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Abstract

NLP models have progressed drastically in re-
cent years, according to numerous datasets pro-
posed to evaluate performance. Questions re-
main, however, about how particular dataset
design choices may impact the conclusions we
draw about model capabilities. In this work,
we investigate this question in the domain of
compositional generalization. We examine the
performance of six modeling approaches across
4 datasets, split according to 8 compositional
splitting strategies, ranking models by 18 com-
positional generalization splits in total. Our
results show that: i) the datasets, although all
designed to evaluate compositional generaliza-
tion, rank modeling approaches differently; ii)
datasets generated by humans align better with
each other than they with synthetic datasets, or
than synthetic datasets among themselves; iii)
generally, whether datasets are sampled from
the same source is more predictive of the re-
sulting model ranking than whether they main-
tain the same interpretation of compositional-
ity; and iv) which lexical items are used in the
data can strongly impact conclusions. Over-
all, our results demonstrate that much work
remains to be done when it comes to assess-
ing whether popular evaluation datasets mea-
sure what they intend to measure, and suggests
that elucidating more rigorous standards for es-
tablishing the validity of evaluation sets could
benefit the field.1

1 Introduction

Over the past few years, NLP has made astonishing
progress on almost all language-related tasks pro-
posed by the community. Concurrently, a plethora
of benchmark datasets has emerged for evaluat-
ing the skills of NLP models and exposing their
strengths and weaknesses (Chowdhery et al. 2022,
inter alia). These datasets focus on a variety of

1Code to reproduce the experiments can be
found at https://github.com/facebookresearch/
CompositionalityValidity.
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Figure 1: Pairwise concurrence values averaged across
models for each dataset–split pair. Values closer to 1.0
(blue) denote a more similar ranking of models accord-
ing to their performance on the dataset and split. The
dataset and split font color indicate whether the data
was generated by humans (purple) or synthetically us-
ing rules (green).

different aspects of model capabilities, that are in-
creasingly not mutually exclusive: oftentimes, mul-
tiple benchmarks are available that target the same
capability or skill, using (slightly) different metrics,
design choices, and/or conceptual approaches. For
instance, Hupkes et al. (2023) report that many re-
cent studies on generalization used different shift
sources to study the same types of generalization
(see Figure 2).2

However, somewhat surprisingly, despite a
wealth of work in the domain of evaluation and
generalization, there is very little research that as-
sesses whether multiple datasets designed to mea-
sure the same ability also yield the same conclu-
sions. This makes it difficult for practitioners to
conduct informed evaluation dataset selection and,

2Plot generated using the visualisation tool on https://
genbench.org/visualisations.

https://github.com/facebookresearch/CompositionalityValidity
https://github.com/facebookresearch/CompositionalityValidity
https://genbench.org/visualisations
https://genbench.org/visualisations
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perhaps even more concerning, impedes our un-
derstanding of how well different datasets measure
what they intend to measure. While establishing
construct validity and construct reliability – for in-
stance through comparing the results of tests with
other tests that intend to measure the same thing –
is common practice in the social sciences (Westen
and Rosenthal, 2003; Jacobs and Wallach, 2021),
it is not the standard in the field of NLP.

In this work, we argue that establishing such stan-
dards is much needed in our field, and we present a
detailed set of experiments that assesses construct
validity in the domain of compositional generaliza-
tion. Following Liu et al. (2021), we use concur-
rence to measure the extent to which 8 different
compositional splitting strategies for 4 different
datasets – SCAN, GeoQuery, COGS, and Spider
– provide similar rankings for 6 different model-
ing approaches – BART, T5, Transformer, uni- and
biLSTMS, and Neural-BTG. We find that, in gen-
eral, the conclusions drawn from one dataset split
typically do not align with the results from another
dataset split. In a range of experiments, we explore
if that could be attributed to whether the underly-
ing data are synthetic or human-generated, to the
compositional splitting strategy is used to create
the data (a.k.a. what interpretation of composition-
ality), or to uncontrolled exposure to lexical items
that also occurred during pretraining.

We find that concurrence values are generally
low: only 10 out of 153 pairs of dataset splits have
a concurrence value that surpasses the threshold
for high concurrence. Furthermore, results from
human-authored datasets concur much more than
results from synthetic datasets. On the contrary,
dataset splits that share the same interpretation of
compositionality – as defined by their splitting strat-
egy – hardly concur with each other: the underlying
data plays a more important role in model rank-
ings. Lastly, aligned with the findings of Kim et al.
(2022), we find that carefully controlling the lexical
items in a compositional split has a positive impact
on concurrence. Overall, our results suggest that
much work remains to be done to evaluate com-
positional generalization, and more generally that
having more rigorous standards for establishing the
validity of evaluation sets should be prioritized in
the future.
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Figure 2: Generalization studies published in the ACL
anthology (2015-2022), across different shift sources.

2 Related Work

In this section, we provide an overview of datasets
commonly used for assessing compositional gen-
eralization, and we discuss previous attempts to
compare performance across benchmarks.

Datasets for Compositional Generalization
Since the introduction of SCAN in 2018 (Lake and
Baroni, 2018), many datasets have been proposed
to assess compositional generalization in neural
networks. Several of them were direct follow-
ups to SCAN that aimed to extend the original
dataset or mitigate various issues perceived with
it. For instance, Bastings et al. (2018) introduced
NACS, a ‘reversed’ version of SCAN; Loula et al.
(2018) introduced new splits using the original
dataset; Ruis et al. (2020) introduced a multimodal,
grounded version of the benchmark; and Patel et al.
(2022) increased the number of primitives. Re-
cently, Valvoda et al. (2022) proposed a transducer-
based procedure for generating myriad synthetic
datasets similar to SCAN to investigate which for-
mal properties impact the results. Other artificially
generated datasets available to evaluate compo-
sitionality are PCFG SET (Hupkes et al., 2020),
COGS (Kim and Linzen, 2020), and the dataset
proposed by Oren et al. (2021).

Datasets that use more natural (but often still
templated) data are typically situated in the domain
of machine translation – such as Li et al. (2021),
Dankers et al. (2022) and Raunak et al. (2019) –
or semantic parsing – e.g. Finegan-Dollak et al.
(2018); Keysers et al. (2019); Shaw et al. (2021);
Cui et al. (2022). Finally, Thrush et al. (2022)
introduce Winoground, aimed to assess composi-
tionality in text-to-image models. In our work, we
focus on datasets that target compositionality in the
domain of semantic parsing, with the addition of
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SCAN for its sheer popularity.

Performance across benchmarks Several re-
cent works across NLP have been interested in the
extent to which strong performance on one task,
setting, or dataset transfers to strong performance
on another. Typically, such experiments are moti-
vated by transfer learning, rather than establishing
the validity of evaluation results. For instance, Vu
et al. (2020), Ye et al. (2021), Luo et al. (2022),
Padmakumar et al. (2022), and Weber et al. (2021)
all investigate to what extent performance transfers
across tasks. More closely related to our study,
is the work presented by Liu et al. (2021), who
quantify the measurement of benchmark agreement
on model rankings and compare it in question an-
swering. In our work, we adopt their definition of
comparability across datasets.

In the context of compositional generalization,
the work most closely related to ours is the study
presented by Chaabouni et al. (2021), in which
they investigate whether the performance improve-
ments on the synthetic dataset SCAN transfer to
the naturalistic setting. We largely confirm their
results, but consider compositionality benchmarks
more broadly, not only considering the synthetic
v.s natural dimension, but also interpretations of
compositionality and lexical items exposed during
pretraining.

3 Methodology

We compare how the conclusions drawn from 18
different compositional generalization splits – de-
fined over 4 different datasets with 8 compositional
splitting strategies – compare across 6 modeling ap-
proaches. In this section, we describe the datasets
and modeling approaches we consider and provide
details on training and hyperparameter selection.

3.1 Models

For our experiments, we consider both pretrained
and train-from-scratch approaches that have previ-
ously been considered in the context of composi-
tional generalization.

BART & T5 We use the pretrained seq2seq mod-
els BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020) to enable easy comparison with prior work.
In the case of BART, order-based noising strategies
are used, which may encourage the model to learn
to better represent linguistic structure.

COGS Input: Mila liked that the cake was offered to Emma .
Output: * cake ( x _ 4 ) ; like . agent ( x _

1 , Mila ) AND like . ccomp ( x _ 1 ,
x _ 6 ) AND offer . theme ( x _ 6 , x
_ 4 ) AND offer . recipient ( x _ 6 ,
Emma )

SCAN Input: turn left after jump twice
Output: I_JUMP I_JUMP I_TURN_LEFT

GeoQuery Input: how much population does m0 have
Output: answer ( intersection ( river , loc_2

( m0 ) ) )

Spider Input: flight_1: what is the average distance and price
for all flights from la?

Output: select avg(distance) , avg(price)
from flight where origin = "los
angeles"

Table 1: Examples of instances in each dataset used in
our experiments.

LSTM & Transformer To ensure coverage of
models without pre-trained knowledge, we use a
uni-directional LSTM (Hochreiter and Schmidhu-
ber, 1997), a bi-directional LSTM, and a vanilla
transformer (Vaswani et al., 2017).

Neural-BTG We include one modeling approach
specifically designed to address compositionality:
Neural-BTG (Wang et al., 2022), composed of a
discriminative parser based on a bracketing trans-
duction grammar (BTG; Wu, 1997) and a neural
seq2seq model.

3.2 Data

We consider four different datasets designed to test
compositional generalization. We focus on datasets
for semantic parsing and include SCAN as the most
commonly used dataset for compositionality over-
all. Three of these datasets contain different curated
splits that target different interpretations of compo-
sitionality. Two of the datasets (SCAN and COGS)
are synthetic datasets that are generated with rules,
while the other two (Spider and GeoQuery) are nat-
ural datasets, authored by humans. Examples for
all datasets and descriptions of all curated splits
can be found in Appendix A.

SCAN Consisting of a set of commands and the
corresponding action sequences, SCAN (Lake and
Baroni, 2018) is one of the most popular synthetic
datasets to study compositional generalization. We
include the simple, length, add primitive, template
splits from Lake and Baroni (2018). In addition to
original SCAN splits, we also use the maximum
compound divergence (MCD) splits of SCAN pro-
posed by Keysers et al. (2020).
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COGS Kim and Linzen (2020) introduced
COGS, a synthetic semantic parsing dataset gen-
erated by a rule-based approach, which covers a
larger variety of grammar rules than SCAN does.
The inputs in COGS are English sentences, gener-
ated by a probabilistic context-free grammar. The
corresponding output, which is the semantic inter-
pretation of the input, is annotated with the logi-
cal formalism of Reddy et al. (2017). COGS in-
cludes a randomly sampled test set and an out-of-
distribution compositional generalization set.

GeoQuery GeoQuery (Tang and Mooney, 2001;
Zelle and Mooney, 1996) is a text-to-QL dataset
containing naturalistic examples. We use the four
compositional generalization splits defined on this
dataset by Shaw et al. (2021): random/standard,
length, template, and Target Maximum Compound
Divergence (TMCD).

Spider Spider (Yu et al., 2018) is originally de-
signed for cross-domain semantic parsing. We use
the compositional generalization splits for Spider
defined by Shaw et al. (2021), which match their
splits for GeoQuery: random/standard, length, tem-
plate, and TMCD.

3.3 Training Setup

We train/fine-tune the models on the train partition
of each dataset described above and evaluate them
on the corresponding test set. For T5 on GeoQuery
and Spider as well as LSTM and Transformers on
COGS, we use the hyperparameters provided in
Shaw et al. (2021) and Kim and Linzen (2020),
respectively. We followed Orhan (2021) to train T5
and Yao and Koller (2022) to train BART on COGS.
For the remaining model-dataset combinations, we
perform a hyperparameter search for each dataset,
with 10% of instances randomly chosen to be used
for tuning. Details can be found in Appendix C. We
use three different random seeds for each training
run and use five random seeds for each training run
of LSTM, to compensate for LSTM’s higher varia-
tion in performance across seeds. For models with
existing evaluations on a dataset, we compare to
these previous measures of performance to ensure
that our replication results align with previously
reported numbers (Keysers et al., 2020; Kim and
Linzen, 2020; Orhan, 2021; Shaw et al., 2021; Yao
and Koller, 2022; Sun et al., 2023b).

3.4 Evaluation
For most datasets, we use exact match (EM) ac-
curacy. EM is a binary metric that only counts
an output as correct if it matches the target out-
put exactly, and is most frequently used for the
datasets we consider. During initial experiments,
we found that, in many cases, EM accuracy may be
too strict for our purposes. In some cases, models’
tokenizers may prefer slightly different spacing – a
phenomenon also reported by Sun et al. (2023a) –
in others, models lack specific tokens in their vo-
cabulary. Neither of these things is indicative of
a model’s compositional generalization capability,
and we therefore choose to normalize model out-
puts before applying EM accuracy. In Appendix D,
we include examples of such cases, and we report
the differences between EM scores with and with-
out our normalization step. For Spider, the original
dataset also uses a more lenient EM implementa-
tion. For consistency reasons, we use the same
implementation across all datasets, but we report
Spider EM scores in Appendix E to compare with
previous work.

3.5 Measuring Concurrence
To measure how similarly different dataset splits
rank different modeling approaches, we use the
concept of concurrence introduced by Liu et al.
(2021). The concurrence between two dataset
splits is defined as the correlation between the per-
formances of different modeling approaches for
those splits. More specifically, the concurrence
CONCUR(D1, D2;A,Eval) between two dataset
splits D1 and D2, given a set of modeling ap-
proaches A and evaluation function Eval, is defined
as:

CONCUR(D1, D2;A,Eval) = CORR(P1, P2),

where CORR is some correlation function and Pi is
the variable that holds the scores of Eval(a,Di) for
all a ∈ A. For CORR, Liu et al. (2021) considered
both Pearson (r) and Kendall rank (τ ). Because we
are interested in how benchmarks rank model per-
formance, we report the concurrence values under
Kendall’s τ unless specified otherwise. We refer to
the concurrence between the dataset split and itself
as self-concurrence, the value of which is purely
affected by seed variation across training runs. We
see self-concurrence, which would be 1.0 if there
is no variation across seeds, as an upper bound for
the concurrence values across dataset splits.
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4 Results

We now present our results, starting with a discus-
sion of the performance of models on the datasets
(§4.1) and the concurrence scores between the per-
formances (§4.2), we then proceed to look at the
relationship between synthetic and natural compo-
sitionality datasets (§4.3), and how this interacts
with the choice of definition of compositionality
and underlying dataset (§4.4). We finish our results
section with a short investigation into the impact of
the choice of lexical items in data (§4.5).

4.1 Overall Performance
In Table 2, we show the performance of all models
on all dataset splits under consideration, as well as
the average performance per dataset split (last col-
umn). Our scores are generally close to the scores
reported in previous work, for the (dataset split,
architecture) combinations for which previous re-
sults exist (Sun et al., 2023b), with the exception of
the results for Spider, for which we use a different
metric. All models perform reasonably well on the
random splits of each datasets (first row for each
dataset in Table 2), but most struggle with various
generalization splits. While some splits are diffi-
cult across the board, other difficulties appear more
model-dependent. For instance, while all models
are weak on the length and MCD splits of SCAN
and length split of Spider, COGS is difficult for
some models (e.g., BTG) but much less for others
(e.g., T5). Similarly, some models perform well on
one of the datasets or one of the splits, but perform
poorly on the others. BART, for instance, maintains
high performance on GeoQuery and COGS, but
performs even worse than non-pretrained models
on some splits of SCAN, while BTG performs well
on GeoQuery but fails on many splits of SCAN.
T5 has high performance on most datasets, but is
outperformed by the unidirectional LSTM on the
length split of SCAN. SCAN, in particular, appears
to be challenging for all models, with the TurnLeft
split being the only exception.3

4.2 Overall Concurrence
It is not difficult to tell from Table 2 that the per-
formance of a model on one dataset is not predic-
tive of its performance on the others. To quantita-
tively substantiate this observation, we compute the

3While architectures exist that obtain high scores on SCAN,
such as the ones introduced by Shaw et al. (2021) and Kim
(2021), they are too narrowly scoped for our current study and
we thus do not consider them.

concurrences between the different dataset splits,
which we visualize in Figure 1. On average, the
concurrence between dataset splits is low: a mere
0.22, far below the average self-concurrence of
0.76 that (model, split) combinations have across
different seeds. Interestingly, even these average
self-concurrence values are lower than the 0.8 that
Liu et al. (2021) used as a threshold for “high”
concurrence, indicating that performance on the
same compositional dataset is not very stable across
runs.4 Consequently, we lower the threshold to 0.7
here, which is approximately 90% of the average
self-concurrence. Of the 153 pairs of dataset split
we compare in this experiment, only 10 pairs sur-
pass this threshold. Somewhat surprisingly, per-
haps, many of the highest values (reported in Ta-
ble 3), are concurrences between i.i.d. splits and
compositional splits.

Considering the concurrence of each dataset with
all other datasets (excluding self-concurrence, val-
ues are reported below Figure 1), we can see that
performance COGS, with an average τ of 0.36 is
most predictive of performance on other datasets.
Furthermore, the three semantic parsing datasets
have much higher average concurrence than SCAN,
suggesting that compositionality on one task may
not be predictive of compositionality on another.

4.3 Synthetic vs natural data

Why are these concurrence values so low? The first
hypothesis that we explore is that performance on
strongly structured templated data may not corre-
late with performance on datasets that are authored
by humans. To this end, we compute the aver-
age concurrence values of three combinations of
dataset split pairs, natural-natural, natural-synthetic
and synthetic-synthetic, and include an example
of each pair type in Figure 3. We find that splits
of natural datasets concur much better than splits
of synthetic datasets (0.54 v.s. 0.22); the worst is
concurrence between synthetic and natural dataset
splits (0.19). The same finding can be observed
in Figure 6, which we will use later to explore
the relationship between concurrence values and
performance in §4.6.

These results are in line with earlier studies that
suggested that performance on synthetic compo-
sitionality datasets may not transfer to more re-

4This finding is in line with results reported by Liska et al.
(2018), who find a range of different generalization perfor-
mances on a simple but highly compositional look-up table
task.
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Dataset Split LSTM Uni LSTM Bi Transformer T5 BART BTG Avg

COGS Std-Test 99.3 ±.0 99.1 ±.01 99.5 ±.0 99.7 ±.0 99.7 ±.0 68.8 ±.01 94.3
Std-Gen 21.3 ±.05 14.8 ±.08 56.1 ±.06 82.9 ±.0 78.6 ±.0 2.8 ±.01 42.8

SCAN

Simple 99.9 ±.0 99.9 ±.0 100.0 ±.0 94.9 ±.01 99.1 ±.01 12.3 ±.01 84.4
Jump 0.4 ±.01 0.0 ±.0 0.1 ±.0 95.0 ±.01 0.4 ±.01 0.0 ±.0 16.0
TurnLeft 61.1 ±.13 34.1 ±.06 64.8 ±.11 70.3 ±.12 63.1 ±.19 8.9 ±.01 50.4
Template 0.2 ±.0 0.3 ±.01 1.1 ±.0 34.3 ±.03 0.0 ±.0 0.9 ±.01 6.1
MCD1 5.9 ±.06 12.2 ±.07 1.1 ±.0 24.6 ±.01 0.4 ±.01 1.8 ±.01 7.7
MCD2 6.7 ±.03 5.8 ±.03 1.2 ±.0 34.1 ±.01 1.6 ±.0 0.5 ±.0 8.3
MCD3 8.7 ±.04 7.8 ±.02 0.7 ±.0 11.1 ±.01 1.2 ±.01 0.8 ±.01 5.0
Length 15.3 ±.04 11.8 ±.01 0.0 ±.0 14.1 ±.01 0.7 ±.01 0.0 ±.0 7.0

GeoQuery

Std 74.0 ±.06 78.9 ±.04 82.3 ±.02 92.5 ±.01 89.2 ±.01 79.0 ±.01 82.6
Template 46.5 ±.06 55.9 ±.07 56.7 ±.04 91.0 ±.0 77.1 ±.06 53.5 ±.06 63.5
TMCD 35.8 ±.02 37.1 ±.02 37.9 ±.01 54.1 ±.0 48.2 ±.0 36.9 ±.0 41.7
Length 18.5 ±.03 16.2 ±.02 22.0 ±.01 41.1 ±.01 36.1 ±.01 20.7 ±.02 25.8

Spider

Rand 33.4 ±.02 36.9 ±.01 42.5 ±.01 68.0 ±.0 32.7 ±.01 40.1 ±.01 42.3
Template 1.0 ±.0 2.2 ±.01 4.6 ±.0 39.6 ±.01 21.6 ±.01 1.9 ±.0 11.8
TMCD 4.6 ±.01 6.0 ±.01 7.5 ±.01 47.2 ±.01 31.2 ±.03 5.5 ±.0 17.0
Length 12.7 ±.01 14.0 ±.01 17.5 ±.01 35.4 ±.01 7.4 ±.0 14.0 ±.01 16.8

Table 2: Model exact-match accuracy on datasets averaged across random seeds, with standard deviation.

Dataset A Dataset B Split A Split B Concur

Spider Spider Template TMCD 0.88
GeoQuery Spider Std Template 0.84
GeoQuery Spider Std TMCD 0.83
SCAN Spider Template Rand 0.76
SCAN Spider Template Length 0.76
Spider Spider Rand Length 0.75
GeoQuery Spider Template Template 0.74
GeoQuery Spider Template TMCD 0.73
GeoQuery GeoQuery Std Template 0.73
SCAN SCAN Length MCD3 0.72

Table 3: High concurrence values (≥ 0.7) among all
pairs of dataset splits, excluding self-concurrence.

alistic scenarios (Chaabouni et al., 2021; Shaw
et al., 2021), and underline the point made by
Dankers et al. (2022), who argue that composi-
tionality should be studied in its natural habitat.
Also the concurrence between dataset splits with
naturalistic data is well below the threshold for
high concurrence, suggesting that there exist fac-
tors beyond dataset creation strategy that can affect
how compositionality benchmarks rank modeling
approaches.

4.4 Interpretations of compositionality

The next hypothesis that we consider is that concur-
rence values are low because different dataset splits
investigate different types of compositionality (cf.
Hupkes et al., 2020). In compositional evaluation
datasets, the interpretation of compositionality is
operationalized through its splitting strategy. One
splitting strategy may, for instance, define compo-
sitional generalization as generalization to longer
lengths, whereas another instead focuses on gener-
alization to novel vocabulary items. These differ-
ent interpretations of compositionality could poten-
tially require different model capabilities. Could
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Figure 3: Performance of one dataset split versus an-
other. Upper left is an example of high concurrence
pair between a synthetic and a natural dataset; upper
right is an example of low concurrence within synthetic
datasets; lower left is an example of high concurrence
within natural datasets; lower right is an example of low
concurrence between natural and synthetic datasets.

it be that our concurrence values are low because
different splits in fact focus on different types of
compositional generalization?

To investigate this, we group the concurrence val-
ues by four dataset pair types – different datasets
with the same splitting strategy, the same dataset
with different splitting strategies, different datasets
with different splitting strategies, and the same
dataset with the same splitting strategy – and plot
them in Figure 4. Predictably, datasets concur most
with themselves (red line). We also see that which
data a splitting approach is applied to is more im-
portant than the interpretation of compositionality
(cyan and dark blue lines, respectively): concur-
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Dataset A Dataset B Concur Dataset A Dataset B Concur

COGS GeoQuery 0.54 COGS SCAN 0.01
COGS Spider 0.26 SCAN Spider 0.01
GeoQuery Spider 0.23 GeoQuery SCAN - 0.09

Table 4: Concurrence between length splits of datasets.

rence between experiments that share the same
source of data averages at 0.38, whereas differ-
ent data but the same splitting strategy results in
an average concurrence of 0.32. However, when
both the source of data and splitting strategy are
different (yellow line), the concurrence values shift
leftward, suggesting that the data type and splitting
strategy pose different kinds of difficulties for the
modelling approaches considered.

Length Generalization Because not every
dataset in previous work applied all the splitting
strategies, we follow-up with a small experiment in
a split shared across all datasets: length generaliza-
tion splits.5 The concurrence values between the
different length splits, shown in Table 4, are gener-
ally low, ranging from −0.09 to 0.54 and averaging
at 0.16. This additional experiment confirms that
even when benchmarks maintain the same inter-
pretation of compositionality, there may still be
substantial differences in model rankings, depend-
ing on the underlying data.

4.5 The influence of lexical items

In Table 2, we can see that pretrained models
achieve the highest accuracies and in Table 3 that
the highest concurrence values are between two
natural datasets. In this section, we dive into the

5As the original COGS dataset did not come with a length
generalization split, we generate one ourselves.
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Figure 5: Performance of the original split versus the
splits with lexical items replaced. Performance of pre-
trained models decreases when train on the splits with
lexical items that are not previously seen in pretraining.

differences between pretrained and trained-from-
scratch models, and investigate the extent to which
those differences affect the concurrence results. In
particular, we investigate whether the presence of
uncontrolled lexical exposure during pretraining
may impact the performance of pretrained models,
implying their accuracy numbers may not solely re-
flect their compositional abilities, as suggested by
Kim et al. (2022). Were this to happen, a misalign-
ment in the evaluation between pretrained and non-
pretrained models would contribute to variation in
the concurrence values, where the performance of
pretrained models is overestimated due to lexical
exposure in pretraining.

To test for possible effects of lexical exposure,
we extend the experiment from Kim et al. (2022)
– who conducted it for COGS – to the TMCD and
Std split of GeoQueory, and the TurnLeft split of
SCAN6 In both cases, we swap out lexical items
with strings of similar length that act as “wug
words” (Berko, 1958), or, in other words, previ-
ously unattested and therefore meaningless lexical
items. Following Kim et al. (2022), we generate
the strings in two ways:

• Rstr: We randomly sample lowercase charac-
ters from the Latin script with replacements.

• Rcvcv: We alternately sample a vowel after a
consonant from the Latin script.

We train the models on all modified splits and com-
pute the performance (Figure 5). We also compute
the concurrence between the original split and the
modified split (Table 5a and Table 5b).

6In both these cases, particular lexical items are purpose-
fully left out of the training set, to be evaluated at test time.
If those lexical items were also present in the uncontrolled
pretraining corpus, this would thus break the test.



281

Dataset Split A Split B Concur

GeoQuery
Std Std-Rcvcv 0.69

Std-Rstr 0.54

TMCD TMCD-Rstr 0.65
TMCD-Rcvcv 0.63

COGS Std RandStr 0.60
Randcvcv 0.59

SCAN TurnLeft TurnLeftRcvcv 0.29
TurnLeftRStr 0.23

(a) Concurrence between the original split and lexically-
processed splits.

Dataset A Split A Dataset B Split B Concur

COGS Length GeoQuery TMCD-Rcvcv 0.84
GeoQuery Std-Rcvcv GeoQuery TMCD-Rcvcv 0.83
COGS Std GeoQuery TMCD-Rcvcv 0.82
GeoQuery TMCD-Rstr Spider Template 0.82
GeoQuery TMCD-Rcvcv Spider Template 0.81
COGS Length GeoQuery TMCD-Rstr 0.81
COGS Length GeoQuery Std-Rcvcv 0.8
GeoQuery Std-Rcvcv GeoQuery TMCD-Rstr 0.8
GeoQuery TMCD-Rstr Spider TMCD 0.79
GeoQuery TMCD-Rcvcv Spider TMCD 0.79
COGS Std GeoQuery Std-Rcvcv 0.78
GeoQuery Std GeoQuery TMCD-Rstr 0.77
GeoQuery Std GeoQuery TMCD-Rcvcv 0.75
COGS Std GeoQuery TMCD-Rstr 0.74
GeoQuery Template Spider TMCD 0.73
GeoQuery Std-Rcvcv Spider Template 0.73
COGS RandStr GeoQuery Std-Rstr 0.73
COGS Std GeoQuery Std-Rstr 0.72
GeoQuery Std-Rstr GeoQuery TMCD-Rcvcv 0.71
GeoQuery Std-Rcvcv Spider TMCD 0.71
COGS Randcvcv GeoQuery Std-Rstr 0.7

(b) High concurrence values after introducing lexically-
processed splits, excluding self-concurrence or concurrence
between lexically-processed splits that share the same origin.

Table 5: Performance and Concurrence between the
lexically-processed splits of datasets.

In Figure 5, we see that the performance of the
pretrained models drops drastically when the lex-
ical items are replaced, while the non-pretrained
models’ performance does not, confirming the re-
sults of Kim et al. (2022). In addition, the concur-
rence between the original splits and the modified
splits for all datasets is below our set threshold –
albeit higher than other comparisons we have seen
before (Table 5a) – implying that replacing lexical
items results in yet another new ranking of model-
ing approaches for compositionality.

We then compute the concurrence between the
same set of splits before and after the lexical ex-
posure edits: within the group of splits that are se-
lected for the lexical changes, the concurrence val-
ues decrease from 0.49 to 0.41, while the average
concurrence values of these splits with other splits
that haven’t undergone lexical edits slightly in-
crease from 0.25 to 0.26 (e.g. concurrence between
GeoQuery and Spider TMCD splits increases when
GeoQuery TMCD split applies the lexical changes),
with many more dataset split pairs surpassing the

τ = 0.7 bar for high concurrence (Table 5b).
A closer look explains this apparent contrast:

the overall low-concurring dataset SCAN – which
makes up 12.5% of the lexically edited splits, drags
down the concurrence values within that group.
Excluding SCAN, the within-group concurrence
values also increase, from 0.63 to 0.66. These
results do thus not only confirm that controlling
lexical exposure is important when evaluating com-
positionality in pretrained models, but also further
exemplify our earlier finding that compositionality
scores – for neural models – strongly depend task
and dataset. We further analyze the influence of
tasks to compositionality results in Appendix F.

4.6 Other confounding factors

We have explored a range of factors that may im-
pact the evaluation of compositionality, such as
the nature of the underlying data and task, the in-
terpretation of compositionality, and the choice of
lexical items. We wrap up our analysis by verifying
that our results are not driven by specific perfor-
mance scores: we verify that concurrence values
are not skewed by datasets for which performances
are saturated or close to random. To assess this,
we compute the correlation between the average
performance between two datasets and their con-
currence, as plotted in Figure 6. As can be seen,
there is no apparent relation between average per-
formance and concurrence: difficult datasets do not
concur less or more than easier ones, and dataset
saturation (or the opposite: random performance)
appears not to impact the results. A correlation test
confirms this visually observed pattern: the Pear-
son correlation coefficient between performance
and concurrence is near zero (r = 0.026).

5 Conclusion

In this paper, we explored how different evaluation
choices impact the conclusions drawn from the
experiments evaluating compositionality. Using
compositional generalization datasets and models
ranging from trained-from-scratch to pretrained,
we conduct a series of experiments to understand
whether datasets consistently rank models in terms
of their generalizability, and we find little consis-
tency. When we perform further analysis to try to
better understand this inconsistency, we find that
comparing within the training setting (pretrained
v.s. trained-from-scratch) or data creation type (syn-
thetically generated v. naturally generated) does
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Figure 6: Values of concurrences with respect to pair-
wise averaged performance among the splits shown in
Table 2. The color of dots indicates the type of split
pairs. The triangle-shape dots indicates the values of
self-concurrence.

not increase consistency. However, better control-
ling the lexical items can help us draw more con-
sistent conclusions, at least for datasets that share
the same notion of compositionality. We leave the
investigation into how task selection might affect
evaluation results for compositional generalization
to further research. Overall, our results suggest
that to evaluate compositional generalization con-
sistently, clearer definitions of compositionality are
needed, as well as more careful consideration of
evaluation design and more thorough dataset evalu-
ations.
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A Dataset examples

For convenience, we include a brief description
with examples of all datasets we consider in our
experiments in Table 6. The description of each
split and the number of instances in each dataset
split is shown in Table 7 and Table 8.

SCAN Consisting of a set of commands and the
corresponding action sequences, SCAN (Lake and
Baroni, 2018) is one of the most popular synthetic
datasets to study compositional generalization. The
model is given commands like jump left and is
expected to predict action sequences like LTURN
JUMP. We include the simple, length, add primi-
tive, template splits from Lake and Baroni (2018).
In addition to original SCAN splits, we also use
maximum compound divergence (MCD) splits of
SCAN proposed by Keysers et al. (2020).

COGS Kim and Linzen (2020) introduce COGS,
a synthetic semantic parsing dataset generated by a
rule-based approach, which covers a larger variety
of grammar rules than SCAN does. The inputs in
COGS are English sentences, generated by a prob-
abilistic context-free grammar. The corresponding
output, which is the semantic interpretation of the
input, is annotated with the logical formalism in
Reddy et al. (2017). COGS includes a randomly
sampled test set and an out-of-distribution compo-
sitional generalization set.

GeoQuery GeoQuery (Tang and Mooney, 2001;
Zelle and Mooney, 1996) is a text-to-QL dataset
containing naturalistic examples. We use the four
compositional generalization splits defined on this
dataset by Shaw et al. (2021): We use the splits
in Shaw et al. (2021), in which all entity mentions
are converted with placeholders and use Functional
Query Language (FunQL) as the target represen-
tation. random/standard, length, template, and
Target Maximum Compound Divergence (TMCD).
The TMCD split is an extension of MCD splits in
SCAN, with the capability to be applied to non-
synthetic datasets.

Spider Spider (Yu et al., 2018) is originally de-
signed for cross-domain semantic parsing, and tar-
gets a challenging kind of generalization, general-
ization to new database schemata, using different
databases for the training and test set. It also uses
SQL for a more complex syntax. We use the com-
positional generalization splits for Spider defined
by Shaw et al. (2021), which match their splits

for GeoQuery: random/standard, length, template,
and TMCD. In the same paper, Shaw et al. (2021)
split Spider into the same four splits as GeoQuery
and adopt a setting where databases are shared be-
tween train and test examples so that the dataset
splits can be dedicated to evaluating compositional
generalization.

B License of Artifacts

We include the licenses and intended usage of arti-
facts used in this work in Table 9.

C Hyperparameters

For the models and dataset combinations that have
already been trained by prior works, we adopt the
same set of hyperparameters. For the remaining
combinations, we tune the hyperparameters on a
random split of the original dataset, with 90% data
in the training set and 10% data in the test set. We
describe the final hyperparamters below.

For T5 with GEOQUERY and SPIDER, we fol-
low the same hyperparameter setup as Shaw et al.,
2021. For LSTM and Transformer with COGS, we
follow the same hyperparameter setup as in Kim
and Linzen, 2020. For T5 with COGS, we follow
the training strategy from (Orhan, 2021).

For other datasets, we tune the learning rate of
T5 and BART in [10−5, 10−4, 10−3]. We tune the
dropout rate in [0.0, 0.1, 0.5] and layers in [1, 2] for
LSTMs; dropout rate in [0.0, 0.1, 0.5] and layers
in [2, 4, 8] for Transformer. For BTG, we tune the
vocabulary size between 200 and 800, as well as
the learning rate in [1.0× 10−4, 3.0× 10−4].
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COGS Input: Mila liked that the cake was offered to Emma .
Output: * cake ( x _ 4 ) ; like . agent ( x _ 1 , Mila ) AND like . ccomp ( x _ 1 , x _ 6 ) AND offer . theme ( x

_ 6 , x _ 4 ) AND offer . recipient ( x _ 6 , Emma )

SCAN Input: turn left after jump twice
Output: I_JUMP I_JUMP I_TURN_LEFT

NACS Input: run thrice after jump around left
Output: I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_RUN I_RUN I_RUN

GeoQuery Input: how much population does m0 have
Output: answer ( intersection ( river , loc_2 ( m0 ) ) )

Spider Input: flight_1: what is the average distance and price for all flights from la?
Output: select avg(distance) , avg(price) from flight where origin = "los angeles"

Table 6: Examples of instances in each dataset used in our experiments.

Split Dataset Description

random/standard/simple COGS, SCAN, GeoQuery, Spider Split the dataset randomly.
length COGS, SCAN, GeoQuery, Spider Split the dataset according to the input length.
template SCAN, GeoQuery, Spider Split the dataset based on a given string template.
TurnLeft SCAN Compositional commands of TurnLeft are isolated in training set.
Jump SCAN Compositional commands of Jump are isolated in training set.
MCD SCAN Split according to maximum compound divergence.
TMCD GeoQuery, Spider Natural counterpart of MCD, split the data based on target MCD.

Gen COGS Not a splitting strategy, but a collection of specially generated samples
designed to test 21 cases of generalization in COGS.

Table 7: Summary of each split and their designated dataset we use.

D Evaluation: Variants of Exact Match
Accuracy

Dataset Split T5 BART BTG

COGS

Std-Test 99.7 0.0 0.0
Std-Gen 82.9 0.0 0.0
Rcvcv-Test 99.7 0.0 0.0
Rstr-Test 99.8 0.0 0.0
Rcvcv-Gen 50.0 0.0 0.0
Rstr-Gen 48.0 0.0 0.0
Length 37.9 0.0 0.0

Spider

Rand 60.1 26.2 32.4
Template 34.9 18.1 1.8
TMCD 38.3 23.5 4.9
Length 33.9 6.1 11.9

GeoQuery

Std 77.1 0.0 0.0
Std-Rcvcv 74.3 0.0 0.0
Std-Rstr 73.5 0.0 0.0
Template 76.5 0.0 0.0
Length 39.5 0.0 0.0
TMCD 40.7 0.0 0.0
TMCD-Rcvcv 31.6 0.0 0.0
TMCD-Rstr 31.4 0.0 0.0

Table 10: Percentage difference between raw EM imple-
mentation and EM implementation that ignore harmless
space (space-lenient EM - raw EM). SCAN and NACS
are omitted because models do not have this issue on
them. LSTMs do not display this issue; the difference
for Transformer is under 0.1% for each datset.

The most intuitive implementation of exact match
accuracy is directly comparing the output text
string with the gold sequence, without any post-
processing. However, we found this to be unnec-
essarily strict for some models, such as T5, which
does not have the “<" symbol, which appears in a

large number of instances, in the vocabulary and
required post-processing to replace the UNK to-
kens with “<". In addition, although the location of
space should not change the correctness of a pre-
diction for our evaluated datasets, often incorrect
spaces led to wrong evaluation when direct text
comparison is used. Table 11 shows an example of
such an instance. With the leniency on spaces, T5’s
exact match value changed from zero accuracy on
a whole dataset (COGS) to performing among the
best on all datasets (Table 10); this is likely due to
the tokenization of special tokens with space, as
noted in Sun et al. (2023a).

E Spider performance

Split LSTM
Uni

LSTM
Bi

Trans-
former T5 BART BTG

Rand 0.0 0.0 0.0 77.8 34.8 46.2
Template 1.4 2.7 3.2 52.5 25.5 3.5
TMCD 0.1 0.1 0.1 57.6 37.9 6.9
Length 0.9 0.6 0.3 44.4 9.0 16.5

Table 12: Model exact-match accuracy with Spider EM.
A large amount of output of LSTM and Transformer are
deemed as invalid SQL due to special tokens.

The official release of Spider (Yu et al., 2018) uses
a different variant of exact match accuracy, which
is more lenient than the version we used. We in-
clude a table of model performance on splits of
Spider, evaluated with the official Spider metric in
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Dataset Split Train Validation Test Overall

COGS

no_mod 24155 3000 3000 21000 51155
random_cvcv 24155 3000 3000 21000 51155
random_str 24155 3000 3000 21000 51155
length 24156 - 23999 - 48155

GeoQuery

standard 600 - 280 - 880
length 440 - 440 - 880
template 441 - 439 - 880
tmcd 440 - 440 - 880

SCAN

simple 16728 - 4182 - 20910
length 16990 - 3920 - 20910
mcd1 8365 1045 1045 - 10455
mcd2 8365 1045 1045 - 10455
mcd3 8365 1045 1045 - 10455
addprim_jump 14670 - 7706 - 22376
addprim_turn_left 21890 - 1208 - 23098
jump_random_cvcv 14670 - 7706 - 22376
jump_random_str 14670 - 7706 - 22376
turn_left_random_cvcv 21890 - 1208 - 23098
turn_left_random_str 21890 - 1208 - 23098

Spider

random 3282 - 1094 - 4376
length 3282 - 1094 - 4376
template 3280 - 1096 - 4376
tmcd 3282 - 1094 - 4376

Table 8: Number of instances for each dataset in each optimization split.

Artifact License Intended Usage

COGS MIT A dataset focuses on compositional generalization
SCAN BSD A dataset focuses on compositional generalization.
GeoQuery ODC-BY 1.0 license A database query datasets for U.S. geography.
Spider CC BY-SA 4.0 A cross-domain semantic parsing and text-to-SQL dataset.
NACS CC-NC A dataset focuses on compositional generalization.

Neural-BTG MIT A neural transducer for sequence-to-sequence tasks.
LSTM, Transformer
(OpenNMT-py (Klein et al., 2017)) MIT Models for sequence-to-sequence tasks.

T5 Apache-2.0 A pre-trained model for sequence-to-sequence tasks.
BART Apache-2.0 A pre-trained model for sequence-to-sequence tasks.

Table 9: License and intended usage for the artifacts we used.

Table 12.

F The influence of task similarity

As briefly mentioned in §4.5, task formulation can
be another factor that affects the agreement be-
tween datasets. To understand the effect of task
similarity on the conclusion obtained from com-
positionality benchmarks, we add in the NACS
dataset (Bastings et al., 2018) for existing experi-
ments, as all three datasets except for SCAN are
semantic parsing tasks, while SCAN falls under a
navigation task. NACS is introduced as a dataset
that is similar to SCAN but requires mapping ac-
tions back to the original commands, and it is thus
more complex for models compared to SCAN and
will not allow simple models to gain unintended
high performance. We train models on NACS with
the same hyperparameter tuning and training strat-
egy as in §3, compute the concurrence between
NACS and other datasets, and look at the effect
of different splitting strategy between SCAN and

NACS. The results are discussed below.

F.1 Overall Performance and Concurrence

The overall performance and concurrence includ-
ing NACS are shown in Table 15 and Figure 7. The
concurrence values between NACS and SCAN is
surprisingly low compared to the concurrence val-
ues between NACS and other datasets, with the
length split being the only exception, suggesting
that even when the underlying tasks are the same,
the datasets may provide very different model rank-
ings. In terms of the distribution of concurrence
values by type of data split pairs (Figure 8), the con-
clusion in §4.4 persists: the source of the dataset
matters more than the interpretation of composi-
tonality (splitting strategy).

F.2 Length Split of NACS

Out of the four splits of NACS, the length split
is the only split that results in a high concurrence
with tsplits of SCAN (Figure 7). The length split of
SCAN and NACS is also the only length splits pair
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Input: Zoe thought that a hippo cleaned .
Output: think . agent ( x _ 1 , Zoe ) AND think . ccomp ( x _ 1 , x _ 5 ) AND hippo ( x _ 4 ) AND clean . agent ( x _ 5 , x _ 4 )
Prediction: think. agent ( x _ 1, Zoe ) AND think. ccomp ( x _ 1, x _ 5 ) AND hippo ( x _ 4 ) AND clean. agent ( x _ 5, x _ 4 )

Table 11: Examples of instance where the model is only mistaken on the space.
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Figure 7: Distribution of concurrence values between
each dataset and split pairs.

Dataset A Dataset B Split A Split B Concur

Spider Spider Template TMCD 0.88
GeoQuery Spider Std Template 0.84
GeoQuery Spider Std TMCD 0.83
SCAN Spider Template Rand 0.76
SCAN Spider Template Length 0.76
Spider Spider Rand Length 0.75
GeoQuery Spider Template Template 0.74
SCAN NACS MCD2 Length 0.74
GeoQuery Spider Template TMCD 0.73
SCAN NACS Length Length 0.73
GeoQuery GeoQuery Std Template 0.73
SCAN SCAN Length MCD3 0.72

Table 13: High concurrence values (≥ 0.7) among all
pairs of dataset splits, excluding self-concurrence.

that exceed the boundary set for high concurrence
(Table 14). It is likely because that both length split
of NACS and the splits that it has high concurrence
with are extremely difficult split that many models
fail on.

G Performance and concurrence across
all setups

The performance of all models on all the curated
splits for each dataset is shown in Table 15. The
concurrence between all datasets and split pairs in
this work is shown in Figure 9 and the exact values
are included in Table 17.
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Figure 8: Distribution of concurrence values among all
dataset splits. The color of the bar indicates whether the
splits in the pair share the same dataset origin and/or the
same splitting strategy.

Dataset A Dataset B Concur Dataset A Dataset B Concur

SCAN NACS 0.73 GeoQuery NACS 0.08
COGS GeoQuery 0.54 Spider NACS 0.04
COGS Spider 0.26 SCAN Spider 0.01
COGS NACS 0.24 COGS SCAN 0.01
GeoQuery Spider 0.23 GeoQuery SCAN -0.09

Table 14: Concurrence between length splits of datasets.

H Mistakes that model make in both
random splits and generalization splits

The in-distribution performance may also be a con-
founder when at least one of the models does not
perform as well on an in-distribution test set, or in a
random split of the data. Qualitatively, we observe
that models sometimes make the same trivial mis-
takes in both a random split and a generalization
split, making the resulting raw metric unrepresen-
tative of compositionality. For example, BART
makes mistakes on parentheses, adding or drop-
ping them on both standard split and generaliza-
tion splits of GeoQuery (Table 18); BTG cannot
tell left from right in the simple split of SCAN,
and the same type of mistake continues to appear
in the template split. While simple mistakes like
these and the space tokenization issue mentioned
in Section 3.4 can be easily resolved by adopting
a post-processing protocol or rules to ignore when
computing EM, other types of less identifiable er-
rors may also be present and harder to patch. Since
many of the models do not achieve near-perfect per-
formance on the random splits, to what extent they
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Dataset Split LSTM Uni LSTM Bi Transformer T5 BART BTG Avg

COGS

Std-Test 99.3 ±.0 99.1 ±.01 99.5 ±.0 99.7 ±.0 99.7 ±.0 68.8 ±.01 94.3
Rcvcv-Test 99.4 ±.0 99.1 ±.0 99.5 ±.0 99.7 ±.0 99.7 ±.0 68.1 ±.0 94.2
Rstr-Test 99.4 ±.0 99.0 ±.01 99.6 ±.0 99.8 ±.0 99.7 ±.0 68.4 ±.0 94.3
Std-Gen 21.3 ±.05 14.8 ±.08 56.1 ±.06 82.9 ±.0 78.6 ±.0 2.8 ±.01 42.8
Rcvcv-Gen 22.6 ±.04 10.1 ±.02 57.6 ±.02 50.0 ±.02 44.5 ±.07 0.0 ±.0 30.8
Rstr-Gen 22.3 ±.07 14.7 ±.03 56.6 ±.03 48.0 ±.01 33.5 ±.03 0.0 ±.0 29.2
Length 20.7 ±.01 24.9 ±.01 28.7 ±.02 37.9 ±.0 34.1 ±.01 20.5 ±.0 27.8

SCAN

Simple 99.9 ±.0 99.9 ±.0 100.0 ±.0 94.9 ±.01 99.1 ±.01 12.3 ±.01 84.4
Jump 0.4 ±.01 0.0 ±.0 0.1 ±.0 95.0 ±.01 0.4 ±.01 0.0 ±.0 16.0
Template 0.2 ±.0 0.3 ±.01 1.1 ±.0 34.3 ±.03 0.0 ±.0 0.9 ±.01 6.1
MCD1 5.9 ±.06 12.2 ±.07 1.1 ±.0 24.6 ±.01 0.4 ±.01 1.8 ±.01 7.7
MCD2 6.7 ±.03 5.8 ±.03 1.2 ±.0 34.1 ±.01 1.6 ±.0 0.5 ±.0 8.3
MCD3 8.7 ±.04 7.8 ±.02 0.7 ±.0 11.1 ±.01 1.2 ±.01 0.8 ±.01 5.0
Length 15.3 ±.04 11.8 ±.01 0.0 ±.0 14.1 ±.01 0.7 ±.01 0.0 ±.0 7.0
TurnLeft 61.1 ±.13 34.1 ±.06 64.8 ±.11 70.3 ±.12 63.1 ±.19 8.9 ±.01 50.4
TurnLeftRcvcv 69.4 ±.14 42.8 ±.14 60.4 ±.12 20.0 ±.03 37.7 ±.15 3.5 ±.01 39.0
TurnLeftRStr 59.0 ±.18 43.5 ±.1 61.9 ±.1 17.7 ±.02 23.9 ±.17 2.4 ±.0 34.7

NACS

Simple 100.0 ±.0 100.0 ±.0 100.0 ±.0 94.6 ±.0 100.0 ±.0 6.1 ±.01 83.5
Jump 0.1 ±.0 0.2 ±.0 0.2 ±.0 95.8 ±.01 67.6 ±.04 0.0 ±.0 27.3
TurnLeft 63.3 ±.12 62.0 ±.13 54.4 ±.11 64.9 ±.04 82.4 ±.13 9.2 ±.01 56.0
Length 12.7 ±.02 13.2 ±.01 0.0 ±.0 14.3 ±.0 9.3 ±.02 0.0 ±.0 8.2

Spider

Rand 33.4 ±.02 36.9 ±.01 42.5 ±.01 68.0 ±.0 32.7 ±.01 40.1 ±.01 42.3
Template 1.0 ±.0 2.2 ±.01 4.6 ±.0 39.6 ±.01 21.6 ±.01 1.9 ±.0 11.8
TMCD 4.6 ±.01 6.0 ±.01 7.5 ±.01 47.2 ±.01 31.2 ±.03 5.5 ±.0 17.0
Length 12.7 ±.01 14.0 ±.01 17.5 ±.01 35.4 ±.01 7.4 ±.0 14.0 ±.01 16.8

GeoQuery

Std 74.0 ±.06 78.9 ±.04 82.3 ±.02 92.5 ±.01 89.2 ±.01 79.0 ±.01 82.6
Std-Rcvcv 76.7 ±.03 78.9 ±.02 80.5 ±.01 89.4 ±.0 84.2 ±.0 69.0 ±.03 79.8
Std-Rstr 77.1 ±.01 78.6 ±.02 82.7 ±.01 88.8 ±.01 79.9 ±.0 65.8 ±.01 78.8
Template 46.5 ±.06 55.9 ±.07 56.7 ±.04 91.0 ±.0 77.1 ±.06 53.5 ±.06 63.5
Length 18.5 ±.03 16.2 ±.02 22.0 ±.01 41.1 ±.01 36.1 ±.01 20.7 ±.02 25.8
TMCD 35.8 ±.02 37.1 ±.02 37.9 ±.01 54.1 ±.0 48.2 ±.0 36.9 ±.0 41.7
TMCD-Rcvcv 35.9 ±.01 36.7 ±.01 37.5 ±.0 43.3 ±.0 40.8 ±.01 34.3 ±.0 38.1
TMCD-Rstr 35.5 ±.01 37.7 ±.01 37.6 ±.0 43.1 ±.0 41.4 ±.0 35.3 ±.01 38.4

Table 15: Model exact-match accuracy on datasets averaged across random seeds, with standard deviation.

make the mistakes in the standard split again in the
generalization splits requires further research.

We also include a Genbench evaluation card
(Hupkes et al., 2023) in Table 19.

I Limitations

While we explore the consequences of the mod-
eling approach on concurrence, we have focused
mainly on models trained from scratch to perform
compositional generalization or pretrained models
which have been finetuned. Another possible area
of investigation would be to explore the extent to
which a model’s compositional generalization abil-
ities also transfer to in-context evaluations (Hos-
seini et al., 2022). We leave this question for future
work.
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Figure 9: Distribution of concurrence values between each dataset and split pairs.
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Dataset A Dataset B Split B Split A Concur Dataset A Dataset B Split A Split B Concur

Spider Spider TMCD Template 0.88 COGS GeoQuery RandStr TMCD-Rstr 0.54
COGS GeoQuery TMCD-Rcvcv Length 0.84 GeoQuery SCAN Std-Rstr TurnLeft 0.54
GeoQuery Spider Template Std 0.84 COGS SCAN Std TurnLeft 0.53
GeoQuery Spider Template TMCD-Rstr 0.84 COGS SCAN Randcvcv TurnLeft 0.52
GeoQuery GeoQuery TMCD-Rcvcv Std-Rcvcv 0.83 SCAN SCAN MCD1 MCD2 0.52
GeoQuery Spider TMCD Std 0.83 SCAN SCAN Length MCD1 0.52
COGS GeoQuery TMCD-Rcvcv Std 0.82 COGS GeoQuery Randcvcv TMCD-Rcvcv 0.51
COGS COGS RandStr Randcvcv 0.82 GeoQuery SCAN TMCD-Rcvcv TurnLeft 0.51
GeoQuery Spider Template TMCD-Rcvcv 0.81 SCAN SCAN MCD1 MCD3 0.51
COGS Spider Template Length 0.81 COGS SCAN Std Jump 0.5
GeoQuery Spider TMCD TMCD-Rstr 0.81 GeoQuery GeoQuery Std-Rstr Template 0.5
GeoQuery GeoQuery TMCD-Rstr TMCD-Rcvcv 0.81 GeoQuery SCAN TMCD-Rcvcv Jump 0.49
COGS GeoQuery TMCD-Rstr Length 0.8 COGS GeoQuery Randcvcv Std-Rcvcv 0.49
COGS GeoQuery Std-Rcvcv Length 0.8 GeoQuery GeoQuery Std-Rcvcv Length 0.48
COGS Spider TMCD Length 0.79 COGS Spider RandStr Template 0.47
GeoQuery Spider TMCD TMCD-Rcvcv 0.79 COGS SCAN RandStr TurnLeft 0.47
GeoQuery GeoQuery TMCD-Rstr Std 0.79 COGS COGS Randcvcv Length 0.47
GeoQuery GeoQuery TMCD-Rstr Std-Rcvcv 0.78 GeoQuery GeoQuery Std-Rstr TMCD 0.46
COGS GeoQuery Std-Rcvcv Std 0.78 COGS GeoQuery Randcvcv TMCD-Rstr 0.46
COGS COGS Length Std 0.76 COGS Spider RandStr TMCD 0.46
SCAN Spider Rand Template 0.76 GeoQuery GeoQuery Std-Rstr Length 0.44
SCAN Spider Length Template 0.76 GeoQuery SCAN Std-Rcvcv TurnLeft 0.43
COGS GeoQuery Std Length 0.75 COGS SCAN Length Jump 0.43
GeoQuery GeoQuery TMCD-Rcvcv Std 0.75 GeoQuery SCAN Std-Rcvcv Jump 0.42
Spider Spider Length Rand 0.75 COGS GeoQuery RandStr Std 0.42
GeoQuery Spider Template Template 0.74 COGS SCAN Randcvcv Jump 0.41
GeoQuery Spider TMCD Template 0.73 GeoQuery SCAN TMCD-Rstr TurnLeft 0.41
GeoQuery Spider Template Std-Rcvcv 0.73 COGS SCAN Length TurnLeft 0.41
GeoQuery GeoQuery Template Std 0.73 COGS SCAN RandStr Jump 0.41
COGS GeoQuery Std-Rstr RandStr 0.73 COGS GeoQuery RandStr Template 0.4
COGS GeoQuery TMCD-Rstr Std 0.72 GeoQuery SCAN TMCD-Rstr Jump 0.4
SCAN SCAN MCD3 Length 0.72 SCAN Spider Jump Length 0.4
COGS GeoQuery Std-Rstr Std 0.72 SCAN SCAN Jump TurnLeft 0.4
GeoQuery GeoQuery TMCD-Rcvcv Std-Rstr 0.71 COGS Spider Randcvcv Template 0.39
GeoQuery Spider TMCD Std-Rcvcv 0.71 GeoQuery SCAN Length Jump 0.39
COGS GeoQuery Std-Rstr Randcvcv 0.7 SCAN SCAN Jump Template 0.39
GeoQuery GeoQuery TMCD-Rstr Template 0.7 SCAN Spider Jump Template 0.39
COGS Spider Template Std 0.69 SCAN Spider Jump Rand 0.38
GeoQuery GeoQuery Std-Rcvcv Std 0.69 SCAN Spider Jump TMCD 0.38
SCAN SCAN TurnLeftRStr Simple 0.68 COGS Spider Randcvcv TMCD 0.38
GeoQuery GeoQuery Std-Rstr Std-Rcvcv 0.68 GeoQuery SCAN Std-Rcvcv MCD2 0.37
GeoQuery Spider Template TMCD 0.68 Spider Spider Rand TMCD 0.36
GeoQuery Spider TMCD TMCD 0.68 GeoQuery SCAN TMCD-Rstr MCD2 0.36
SCAN SCAN TurnLeftRcvcv Simple 0.68 GeoQuery Spider Length Rand 0.35
GeoQuery GeoQuery TMCD Std 0.68 GeoQuery SCAN TMCD-Rcvcv MCD2 0.35
COGS Spider TMCD Std 0.67 Spider Spider Rand Template 0.35
COGS GeoQuery Std-Rstr Length 0.67 GeoQuery SCAN Length Template 0.35
COGS GeoQuery Template Length 0.67 GeoQuery SCAN Std Jump 0.35
GeoQuery GeoQuery TMCD-Rcvcv Template 0.66 GeoQuery Spider Std Rand 0.35
GeoQuery GeoQuery TMCD Template 0.65 SCAN SCAN MCD2 Jump 0.35
GeoQuery GeoQuery TMCD-Rstr TMCD 0.65 COGS GeoQuery RandStr TMCD 0.34
GeoQuery GeoQuery TMCD-Rstr Std-Rstr 0.65 Spider Spider Length TMCD 0.34
SCAN SCAN MCD2 Length 0.64 Spider Spider Length Template 0.34
SCAN SCAN TurnLeftRStr TurnLeftRcvcv 0.64 COGS GeoQuery Randcvcv Std 0.34
COGS GeoQuery Std Std 0.64 SCAN Spider TurnLeft Template 0.34
GeoQuery Spider TMCD Length 0.63 COGS GeoQuery Randcvcv Length 0.34
GeoQuery GeoQuery TMCD Length 0.63 GeoQuery SCAN TMCD Jump 0.33
GeoQuery GeoQuery TMCD-Rcvcv TMCD 0.63 COGS SCAN Std MCD2 0.33
COGS GeoQuery TMCD Length 0.63 COGS GeoQuery Randcvcv Template 0.33
GeoQuery Spider Template Length 0.63 COGS GeoQuery RandStr Length 0.32
GeoQuery GeoQuery Length Std 0.62 SCAN Spider TurnLeft TMCD 0.32
GeoQuery GeoQuery Template Length 0.62 GeoQuery Spider Std Length 0.32
GeoQuery GeoQuery Template Std-Rcvcv 0.62 SCAN Spider Template TMCD 0.32
GeoQuery Spider Template Std-Rstr 0.6 SCAN Spider MCD1 Length 0.31
COGS COGS RandStr Std 0.6 GeoQuery Spider Template Rand 0.31
GeoQuery GeoQuery TMCD Std-Rcvcv 0.6 GeoQuery SCAN Template Jump 0.31
COGS COGS Randcvcv Std 0.59 GeoQuery Spider TMCD Rand 0.31
GeoQuery Spider TMCD Std-Rstr 0.58 SCAN Spider Template Template 0.31
GeoQuery GeoQuery TMCD-Rcvcv Length 0.57 GeoQuery SCAN Std Template 0.3
COGS GeoQuery TMCD-Rcvcv RandStr 0.57 GeoQuery Spider Std-Rstr Rand 0.3
SCAN SCAN MCD3 MCD2 0.57 COGS SCAN Randcvcv TurnLeftRStr 0.29
COGS GeoQuery Length Std 0.56 SCAN SCAN TurnLeft TurnLeftRcvcv 0.29
COGS GeoQuery TMCD Std 0.56 GeoQuery SCAN Template Template 0.28
COGS GeoQuery Template Std 0.56 SCAN SCAN MCD2 TurnLeft 0.28
COGS GeoQuery Std-Rcvcv RandStr 0.56 COGS GeoQuery Randcvcv TMCD 0.28
GeoQuery GeoQuery TMCD-Rstr Length 0.55 GeoQuery SCAN Std TurnLeft 0.28
COGS COGS Length RandStr 0.55 COGS SCAN Length MCD2 0.28
GeoQuery SCAN Jump Std-Rstr 0.54 GeoQuery SCAN Length TurnLeft 0.28
COGS GeoQuery Length Length 0.54 GeoQuery SCAN TMCD Template 0.28
GeoQuery GeoQuery Std-Rstr Std 0.54 GeoQuery Spider Std-Rstr Length 0.27

Table 16: Concurrence Values.
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Dataset A Dataset B Split A Split B Concur Dataset A Dataset B Split A Split B Concur

COGS Spider Length Rand 0.27 SCAN SCAN Jump TurnLeftRcvcv 0.02
GeoQuery SCAN Std-Rstr Template 0.27 COGS SCAN Std MCD1 0.02
GeoQuery SCAN Std-Rstr MCD2 0.27 SCAN Spider MCD3 Length 0.02
COGS SCAN RandStr TurnLeftRStr 0.27 COGS SCAN Length MCD3 0.02
COGS Spider Length Length 0.26 GeoQuery SCAN TMCD-Rcvcv TurnLeftRStr 0.02
SCAN SCAN Length TurnLeft 0.25 SCAN SCAN MCD1 TurnLeft 0.02
GeoQuery SCAN TMCD TurnLeft 0.24 SCAN Spider Length Length 0.01
GeoQuery Spider Template Length 0.24 COGS SCAN Length Length 0.01
COGS SCAN Randcvcv Simple 0.24 SCAN SCAN Simple MCD3 0.01
SCAN SCAN MCD1 Template 0.24 SCAN Spider Simple Length 0.01
SCAN SCAN TurnLeft TurnLeftRStr 0.23 SCAN SCAN TurnLeft Template 0.01
GeoQuery SCAN Template TurnLeft 0.23 SCAN SCAN Simple Jump 0.0
GeoQuery Spider TMCD Length 0.23 SCAN Spider TurnLeft Rand -0.0
GeoQuery Spider Length Length 0.23 COGS SCAN Randcvcv Length -0.01
GeoQuery Spider TMCD-Rcvcv Length 0.22 GeoQuery SCAN Std-Rcvcv TurnLeftRStr -0.01
SCAN SCAN Length Jump 0.22 GeoQuery SCAN Std MCD1 -0.02
COGS SCAN Length Template 0.22 SCAN Spider MCD1 Template -0.02
GeoQuery Spider TMCD-Rstr Length 0.22 GeoQuery SCAN TMCD MCD1 -0.02
GeoQuery Spider TMCD-Rcvcv Rand 0.22 COGS SCAN Std TurnLeftRcvcv -0.02
GeoQuery Spider TMCD-Rstr Rand 0.21 COGS SCAN RandStr MCD1 -0.02
COGS SCAN RandStr Simple 0.21 COGS SCAN Std Simple -0.03
SCAN SCAN MCD1 Jump 0.21 COGS SCAN Length TurnLeftRStr -0.03
SCAN Spider MCD2 Template 0.2 SCAN Spider TurnLeftRStr Length -0.03
GeoQuery SCAN Std MCD2 0.2 GeoQuery SCAN TMCD MCD3 -0.03
COGS SCAN RandStr TurnLeftRcvcv 0.2 SCAN Spider MCD1 TMCD -0.03
SCAN SCAN Simple TurnLeft 0.2 GeoQuery SCAN TMCD-Rcvcv Simple -0.04
SCAN Spider MCD1 Rand 0.19 GeoQuery SCAN Template MCD3 -0.04
SCAN Spider MCD2 TMCD 0.19 GeoQuery SCAN TMCD Length -0.04
GeoQuery Spider Std-Rcvcv Rand 0.18 COGS SCAN RandStr Length -0.04
GeoQuery SCAN TMCD-Rcvcv Template 0.18 SCAN SCAN MCD3 Template -0.05
COGS Spider RandStr Rand 0.18 GeoQuery SCAN TMCD-Rcvcv TurnLeftRcvcv -0.05
GeoQuery SCAN TMCD-Rstr Template 0.18 GeoQuery SCAN Std-Rcvcv Simple -0.06
SCAN SCAN MCD3 Jump 0.18 GeoQuery SCAN Std MCD3 -0.06
GeoQuery SCAN TMCD MCD2 0.18 SCAN Spider MCD3 Template -0.06
SCAN Spider MCD2 Length 0.18 COGS SCAN Randcvcv MCD3 -0.06
GeoQuery SCAN Template MCD2 0.17 GeoQuery SCAN TMCD-Rstr TurnLeftRStr -0.06
SCAN SCAN MCD3 TurnLeft 0.17 GeoQuery SCAN Template Length -0.06
COGS Spider Std Rand 0.17 COGS SCAN Length Simple -0.07
GeoQuery Spider Std-Rcvcv Length 0.17 SCAN SCAN Length Template -0.07
COGS Spider RandStr Length 0.15 SCAN Spider MCD3 TMCD -0.07
GeoQuery SCAN Std-Rstr TurnLeftRStr 0.15 GeoQuery SCAN Std Length -0.07
COGS SCAN RandStr MCD2 0.15 SCAN Spider Length Template -0.07
SCAN SCAN Length TurnLeftRcvcv 0.14 COGS SCAN RandStr MCD3 -0.07
COGS SCAN Std Length 0.14 GeoQuery SCAN Length MCD3 -0.08
COGS SCAN RandStr Template 0.14 SCAN Spider MCD3 Rand -0.08
COGS Spider Std Length 0.14 COGS SCAN Randcvcv MCD1 -0.09
GeoQuery SCAN TMCD-Rcvcv Length 0.14 GeoQuery SCAN Length Length -0.09
COGS SCAN Std Template 0.13 SCAN Spider Length TMCD -0.09
GeoQuery SCAN Std-Rcvcv Template 0.13 SCAN SCAN MCD1 TurnLeftRStr -0.09
COGS SCAN Randcvcv MCD2 0.13 SCAN Spider Length Rand -0.1
GeoQuery SCAN TMCD-Rstr Length 0.12 SCAN Spider TurnLeftRStr Template -0.11
SCAN SCAN Length TurnLeftRStr 0.12 GeoQuery SCAN Std-Rcvcv TurnLeftRcvcv -0.11
COGS SCAN Std MCD3 0.12 SCAN SCAN Simple MCD1 -0.11
GeoQuery SCAN Std-Rcvcv Length 0.12 SCAN Spider TurnLeftRStr TMCD -0.12
GeoQuery SCAN TMCD-Rstr MCD1 0.11 SCAN Spider Simple Rand -0.12
COGS Spider Randcvcv Rand 0.11 COGS SCAN Length TurnLeftRcvcv -0.12
GeoQuery SCAN TMCD-Rcvcv MCD3 0.11 GeoQuery SCAN TMCD-Rstr Simple -0.13
GeoQuery SCAN Std-Rcvcv MCD3 0.11 SCAN SCAN MCD1 TurnLeftRcvcv -0.13
GeoQuery SCAN TMCD-Rstr MCD3 0.11 SCAN SCAN Simple Template -0.13
GeoQuery SCAN Std-Rcvcv MCD1 0.1 SCAN Spider TurnLeftRStr Rand -0.14
GeoQuery SCAN Std-Rstr MCD1 0.1 GeoQuery SCAN TMCD-Rstr TurnLeftRcvcv -0.14
GeoQuery SCAN Std-Rstr Simple 0.09 SCAN Spider Simple Template -0.15
GeoQuery SCAN Std-Rstr Length 0.09 SCAN SCAN TurnLeftRStr Template -0.15
GeoQuery SCAN Std-Rstr TurnLeftRcvcv 0.08 SCAN Spider TurnLeftRcvcv Length -0.15
COGS SCAN Randcvcv Template 0.08 GeoQuery SCAN Std TurnLeftRStr -0.15
SCAN SCAN MCD2 TurnLeftRStr 0.08 SCAN Spider Simple TMCD -0.16
SCAN SCAN Simple Length 0.08 GeoQuery SCAN Length MCD1 -0.18
COGS Spider Randcvcv Length 0.07 GeoQuery SCAN Std Simple -0.19
SCAN SCAN MCD2 TurnLeftRcvcv 0.07 SCAN Spider TurnLeftRcvcv Template -0.2
SCAN SCAN MCD3 TurnLeftRcvcv 0.06 GeoQuery SCAN TMCD TurnLeftRStr -0.21
GeoQuery SCAN Length MCD2 0.06 GeoQuery SCAN Template TurnLeftRStr -0.21
SCAN SCAN Simple MCD2 0.05 SCAN Spider TurnLeftRcvcv TMCD -0.22
GeoQuery SCAN TMCD-Rcvcv MCD1 0.05 GeoQuery SCAN Length TurnLeftRStr -0.24
SCAN SCAN MCD3 TurnLeftRStr 0.05 GeoQuery SCAN Std TurnLeftRcvcv -0.25
SCAN SCAN Jump TurnLeftRStr 0.05 SCAN SCAN TurnLeftRcvcv Template -0.26
SCAN Spider MCD2 Rand 0.05 GeoQuery SCAN TMCD Simple -0.26
SCAN Spider TurnLeft Length 0.05 GeoQuery SCAN Template Simple -0.27
GeoQuery SCAN Std-Rstr MCD3 0.05 SCAN Spider TurnLeftRcvcv Rand -0.27
SCAN SCAN MCD2 Template 0.04 GeoQuery SCAN Length TurnLeftRcvcv -0.28
COGS SCAN Length MCD1 0.04 GeoQuery SCAN TMCD TurnLeftRcvcv -0.29
COGS SCAN Std TurnLeftRStr 0.03 GeoQuery SCAN Template TurnLeftRcvcv -0.3
GeoQuery SCAN Template MCD1 0.02 GeoQuery SCAN Length Simple -0.3

Table 17: Concurrence Values (Cont).
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Example 1. BART on GeoQuery standard and template
Input: what are the highest points of all the states
Output: answer ( highest ( intersection ( place , loc_2 ( state ) ) ) )
Prediction: answer ( highest ( intersection ( place , loc_2 ( state ) ) ) ) )
Input: what is the adjacent state of m0
Output: answer ( intersection ( state , next_to_2 ( m0 ) ) )
Prediction: answer ( intersection ( state , next_to_2 ( m0 ) ) ) )

Example 2. BTG on GeoQuery simple and TurnLeft
Input: run left thrice and look opposite right thrice
Output: TURN_LEFT RUN TURN_LEFT RUN TURN_LEFT RUN TURN_RIGHT TURN_RIGHT LOOK TURN_RIGHT TURN_RIGHT

LOOK TURN_RIGHT TURN_RIGHT I_LOOK
Prediction: TURN_LEFT RUN TURN_LEFT RUN TURN_LEFT RUN TURN_LEFT TURN_LEFT LOOK TURN_LEFT TURN_LEFT

LOOK TURN_LEFT TURN_LEFT LOOK
Input: look right after turn left
Output: TURN_LEFT TURN_RIGHT LOOK
Prediction: TURN_LEFT TURN_LEFT LOOK

Table 18: Examples of instance where the model makes both mistakes in random split and generalization split. The
first instance is the output of BART on standard split of GeoQuery, and the second entry is BART making a similar
mistake on template split of GeoQuery; the second instance is output of BTG on simple split of SCAN, and a similar
instance making the same directional mistake on the TurnLeft split.

Motivation
Practical Cognitive Intrinsic Fairness

□ △ ⃝ ⊙
Generalisation type

Compositional Structural Cross Task Cross Language Cross Domain Robustness
□ △ ⃝ ⊙

Shift type
Covariate Label Full Assumed
□ △ ⃝ ⊙

Shift source
Naturally occuring Partitioned natural Generated shift Fully generated

□ △ ⃝ ⊙

Shift locus
Train–test Finetune train–test Pretrain–train Pretrain–test

□ ⃝ △ ⊙

Table 19: A GenBench evaluation card (Hupkes et al., 2023) that summarizes our experiments. □= Experiments of
LSTM and Transformer on GeoQuery and Spider; △= Experiments of T5 and BART on GeoQuery and Spider; ⃝=
Experiments of LSTM and Transformer on COGS and SCAN; ⊙= Experiments of T5 and BART on COGS and
SCAN.


