two
words in the parse:

D(wi,w j) ∶= SHORTEST-PATH(H, i, j) (3)

To account for the fact that parses may be inaccu-
rate (e.g. if they come from an automatic parser),
define windowed syntactic distance like so:7

D′(wi,w j) = min
k∈{i−1,i,i+1}

D(wk,w j) (4)

7If k /∈ [1,n], exclude it from the min.

This can be viewed as sacrificing precision for re-
call: a decision to give tokens a better chance of
being able to attend to truly local tokens (given
the imperfection of parser outputs), though at the
cost of sometimes allowing attention on tokens that
truly are not local.

Now, define a mask matrix M that will mask a
token iff a token j has windowed syntactic distance
over a certain threshold δ relative to token i:

mi j =

⎧⎪⎪
⎨
⎪⎪⎩

0 if D′(wi,w j) ≤ δ

−∞ otherwise
(5)

We can now define syntax-aware local attention by
modifying Equation 1 so that M is added to the
inner term in order to force an attention score of 0
for masked tokens:

Aℓ
= softmax(

QK⊺
√

d
+M) (6)

Syntax-aware local attention (SLA) is used
alongside the normal, “global” self-attention. To
combine the two after they have been computed,
introduce a gated unit for each Transformer block
with new parameters Wg and bg to compute gi for
each word wi using the word’s hidden representa-
tion hi, where σ is the sigmoid function:

gi = σ(Wghi+bg) (7)

Now, use gi to interpolate both the normal attention
distribution ai and the local attention distribution aℓi
at each position i in the sequence to yield the final
attention distribution Â and final attention head
output Ô:

Â =
n
⊕
i=1

giai+(1−gi)aℓi (8)

Ô = ÂV (9)

In the original work, the SLA method is evalu-
ated on various benchmarks on English and consis-
tently achieves measurable improvements in model
quality. Parses are obtained using Stanza (Qi et al.,
2020), which for English are of quite high qual-
ity (labeled attachment score is in the mid-80s for
English datasets). We refer readers to the original
publication for further details. See Figure 1 for an
overview.
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Figure 2: Figure 1 from Zhang et al. (2022b). P and Ni represent the positive sample and the ith negative sample,
respectively. The phrase-based contrastive loss on the left is intended to make the representations of syntactic
siblings more similar, and the tree-based contrastive loss on the right is intended to make the representations of
syntactic children and parents more similar.

A.2 SynCLM
Zhang et al. (2022b) present the Syntax-guided
Contrastive Language Model (SynCLM), a BERT-
like TLM that characteristically uses two novel
contrastive loss functions and also uses SLA (cf. ap-
pendix A.1). Intuitively, a contrastive learning ob-
jective requires each instance to have one or more
positive and negative “samples”, and attempts to
maximize the instance’s similarity to positive sam-
ples and minimize its similarity to negative samples
(Zhang et al., 2022a). SynCLM uses a popular loss
function for this, InfoNCE (van den Oord et al.,
2018):

L = − log
exp( sim(q,q+)

τ
)

exp( sim(q,q+)
τ

)+∑K
i=0 exp( sim(q,q−i )

τ
)

(10)

q, q+, and q− are the representations of the instance,
a positive sample, and a negative sample, respec-
tively, and τ ∈ (0,1) is a temperature hyperparame-
ter, set to 0.1 for SynCLM. sim is a similarity func-
tion, such as cosine similarity or KL-divergence.
The loss terms obtained from this equation are sim-
ply added to the loss obtained from masked lan-
guage modeling. We review only the contrastive
objective functions here, and refer readers to Figure
2 and the original paper for further details.

The two SynCLM contrastive learning objec-
tives are distinguished by how they formulate sim.

The first, “phrase-guided” objective aims to make
attention distributions more similar for words in
the same phrase. Given a token t, sample a positive
token t+ such that t and t+ have a lowest com-
mon ancestor ta whose corresponding subtree (the
“phrase”) is no more than 2 in height. Now sam-
ple k negative tokens t−1 , . . . ,t

−
k outside the phrase,

i.e. who do not have ta as an ancestor. Define
simphrase using Jensen–Shannon Divergence (En-
dres and Schindelin, 2003), a similarity metric for
probability distributions:

simphrase = −JSD(a ∥ a′) (11)

Here, a is the attention distribution for t, and a′
is the attention distribution for either a positive
or a negative sample. This equation is used to
calculate similarities for a given attention head and
layer—in SynCLM’s implementation, only the last
layer is used, and simphrase is averaged across all
attention heads in the last layer before being used
with Equation 10 for the final loss computation.

The “tree-guided” objective proceeds similarly.
A token ti is sampled which forms the root of the
positive tree, T+. Next, up to three tokens t−1 , . . . ,t

−
k

are sampled such that each t−i is not in T+ but is
adjacent to a token in T+. A new negative subtree
T−i is formed for each t−i such that a random non-
root token in T+ has been removed from T+ along
with its children, and the subtree rooted at t−i has
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taken its place.
We may now define tree similarity as follows,

where T is a positive or a negative subtree and za

is the hidden representation of token a:

simtree = cossim(zi,∑t j∈Tchild
ei jz j)

where Tchild = T ∖{ti}

ei j =
exp(zi ⋅z j)

∑tk∈Tchild
exp(zi ⋅zk)

(12)

Informally, we are taking the dot product of the root
of the subtree with all other tokens in the subtree,
softmaxing this dot product, using it to produce
a weighted sum of all hidden representations of
tokens in the subtree, and taking the cosine similar-
ity between this weighted sum and the root of the
subtree. The closer these tokens’ representations
are in the hidden space, the higher this similarity
measure will be. Again, SynCLM uses only the
last TLM layer for this objective, and this similar-
ity measure is used with Equation 10. Note that in
a preprocessing step, parses are modified so that
subword tokens are syntactic children of the head
token of the word they belong to.8

B English Experiments

Parsing Parsing results are given in Table 5. First
note that as before, there is little difference in
model quality across all the SynCLM conditions,
providing more evidence that the SynCLM losses
are not helpful for UD parsing. Next, as could be
expected, the model trained with 100M tokens that
is half the size of BERT-base performs best. What
is surprising, however, is that of the remaining 3
models, the model with the standard parser per-
forms best. Since all three of these variants are
alike in model hyperparameters, this must be ex-
plainable in terms of properties of the three datasets.
It could be that AMALGUM’s very deliberate con-
struction from eight genres in equal proportion
could have led to serendipitously good performance
on the parsing task, but it is impossible to know
without further experimentation.

At any rate, whatever the differences in these
three variants might be caused by that lies in the
data, we still have a firm answer for our most im-
portant question: for English UD parsing, SynCLM

8We have elided various implementation details here, such
as hyperparameters which control how many sample sets to
obtain per input sequence, or maximum token count for a
subtree. Please refer to our code or Zhang et al. (2022b)’s
code for these details.

and SLA methods appear not to be sensitive to data
quantity or parse quality. The latter might be sur-
prising, but it is worth remembering that the authors
of these methods designed their algorithms in ways
that may mitigate the deleterious effects of lower-
quality syntactic parses. SLA uses windowed syn-
tactic distance (cf. Equation 4 in Appendix A) for
the express purpose of accommodating bad parses,
and the SynCLM losses place low limits on tree
height, which would help in accommodating bad
parses since edges at the local, phrase level are
often more reliable than edges at the clausal or
inter-clausal level.

NER Results on NER are given in Table 6. Sur-
prisingly, the same half-sized BERT model that
was trained on 100M tokens and did best in the
parsing evaluation does very poorly in the NER
task. We suspect that this may be due to the fact
that larger models can show greater instability in
fine-tuning setups (Rogers et al., 2020). As with
parsing, we see that the -NP model performs best
among the MicroBERT-sized models, which we as-
cribe to differences in properties of the pretraining
datasets.

What is most interesting in the NER results is
that for the two low-data conditions, -NP and -HQP,
we see about a 1% gain in the -MPT condition rel-
ative to the MLM-only baseline. This gain is not
seen in the higher-data conditions, where none of
the SynCLM combinations lead to a better model
except for µB-MPT-BD, with a gain of 0.45% F1.
Complicating this picture, though, is that in the
low-data settings, the -MP and -MT variants often
underperform relative to the baseline. Still, these
results seem to indicate at least that the SynCLM
loss functions may be less effective in improving
model quality as quantity of pretraining data in-
creases. We can see that this holds both for the
half-sized BERT model as well as the MicroBERT-
sized model, indicating that model size does not
matter.

Discussion Returning to RQ3, these results in-
dicate that SynCLM and SLA are not especially
sensitive to parse quality, and are also not sensitive
to model size, but are sensitive to quantity of pre-
training data. As discussed above, the insensitivity
to parse quality is understandable, as the dimen-
sions in which a parse may be bad are less relevant
for these methods because of the way they use the
parse trees. The sensitivity to pretraining data quan-
tity is intuitive if we consider these two methods as
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Model -NP -HQP -BD -BD-BM Avg.
µB-M 86.79 85.60 85.81 87.83 86.51
µB-MP 86.89 85.36 85.91 87.73 86.47
µB-MT 86.51 85.83 85.93 87.10 86.34
µB-MPT 86.57 85.39 85.83 86.99 86.19
µB-MPT-SLA 86.61 85.42 85.62 86.53 86.05
Avg. 86.67 85.52 85.82 87.23

Table 5: Labeled attachment score (LAS) for English.

Model -NP -HQP -BD -BD-BM Avg.
µB-M 60.07 58.79 57.18 51.15 56.80
µB-MP 59.99 55.29 54.46 50.96 55.18
µB-MT 56.92 55.65 57.58 49.52 54.92
µB-MPT 61.54 59.32 55.63 49.98 56.62
µB-MPT-SLA 61.49 56.05 59.51 43.90 55.24
Avg. 60.00 57.02 56.87 49.10

Table 6: Span-based F1 score by language and model combination for NER evaluation.

sources of inductive bias: an inductive bias ought
to be pushing a model towards learning something
that they would have learned if there were more
training data available, and so we should expect
that if we consider a modification to be an induc-
tive bias, its influence should wane as the quantity
of data increases.

In sum, these findings support our conclusion
that SynCLM and SLA are at least in some respects
well-suited to aid the pretraining of TLMs in low-
resource settings, as we have found that even when
parse quality is worse than ideal, SynCLM and
SLA still perform about as well as when they have
the highest quality parses.

C Limitations

The goal of this paper is to make progress towards
more effective TLMs for low-resource languages
using syntactic inductive bias. We believe we have
presented compelling evidence that two approaches
to this problem seem not to be very effective for
low-resource languages. But it is important to point
out that we have tested the methods on only 5 lan-
guages. We believe that this forms an informa-
tive picture for low-resource languages in general
because these languages are quite different from
one another along typological and phylogenetic di-
mensions, but in principle, it is conceivable that
other low-resource languages could exhibit behav-
iors that are very different from the ones we have
seen in this paper. Moreover, we have had to re-
implement the methods at the center of this work,
and while we have done everything we can to as-
certain that these re-implementations have been
faithful and without error, tensor programming is
error-prone work, and it is not impossible that we

may have introduced a bug somewhere which criti-
cally affected the experimental results in this work.

D Other PrOnto Results

Proper Noun Subject
Model An. Grk. Coptic Uyghur Wolof
µB-M* 76.32 78.76 81.30 90.36
µB-MX* 81.11 80.78 78.45 90.36
MBERT 81.42 75.50 80.35 91.65
µB-M 79.88 79.22 80.35 80.15
µB-MP 79.72 79.38 80.82 77.97
µB-MT 79.57 75.66 81.14 77.72
µB-MPT 76.32 79.53 77.02 77.72
µB-MX 81.27 81.40 80.67 81.84
µB-MXP 78.79 78.91 79.71 79.42
µB-MXT 76.32 80.47 73.53 77.72
µB-MXPT 80.80 80.16 79.40 77.72

Table 7: Accuracy by language and model combination
for Proper Noun Subject in PrOnto. Scores for MBERT,
µB-M*, and µB-MX* are taken from Gessler (2023)—
the asterisk indicates that the latter two models are not
our implementation but the one provided in Gessler and
Zeldes (2022), which is reported in Gessler (2023).
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Sentence Mood
Model An. Grk. Coptic Uyghur Wolof
µB-M* 90.18 89.75 89.96 90.36
µB-MX* 91.56 89.75 90.10 90.36
MBERT 91.70 91.55 91.23 91.65
µB-M 91.98 91.69 91.51 90.36
µB-MP 90.73 91.97 91.23 89.72
µB-MT 90.59 90.30 89.25 90.36
µB-MPT 90.73 90.30 89.96 90.36
µB-MX 90.59 92.24 91.80 90.58
µB-MXP 91.56 91.97 90.81 90.58
µB-MXT 91.42 90.03 89.96 90.36
µB-MXPT 90.73 90.03 89.96 90.36

Table 8: Accuracy by language and model combination
for Sentence Mood in PrOnto. Scores for MBERT, µB-
M*, and µB-MX* are taken from Gessler (2023)—the
asterisk indicates that the latter two models are not our
implementation but the one provided in Gessler and
Zeldes (2022), which is reported in Gessler (2023).

Same Argument Count
Model An. Grk. Coptic Uyghur Wolof
µB-M* 61.80 62.70 61.78 61.05
µB-MX* 61.71 61.58 62.12 63.46
MBERT 50.87 51.24 50.78 54.46
µB-M 59.72 56.94 59.23 56.65
µB-MP 58.57 57.61 59.99 58.38
µB-MT 58.44 57.26 59.43 56.10
µB-MPT 53.13 56.01 59.56 56.32
µB-MX 57.06 55.92 60.10 56.05
µB-MXP 58.60 56.18 59.87 56.21
µB-MXT 58.03 56.47 59.67 56.69
µB-MXPT 58.36 58.01 57.88 57.54

Table 9: Accuracy by language and model combination
for Same Argument Count in PrOnto. Scores for MBERT,
µB-M*, and µB-MX* are taken from Gessler (2023)—
the asterisk indicates that the latter two models are not
our implementation but the one provided in Gessler and
Zeldes (2022), which is reported in Gessler (2023).


