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Abstract

Image–Text-Matching (ITM) is one of the de-
facto methods of learning generalized repre-
sentations from a large corpus in Vision and
Language (VL). However, due to the weak asso-
ciation between the web-collected image–text
pairs, models fail to show a fine-grained under-
standing of the combined semantics of these
modalities. To address this issue we propose
Hard Negative Captions (HNC): an automat-
ically created dataset containing foiled hard
negative captions for ITM training towards
achieving fine-grained cross-modal comprehen-
sion in VL. Additionally, we provide a challeng-
ing manually-created test set for benchmark-
ing models on a fine-grained cross-modal mis-
match task with varying levels of compositional
complexity. Our results show the effectiveness
of training on HNC by improving the models’
zero-shot capabilities in detecting mismatches
on diagnostic tasks and performing robustly
under noisy visual input scenarios. Also, we
demonstrate that HNC models yield a compara-
ble or better initialization for fine-tuning. Our
code and data are publicly available.1

1 Introduction

Pre-trained Vision and Language Models (VLMs)
(Su et al., 2020; Lu et al., 2019; Chen et al., 2020b;
Tan and Bansal, 2019), when fine-tuned on down-
stream tasks, show promising performance thanks
to their learned generalized information (or even
knowledge) (Zhang et al., 2019; Gan et al., 2020;
Hendricks and Nematzadeh, 2021). These models
are typically trained on a combination of several
datasets under self-supervised training objectives,
such as Image-Text-Matching (ITM), Masked Lan-
guage Modeling (MLM), and Masked Region Mod-
eling (MRM). ITM defines the objective of predict-
ing whether the textual and visual modalities entail

*These authors contributed equally to this work.
1https://github.com/DigitalPhonetics/hard-negative-

captions under MIT License.

one another. To learn this entailment, for already
weakly-associated image–caption pairs, the nega-
tive captions are typically sampled from mini-batch
training data which results in negative captions that
do not align with the image, i.e., the mismatch be-
tween the modalities can be detected easily since
the images and captions are semantically unrelated.
Consequently, the compositional understanding ca-
pabilities of VLMs are rather limited, e.g., they
tend to show weaknesses in correctly grounding
linguistic concepts in their visual counterparts (Bit-
ton et al., 2021; Keysers et al., 2020; Bogin et al.,
2021). These VLMs, when tested against foiled
inputs, fail against fine-grained mismatches in mul-
timodal data (vision and language) (Shekhar et al.,
2017a; Hendricks and Nematzadeh, 2021).

To address the aforementioned limitations we
focus on improving VLMs by automatically creat-
ing a dataset that enables learning from hard nega-
tive captions, i.e., negative captions that are mini-
mally contradictory to their corresponding images.
We state the hypothesis that such hard negative
captions increase the general comprehension capa-
bilities of pre-trained VLMs. We summarize our
contributions as follows:

1. We introduce Hard Negative Captions (HNC)
for ITM training with systematically created
hard negatives: 12 linguistically-motivated
types of captions2 that locally describe an im-
age with their hard negative counterparts that
are minimally contradictory to the given im-
age.

2. To the best of our knowledge, we are the
first to leverage scene graph information
(Krishna et al., 2017) for automatically creat-
ing hard negative captions (fine-grained mis-
aligned image–text pairs) for ITM training.
This enables us to control (1) the seman-

2Our code allows everyone to easily add new caption types.
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Figure 1: An illustration of our caption generation procedure. For each scene graph (that belongs to exactly one
image) we run through this pipeline to generate hard negative captions. Details on the modules marked with Roman
letters (I, II, and II) can be found in Sec. 3.

tics of the hard negatives with multiple mis-
match types, and (2) the level of composi-
tional complexity in fine-grained mismatches.
Our method is resource-lean in constructing
the hard negatives, and flexible in that it can
be extended to other phenomena which is nec-
essary for this fast-developing Vision and Lan-
guage (VL) research field.

3. We propose a challenging human-annotated
test set to benchmark VL models’ capabilities
on several skills and levels of compositional
understanding.

4. We perform an extensive study across vari-
ous tasks and show models’ improvement in
fine-grained cross-modal comprehension in
zero-shot settings. Additionally, we show that
models further trained on Hard Negative Cap-
tions (HNC) can serve as a better initialization
point for downstream task fine-tuning.

2 Related Work

Probing VLMs for fine-grained visual ground-
ing Several works revealed shortfalls in visual
grounding capabilities of VLMs at various lev-
els by creating foiled visual descriptions in which
they alter the nouns (Shekhar et al., 2017c),
words belonging to other Part-of-Speech (PoS)
tags such as adjectives or adverbs (Shekhar et al.,
2017b), S(ubject)–V(erb)–O(object) triples (Hen-
dricks and Nematzadeh, 2021), person entities
(Park et al., 2022). These studies collectively sug-
gest that VLMs struggle with fine-grained image–
caption matching. Moreover, several works stud-
ied the compositional understanding of VLMs in

visual grounding. Thrush et al. (2022) propose
Winoground to evaluate visual grounding robust-
ness using captions with the same set of words
but different syntactic structures. Their findings
suggest that VLMs exhibit bag-of-words behavior
(Diwan et al., 2022). Bogin et al. (2021) intro-
duce COmpositional Visual Reasoning (COVR)
to examine models’ compositional generalization
on unseen logical operations, e.g., quantifiers or
aggregations, and conclude that reasoning over
complex structures remains challenging. While
above works aim to create probing datasets to iden-
tify VLMs’ potential shortfalls in visual grounding,
our research goal goes beyond that: we propose a
creation method for large-scale ITM datasets, use-
ful for further pretraining (or fine-tuning) models
towards fine-grained cross-modal comprehension
abilities.

Addressing shortfalls in fine-grained visual
grounding capabilities of VLMs Given that
VLMs are usually pre-trained with web-crawled
weakly-aligned image–caption pairs, e.g., Concep-
tual Captions (Sharma et al., 2018), their ability
to address cross-modal misalignments is question-
able. The aforementioned empirical probes support
this claim and suggest that VLMs tend to suffer
from overprediction in that they consider a some-
what related image–caption pair to be associated.
Previous works address this issue as a part of the
training strategy (Liu and Ye, 2019; Zhou et al.,
2020; Chen et al., 2020a, 2022), the model archi-
tecture (Messina et al., 2021; Zhang et al., 2022), or
by augmenting training data (Shekhar et al., 2017c;
Faghri et al., 2018; Gupta et al., 2020). We con-
tribute to the last line of research and propose to
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augment hard negative captions for ITM training
by leveraging scene graphs towards achieving a
fine-grained VL comprehension.

3 HNC: Hard Negative Captions

We use the structural information provided by
scene graphs (Krishna et al., 2017) to automatically
generate hard negative image–text pairs with var-
ious caption types. We leverage the ground-truth
scene graphs provided by the GQA (Hudson and
Manning, 2019) dataset, which contains a total of
+80K images paired with scene graphs in the train-
ing and validation set.

We define a positive caption as a textual descrip-
tion that locally describes an image, i.e., the cap-
tion describes a part of the image and does not
aim to provide an exhaustive description of the
entire scene. A hard negative caption, in turn, is
minimally contradictory to the image and is ob-
tained by altering a piece of information in the
corresponding positive caption, i.e., without that
minimal change, it would be a positive caption.

3.1 Automatic Caption Generation

Given an image, we first extract structured informa-
tion from its corresponding scene graph and use it
to create caption pairs for each of the caption types
which can be found in Figure 2. In the caption gen-
eration process, we apply the following procedure:
1) Check whether the information allows construct-
ing the particular caption type. If yes, 2) instantiate
a positive caption with the pre-defined caption tem-
plate. 3) Instantiate a negative caption using the
same template by replacing a piece of information
in the positive caption. We provide an illustration
of our workflow in Figure 1.

Ambiguity (I) We apply a set of heuristics that
filter out potentially ambiguous captions (see A.2
for details). These heuristics prevent generating
captions that refer to: a) multiple instances of the
same object class, e.g., the sheep that is to the
right of the sheep; b) relations between body parts,
e.g., the ear is to the left of the nose; c) relations be-
tween objects with one of them typically covering
a large area in the scene, e.g., the grass is to the left
of the ball. Note that these heuristics are applied to
both the positive and the negative captions.

Plausible negative value sampling (II) There
are several ways to sample a negative value as the
foiled piece of information. We introduce the set-

ting used in our experiments in the following and
discuss the other options in A.2. An ideal foiled
hard negative caption is visually challenging, sensi-
ble, and semantically similar to the positive caption.
To ensure that the negative caption is visually chal-
lenging, we sample a negative value from within
the scene, i.e., the candidate values are extracted
from the same scene graph. Ensuring that the nega-
tive caption is sensible and at the same time seman-
tically similar to the positive one is more challeng-
ing. For this, we need to satisfy two conditions: a)
A negative value must be valid in terms of semantic
class constraints, i.e., we cannot replace apple by
table in The girl is eating an apple. b) Concept
co-occurrence distributions in the negative and the
positive captions should be similar to avoid spuri-
ous correlations. To achieve sensibility, we create
look-up tables that help us define which candidates
are valid for a given word. We then sample a neg-
ative value from these valid candidates following
the distribution of the positive captions. The can-
didates are further filtered to avoid potential noisy
replacements which we discuss in the following.

Noisy negative values (III) To minimize poten-
tial issues caused by partial or incomplete scene
graphs (Chang et al., 2023), we employ a set of
heuristics designed to detect missing spatial rela-
tions between a pair of objects in a scene. We
achieve this by leveraging the bounding-box val-
ues of the objects obtained from the ground truth
scene graphs. Given a spatial relation between two
entities annotated in a ground-truth scene graph;
when replacing an entity or the relation with an-
other value to create the negative caption, if this
relation between the entities is not encoded in the
scene graph, we check the bounding-box annota-
tions to see if there does exist this spatial relation
between the entities. If this is the case, we remove
the value from the set of valid candidates3.

3.2 Caption Types
We design 12 caption types grouped into 5 cate-
gories, illustrated in Figure 2 (together with the
construction templates, an image, and examples):
1) attribute-based, 2) relation-based, 3) counting-
based, 4) existence-based, and 5) reasoning-based.
The first three of these categories focus on either
an object, an attribute, or a relation, while the ex-
istence and the reasoning-based types are some
combinations of all other types.

3Details are given in A.2.
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(a)

Caption Type Template Example

attribute The (obj) is/are (attr). The bowl is teal (white).
attribute_relation The (attr) (subj) is/are {pred} the {obj}. The black and white (gray) cat is on the table.

relation The (subj) is/are (pred) the (obj). The bowl is to the left of (to the right of ) the cat.
relation_attribute The {attr} (subj) is/are (pred) the {attr} (obj). The jars are to the left of the white door (table).

object_count There are (n) {obj}. There are two (three) jars.

object_compare_count There are (fewer/more/as many)
{obj1} than/as {obj2}.

There are more (fewer) apples than jars.

verify_object_attribute There is (no/at least one) {obj} that is {attr}. There is no (at least one) table that is plastic.

verify_object_relation There is (no/at least one) {subj}
that is {pred} the {obj}.

There is at least one (no) cat that is
to the right of the bowl.

AND_logic_attribute There is/are both (attr1) {obj1} and (attr2) {obj2}. There are both a white (metal) door and a teal bowl.

AND_logic_relation There are both (subj1) (pred1) the
(obj1) and (subj2) (pred2) the (obj2).

There are both apples in the bowl and jars (coats)
to the left of the door.

XOR_logic_attribute There is/are either (attr1) {obj1} or (attr2) {obj2}. There is either a white door or a brown (teal) bowl.

XOR_logic_relation The {subj} is/are {pred} either
the (obj1) or the (obj2).

The cat is in front of either the door
or the apples (curtain).

(b)

Figure 2: (a) an illustration of one image and (b) exemplary captions based on the displayed caption type templates.

Attribute-based For attribute-based modality
mismatches, we design two templates: (a) at-
tribute, (b) attribute_relation. The former simply
requires models to verify whether the attribute of an
object is described correctly in the caption, while
the latter further challenges models’ understanding
of an object’s attribute in a relational subgraph.

Relation-based These caption types are designed
to detect a modality mismatch in relational sub-
graphs by foiling either the subject, the object, or
the predicate to create the negative caption. There
are two template types: (a) relation, (b) rela-
tion_attribute. The first one aims to harness a
model’s sensitivity towards modality mismatches
occurring in a relational subgraph. The second type
extends the previous one by adding (an) attribute(s)
to the entities in the relational subgraph, which
requires a model to reason compositionally.

Counting-based Two templates target counting-
based modality mismatches: (a) object_count
which refers to the number of objects of the
same class in the visual modality, and (b) ob-
ject_compare_count which compares the counts
of two object classes using comparative quanti-
fiers, i.e., fewer, more, as many as, without men-
tioning the actual counts.

Existence-based This type addresses the ex-
istence of an entity in the visual modality.
Two templates are provided for this: (a) ver-
ify_object_attribute grounds the entity in the
scene with the help of an adjective modifier, and
(b) verify_object_relation does so with the help
of its relation to another object in the scene.

Reasoning-based For our reasoning-based cap-
tions, we focus on the AND and XOR logic reason-

ing types. For each type we provide two templates,
one introduces a foiled attribute and the other in-
troduces a foil in the relational subgraph. These
hard negative captions are very complex, and the
captions contain a lot of information of which only
a small piece is incorrect. Thus, any shortcut in
reasoning should result in an incorrect prediction.

3.3 Dataset Statistics
We follow the official splits of the Visual Reason-
ing in the Real World (GQA) dataset (Hudson and
Manning, 2019) to generate captions. The train-
ing set contains 74, 942 images, the validation set
10, 696 images.

The statistics of the clean-strict variation of our
dataset (the debiased one according to our iterative
quality control explained in Section 7.1) is as fol-
lows: For the training set we create 242 captions
for each image on average, and for the validation
set 239 captions on average, resulting in a total of
16, 416, 392 for the training set and 2, 314, 832 for
the validation set. The average caption length is
10 tokens. Due to our automatic caption generation
procedure, we receive equal data distributions and
caption lengths for the training and validation splits.
Details are given in Table 12.

4 Human-annotated Challenge Set

As we rely on scene graphs and an automatic gener-
ation procedure to create our training and validation
data, we believe in the importance of providing a
quality test set ideally free from any noise intro-
duced by our automatic procedure. To this end, we
had 19 annotators4 to write down pairs of captions
for all caption types.

4All students of an international (under-)graduate program
with advanced English proficiency. We informed the par-
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VILBERT VISUALBERT

VOLTA FOIL HNCsubset HNCfull VOLTA FOIL HNCsubset HNCfull

attribute 44.1 52.5 57.5 78.2 45.0 51.0 65.7 77.7
attribute_rel 47.5 54.0 54.3 75.0 47.5 49.5 60.4 79.0
relation 46.2 54.7 55.0 62.8 47.3 52.2 56.1 65.7
relation_attr 47.0 54.4 55.4 66.4 47.0 52.8 61.0 67.0
obj_count 51.0 49.5 55.9 73.0 49.0 48.0 62.7 66.0
obj_comp_count 50.0 48.5 57.2 58.5 48.5 51.0 58.2 62.0
verify_obj_attr 49.0 50.5 52.1 76.0 49.0 50.0 57.6 75.0
verify_obj_rel 49.5 51.0 56.3 59.0 48.5 48.5 56.5 61.5
AND_logic_attr 48.5 51.5 52.2 73.5 50.0 51.0 56.6 74.0
AND_logic_rel 52.5 52.0 52.7 57.0 48.5 52.0 52.7 58.5
XOR_logic_attr 50.0 51.0 51.7 65.5 52.5 50.0 57.3 68.0
XOR_logic_rel 51.0 49.5 57.6 59.0 51.5 50.5 57.9 66.5
all 48.3 51.6 54.1 66.4 48.3 50.5 58.6 67.9

Table 1: Binary classification accuracy on HNC test set.

Annotation guidelines For each image, the an-
notators were asked to provide a positive and a
negative caption pair per their assigned caption
type(s). We set the following conditions for the an-
notation: 1) Stay true to the vocabulary: The words
in the captions must come from within the global
GQA vocabulary. 2) Choose visually challenging
objects: The objects introduced as the foiled in-
formation in the captions must come from within
the scene. 3) Chose linguistically challenging at-
tributes and predicates: The attributes and predi-
cates introduced as the foiled information in the
negative captions must be linguistically challeng-
ing, e.g., brown dog → black dog; meaning that
both captions are equally plausible. The annotators
were instructed to skip creating a caption pair for
the respective type in cases where at least one of
the negative or positive captions cannot be created
for a given image.

Dataset statistics In total, we obtain captions for
100 images. With 12 caption types, annotation re-
sults in 3201 captions with an average length of
8.42. Per caption type, we get 32 captions on aver-
age. The annotated captions went under a quality
check performed by another group that did not take
part in the annotation.

5 Experiments

We use the Visiolinguistic Transformer Architec-
tures (VOLTA) framework (Bugliarello et al., 2021)
as a unified testing suite to run our experiments.

ticipants about the use of their data and compensated them
with 13C/hour, above the German minimum wage.

Specifically, we use its controlled setup5 and ini-
tialize all five models from the pre-trained weights
provided by VOLTA. We then further train the ITM
head on the training set of both HNC and FOIL.
For a fair comparison with FOIL, which is substan-
tially smaller (197k data points in the training split);
in addition to the full-data setting (HNCfull), we
include an HNCsubset setting subsampled to 197k
data points. We experiment with both single-stream
and dual-stream architectures and analyze their per-
formance difference (if any): UNITER, VISUAL-
BERT, VILBERT, LXMERT, VL-BERT (Tan
and Bansal, 2019; Chen et al., 2020b; Lu et al.,
2019; Li et al., 2019; Su et al., 2020)6. To test
whether training on HNC yields similar results on
more recent and bigger models, we include ex-
periments with BLIP (Li et al., 2022), which are
presented in A.1.2.

Evaluation We compare the performances of
the models before and after further pre-training
on HNC on two types of tasks: (1) Linguistic
comprehension tasks, and (2) Real-world down-
stream reasoning tasks (Sec. 5.1 and 5.2, resp.).
The HNCsubset results are averaged over five ran-
domly sub-sampled splits, while the rest of the
results come from a single run.

5.1 Visio-Linguistic Comprehension Tasks

HNC We use the manually created, high-quality
test set to assess the ability of fine-grained image–
text understanding (see Sec. 3 for details about the
automatically-created training and validation sets

5The controlled setup uses the same pre-training objectives
and datasets across models to allow systematic comparison.

6Model and hyperparameter details are given in A.1.
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VILBERT VISUALBERT

VOLTA FOIL HNCsubset HNCfull VOLTA FOIL HNCsubset HNCfull

existence 47.8 49.8 52.1 59.8 46.9 49.3 58.9 63.1
plurals 50.0 50.4 51.4 51.4 49.5 50.3 51.8 52.8
counting_small_quant 49.4 49.3 51.1 58.6 49.6 50.0 53.2 58.8
counting_adversarial 49.5 52.5 54.6 53.2 48.9 50.7 50.4 50.2
counting_hard 49.8 49.6 49.9 52.4 49.6 49.7 50.3 53.2
relations 49.8 49.8 50.9 50.9 49.8 50.0 50.4 51.4
actant_swap 48.1 54.6 55.8 58.0 47.9 51.5 58.3 57.6
action_replacement 47.0 53.0 51.6 52.9 47.8 50.3 51.0 54.3
coreference_standard 49.9 50.1 50.0 47.2 50.0 49.9 49.7 49.9
coreference_hard 50.0 50.0 50.0 48.2 50.0 50.0 49.8 48.9
foil_it 46.0 77.0 50.4 51.8 43.7 79.0 51.5 54.8
all 48.8 50.9 51.6 53.0 48.4 50.2 52.3 54.4

Table 2: Binary classification accuracy on VALSE (Parcalabescu et al., 2022) under zero-shot evaluation. For the
models trained on FOIL dataset, we do not calculate the accuracies obtained from the foil it splits (marked red) into
the averaged values.

and Sec. 4 for the human-annotated test set).

Vision And Language Structured Evaluation
(VALSE) is a benchmark focusing on various
linguistic phenomena (Parcalabescu et al., 2022).

5.2 Real-World Reasoning Tasks

Commonsense Probing Task (CPT) measures
the commonsense knowledge level of task-agnostic
visually pre-trained models on the CWWVImg

dataset (Yang and Silberer, 2022). We consider
this task as a real-world scenario in that associ-
ated images are automatically retrieved, which may
lead to noisy image–text pairs (see A.3.3 for the
complete task description).

GQA is a dataset designed for real-world visual
reasoning and compositional question answering.
Unlike the aforementioned tasks that test zero-shot
capabilities, we investigate whether our weight ini-
tialization after HNC further pre-training serves
as an improved starting point when fine-tuning on
GQA. Therefore, we compare VOLTA checkpoints
and further pre-trained ones (HNC) after their fine-
tuning on GQA. The performances are reported on
the GQA testdev split.

6 Results

We report the results, i.e. classification accuracies,
on the aforementioned four tasks7. We compare
dual-stream and single-stream models to assess the
effects of different modality integration methods on
models’ ability to detect mismatches. We display
the results obtained from our further pre-trained

7We only discuss the statistically significant results.

weight initializations as HNCsubset and HNCfull,
the ones obtained from training on FOIL-COCO as
FOIL, and the official VOLTA weight initialization
as VOLTA8. The best results are shown in bold.

6.1 Visio-Linguistic Comprehension Tasks

HNC Table 1 displays the results obtained on our
human-annotated test set. Zero-shot performances
of VOLTA checkpoints on the majority of the cap-
tion types are close to random baseline (50%) show-
ing that the dataset is not trivially solvable. We
observe a strong under-prediction of entailment9

in models initialized from VOLTA checkpoints be-
fore undergoing our further pre-training on HNC
dataset, suggesting that the positive captions are
equally hard to align with the visual modality for
these models. This might be because the web-
retrieved captions lack compositionally complex in-
formation, i.e., information about multiple objects
along with their attributes or relations to other ob-
jects. After further pre-training on HNC (see Tab.1,
col.HNCfull), we observe a large improvement in
all caption types which showcases the effectiveness
of our dataset in teaching fine-grained alignment
of the visual and textual modality.

VALSE As shown in Table 2, further pre-training
on HNC largely improves: existence, count-
ing_small_quant, counting_adversarial, count-
ing_hard, actant_swap, action_replacement, and
foil_it10. Also, HNCsubset achieves better results

8We only display results from one single- and one dual-
stream model in Table 1, 2, 3, and 4. Complete results can be
found in Table 5, 6, 7, and 8 resp. in A.

9False negative prediction for the positive pairs.
10We provide more findings with analysis in A.3.3.
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LXMERT UNITER

VOLTA FOIL HNCsubset HNCfull VOLTA FOIL HNCsubset HNCfull

taxonomic 51.55 52.46 54.78 54.8 54.04 56.69 57.29 58.5
similarity 43.01 43.17 44.38 46.43 46.43 49.53 50.99 55.75
part-whole 53.73 50.13 52.93 56.48 63 63.95 64.1 69.01
spatial 55.6 52.72 55.04 56.79 57.41 57.47 53.32 57.97
temporal 49.23 49.81 47.56 50.24 47.86 46.59 46.53 46.27
all 55.43 52.22 55.94 55.49 58.53 59.29 59.27 62.32

Table 3: Classification accuracy on CPT (Yang and Silberer, 2022) with CWWVImg under zero-shot evaluation.

compared to FOIL on average, which suggests
that HNC contains more diverse and better qual-
ity captions to learn from than FOIL-COCO. The
large improvement we observe in existence type in
VALSE shows the effectiveness of our existence-
based captions (verify_obj_attr, verify_obj_rel).
We attribute the large improvement in actant_swap
to our dedicated control of subjects and objects
in relational captions (relation_subj, relation_obj,
AND_logic_rel, and XOR_logic_rel). As for the
foil_it, we see a similar effect, i.e., controlling
nouns (subjects and objects) in hard negatives helps
models to better ground the object in the visual
scene and not be confused by another (potentially
semantically similar) object.

Counting_adversarial tests for the shortcut bi-
ases by purposefully assigning a more common
number as the foiled information in the VALSE
captions where the original caption contains a num-
ber that is typically less common in these models’
pre-training data. Not only do we see a large perfor-
mance increase in counting_small_quant, we also
see an improvement in counting_adversarial and
counting_hard captions showing that the models
benefit from the diverse number sampling in HNC’s
training data construction.

Further, we only observe a marginal improve-
ment in plurality which is not surprising as we do
not create captions that target this type specifically.
Also, HNC pre-training does not affect corefer-
ence_standard and coreference_hard too much
(slight performance decrease if any). Just like the
plurality, we expect these numbers as we do not
address such types in this work. Future work can
easily extend to plurality by creating a caption type
that solely controls the information on the plurality
of the objects in the scene. The same can be done
for coreference by combining several pieces of
information about an entity using a referent word.

6.2 Real-World Reasoning Tasks

CPT Table 3 shows substantial zero-shot perfor-
mance gains after further pre-training on HNCfull;
particularly on single-stream models. We specu-
late that our HNC pre-training could drive single-
stream encoders to be more sensitive towards cross-
modal inconsistencies and strengthen the impor-
tance of the textual modality under noisy visual in-
put scenarios. For dual-stream models, the overall
improvement is limited, possibly due to the design
of certain layers that primarily perform inter-modal
attention which restricts the flexibility of balancing
the influence of different modality inputs during
inference.

Regarding the individual commonsense dimen-
sions, all HNC models demonstrate improvement
on taxonomic, similarity, part-whole. This could
be explained by their sparser distribution of con-
crete concepts (Yang and Silberer, 2022), resulting
in less semantic correspondence between the ex-
tracted images and their textual counterparts (see
A.3.3, Fig.6). Overall, the outcome suggests the im-
portance of having hard negative captions in ITM
pre-training to enhance the robustness of VL mod-
els in handling noisy visual inputs during inference.
Both the scale and the quality play a role, as mod-
els show greater improvement on these dimensions
when further pre-trained on HNCsubset compared to
FOIL-COCO (see col.FOIL & HNCsubset of tab.3).
However, the hard negative pretraining does not
benefit much to spatial and temporal. Especially
for temporal, the question token and the image
retrieved for the answer token are subject to mis-
matches due to the natural temporal order, e.g., run
out of money is a consequence of buying food, the
image of money does not correspond to food (see
A.3.3, Fig.7).

GQA We summarize our results on the GQA
(Hudson and Manning, 2019) testdev split in Table
4. As we are required to fine-tune on GQA to re-
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ceive meaningful results, we distinguish between
the weight initialization from the official VOLTA
pre-training and the initialization from our further
pre-training on HNC. At first glance, our initial-
ization points achieve higher accuracy across all
five models. The results are statistically significant
for LXMERT, UNITER, and VISUALBERT. For
the single-stream models, VISUALBERT benefits
the most from further pre-training on HNC. For the
dual-stream, LXMERT shows larger performance
gains. Generally, the dual-stream vs. single-stream
modality integration does not seem to have an in-
fluence on how much the respective models benefit
from further pre-training on HNC. Nonetheless,
the overall results support our hypothesis that fur-
ther pre-training VL models on more fine-grained
mismatching data (in the form of hard-negative
captions) improves models’ cross-modal reasoning
capabilities.

LXMERT VISUALBERT

VOLTA HNCfull VOLTA HNCfull

Accuracy 53.48 55.45 53.51 56.85

Table 4: Results on the GQA (Hudson and Manning,
2019) testdev split.

7 Dataset Analysis

Next, we analyze our caption generation process:
how robust are the different negative sampling
strategies, and which results in less/more linguistic
bias that a model could exploit as a shortcut? We
discuss the challenges of automatic hard negative
caption generation, the biases introduced in cap-
tions as a result of this automatic procedure, and
how to mitigate them. We then perform a modality
ablation study to ensure the quality of our human-
annotated test set. We provide further qualitative
analyses in Appendix A.3.

7.1 Caption Generation: An Iterative Process

Our final caption generation process is a product
of a series of refinement iterations. At each itera-
tion, we train and evaluate a Language Model (LM)
(BERT, Devlin et al., 2019) on our captions and use
the accuracy scores as a proxy to measure linguistic
bias. Throughout this process, we found that, for
example, replacing an attribute of a visual object
with another attribute from the scene without any
further constraint introduces a strong linguistic bias,

e.g., a purple dog (see A.3.1). Similarly, for ex-
ample, replacing an object in a (subject, predicate,
object) triple by another similar or a probable one
is rather challenging. Depending on the heuristics
employed to determine what might be a probable
replacement, the resulting negative captions con-
tain more or less linguistic bias (LM acc. of approx.
58% for strict constraints and approx. 66% when
these constraints are relaxed ) Moreover, we discov-
ered that the relations in scene graphs are rather
sparse which, if not handled correctly, results in
noisy negative captions, i.e., the negative caption
does not contradict the image. We provide further
detailed analyses along with examples in Appendix
A.3.1.

7.2 Sanity Check with Modality Ablation

We evaluate the HNC models under the blind set-
ting11 (see A.1.5 for details on the implementation).
Our findings12 suggest that the effect of world pri-
ors, especially for object quantities, is difficult to
overcome in negative caption generation.13 For
example, a typical quantity of a sofa in a living
room is one. A negative caption with a different
count of sofa violates the worldviews of VL mod-
els. VLMs, being trained on typical real-world
scenes, usually do not capture other counts of so-
fas, and as a consequence, corresponding negative
captions are easier to be detected as a mismatch,
even though the model is not exposed to the vi-
sual input during inference. This poses a major
challenge to VL pre-training in terms of learning
modality mismatches.

8 Conclusion

In this work, we introduced Hard Negative Cap-
tions (HNC), a dataset for further pre-training Vi-
sion and Language Models to improve their modal-
ity integration capabilities on a fine-grained level
and demonstrated improvements across models and
tasks. We proposed a novel automatic dataset con-
struction procedure for constructing hard negative
captions to be used for Image-Text-Matching (ITM)
training as well as a challenging test set annotated
by humans. We provided detailed analyses of the
challenges in automatic creation of hard negative
captions and proposed methods to mitigate them.

11The image features are 0-masked during inference.
12Further analyses are provided in A.3.2.
13Blind VL models achieve +3pp. on average in ob-

ject_count (Tab. 11 and in col. Clean Strict in Tab. 10).
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Lastly, we demonstrated the benefits of HNC by ob-
taining significant model performance gains on var-
ious tasks, including the diagnostic dataset VALSE,
our HNC test set as well as a commonsense probing
task (CPT), and down-stream performance gains af-
ter supervised fine-tuning on GQA, both of which
require real-world reasoning.

9 Limitations

Automatic caption generation has its limitations.
First, since our generation pipeline is seeded with
the scene graphs (Krishna et al., 2017), issues iden-
tified in the literature like a skewed distribution of
predicates (He et al., 2020), limited vocabulary size
(He et al., 2022), low-level annotations, and refer-
ence ambiguity (Woo et al., 2021) might persist in
our generated captions. Although we showed that
certain biases can be mitigated (or minimized), our
quantitative and qualitative analyses suggest that
automatically generated captions based on scene
graphs are subject to linguistic and distributional
biases which are difficult to combat. Therefore, we
believe that our hard negative caption generation
could benefit from existing scene graph debiasing
methods (Chiou et al., 2021). Also, our method of
eliminating noisy captions caused by sparse scene
graph annotations is based on rule-based heuristics.
Although it helps us avoid creating false negative
captions, it does not address the issue of annota-
tion sparseness in scene graphs. For a potentially
more robust method, the integration of an object
detector (Russakovsky et al., 2015) can be studied
in future work. Moreover, our rule-based heuristics
are specific to our use case, and they might not
work for other scenarios. Nevertheless, our frame-
work allows for easy adaptation or extension to
cover a wide range of domains and tasks. Last, our
contribution is mainly on the creation of training
and test data for ITM. We have not investigated
the impacts of our data in combination with other
training objectives or methods. We leave this (and
the previous points) to future work.
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A Appendix

A.1 Model Details

A.1.1 ITM Objective
Both single and dual-stream models aim to learn
an alignment between the visual and textual modal-
ity to infer the correct entailment between them.
Image–text matching is the objective of inferring a
similarity score between these modalities. As such,
in VL Transformers (Vaswani et al., 2017), it is
implemented in the form of a binary classification
head that learns to predict whether an image and a
text entail one another.

A.1.2 BLIP
Bootstrapping Language-Image Pre-training for
unified vision-language understanding and gener-
ation (BLIP) (Li et al., 2022) is a VL pre-training
framework which is designed to perform both VL
generation and understanding tasks. Li et al. (2022)
propose three versions of BLIP: trained to align vi-
sion and language representations using an image-
text contrastive loss, vision and language interac-
tions using ITM, and a LM loss to generate cap-
tions. In the following, we refer to the BLIP version
trained with a ITM loss as BLIP-ITM. In our ex-
periments, we evaluated and fine-tuned BLIP-ITM,
since it matches the design of our HNC dataset
that aims for teaching the model’s a detailed under-
standing of the visual input using carefully sampled
negative captions.

A.1.3 BLIP Hyperparameters
We use AdamW (Loshchilov and Hutter, 2017)
with a learning rate of 1e− 5 and a weight-decay
of 0.05 as used by (Li et al., 2022) to train BLIP.
To fine-tune the model, we initialize a learning
rate scheduler with a warm-up duration of four
epochs and a starting learning of 1e−7. Afterward,
the learning rate decays by a factor of γ = 0.85.
We perform early stopping on the validation set,
and train for a maximum of 20 epochs. The batch
size during training equals 50, and we use eight
NVIDIA A100 GPUs with 80GB VRAM.

A.1.4 VOLTA Hyperparameters
Further pre-training on HNC The following
hyperparameters for the VOLTA models are used:
ADAM optimizer (Kingma and Ba, 2014) with a
learning rate and weight decay of 4e − 5, β =
(0.9, 0.999), and gradient clipping (Pascanu et al.,
2013) with a norm of 1.0. For the tokenizer, we

used a maximum sequence length of 40. The max-
imum number of regions is set to 36 just like the
VOLTA implementations. For the training, we
used a batch size of 1024 and a maximum num-
ber of epochs of 20 with early stopping. We left
all other hyperparameters untouched (e.g., model
hyperparameters), and stick with the ones provided
by VOLTA. We used 4 NVIDIA RTX A6000 GPUs
and trained the models for a maximum of 48 hours.
We use the controlled setup in VOLTA, which uses
the same pre-training objectives and datasets across
models to allow systematic comparison.

Fine-tuning on GQA For fine-tuning the
VOLTA model checkpoints on the GQA dataset,
we use a batch size of 1024 and a maximum num-
ber of epochs of 20 with early stopping. The max-
imum sequence length and the maximum number
of regions were kept the same as in the pre-training.
The rest of the hyperparameters are: ADAM opti-
mizer (Kingma and Ba, 2014) with a learning rate
and weight decay of 4e− 5, β = (0.9, 0.999), and
gradient clipping (Pascanu et al., 2013) with a norm
of 5.0. We used 2 NVIDIA RTX A6000 GPUs and
trained the models for maximum 8 hours.

For fine-tuning the BLIP model checkpoints on
the GQA dataset, we use a batch size of 50 and
train for a maximum of 20 epochs while performing
early stopping. We again use AdamW (Loshchilov
and Hutter, 2017) with a learning rate of 5e−5 and
weight decay of 0.05. The learning rate scheduler
is initialized with a starting learning rate of 1e− 8,
a warmup duration of three epochs, and a γ = 0.85
that scales the learning rate after each epoch.

Language model training We trained a BERT14

(Devlin et al., 2019) model to predict whether a
caption is positive or negative without seeing the
image. The model is initialized with the pre-trained
weights loaded from HuggingFace library15. We
added a binary classification head and trained the
model on HNC captions with the entailment labels
of 0 and 1. Following hyperparameters were used:
ADAM optimizer (Kingma and Ba, 2014) with
a learning rate of 16e − 5, maximum sequence
length of 40 for the tokenizer, batch size of 8384,
maximum number of epochs 40 with early stopping.
We used a single NVIDIA RTX A6000 GPU and
trained the models for maximum 120 hours.

14bert-base-uncased
15https://huggingface.co/



376

A.1.5 Blind Setting in VL Models
For consistency, we used the VOLTA implementa-
tions of the models and did not alter anything but
the image features. We used 0-masking to create
the blind setting. Specifically, we create a 0 tensor
as the size of the image features and feed this into
the model instead of the real image features. We
do not change anything on the input of the textual
modality.
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A.2 Caption Generation Settings

As mentioned in Section 3, we implemented several
heuristics to avoid ambiguity and potential noise in
our caption generation. We now detail what these
heuristics are and how they were implemented.

Ambiguity In many caption types, we only ad-
dress localized cross-modal mismatches by lever-
aging subgraphs and do not take the global context
of a scene into account. This results in ambigu-
ity in entity grounding, especially when multiple
instances of the same object class are present in
the image. Additionally, scene graphs contain spa-
tial relation annotations between entities and back-
ground objects such as sky or field that typically
cover a large area in the scene. This causes ambi-
guity in captions as the exact spatial relation be-
tween them is hard to determine even for humans.
Following heuristics are applied to reduce such am-
biguities in captions (automatically created as well
as human-annotated):

• A caption should not refer to multiple in-
stances of the same entity class to avoid ambi-
guity in terms of entity grounding.

• A caption should not refer to a spatial relation
between two body parts since such a caption
is unnatural as well as error-prone due to mul-
tiple instances of body parts in scenes.

• A caption should not refer to a spatial rela-
tion between an entity and an object typically
covering a large area in scenes, i.e., typical
background objects.

Clean vs. noisy In our clean setting, we filter
out all the values that our noisy spatial relation
detection algorithm tags as noisy. The way this
works is:

1. The algorithm gets a triple (subject, relation,
object) and a marker as to which value in the
tuple should be replaced with a foil.

2. All the candidate replacement values are col-
lected in a list. This also follows a set of
heuristics which we discuss later.

3. We then compare the bounding boxes of the
subject and the object, and decide whether the
spatial relation is correct between these visual
objects.

4. If we determine that the given relation is in-
correct, we remove this item from the list of
candidates.

In the noisy setting, we do not filter out these po-
tentially noisy candidates.

Strict vs. relaxed sampling There are several
ways of sampling foils for a given tuple. The sim-
plest way would be to sample from all the words
in the vocabulary in the same POS tag category,
i.e., sample from the set of nouns in the vocabu-
lary for a given noun, e.g., sample a shoe for cat.
However, as it quickly becomes obvious, this ap-
proach has several potential issues. One issue, for
example, is that we might end up with nonsen-
sical captions containing an object an unsuitable
attribute, e.g., the ground is scrambled (see 3b.).
Also, since the scene graphs contain non-spatial re-
lations, we might accidentally create captions that
violate object affordances, e.g., a table is eating a
boy. Thus, it is important to follow an informed
sampling strategy. To achieve this, we created
look-up tables allowing us to sample a foil that does
not result in a nonsensical caption. For (attribute,
object), (subject, predicate), and (predicate, object)
pairs we aggregate the information in the ground-
truth scene graphs and save them as look-up tables.
Additionally, we annotated attribute clusters that
group similar attributes into buckets for us to sam-
ple values from. Using these look-up tables, we
provide two negative value sampling strategies for
generating hard negative captions: (a) relaxed and
(b) strict.

Our relaxed setting allows sampling from a prob-
able set of values such that we allow sampling a
negative attribute from the attribute class of the
positive one; and for the (subject, predicate, object)
triples, we sample from the union of the (subject,
predicate) and (predicate, object) pairs. This type
of sampling makes the assumption of: given that
an object co-occurs with a similar attribute or that
a predicate with a subject and an object on differ-
ent accounts, although an exact tuple might not
co-occur in the dataset, this does not mean that
such a co-occurrence is unlikely. This increases
the variability of the captions but can also result in
erroneous cases because neither the attribute clus-
ters are robust (see caption 2 in Figure 3a.) nor
the assumption always holds: if (subject, predicate)
and (predicate, object), then (subject, predicate, ob-
ject), e.g., (dog, drinks) and (drinks, beer) does not
guarantee (dog, drinks, beer).
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VILBERT LXMERT * UNITER * VISUALBERT * VL-BERT BLIP

VOLTA HNC VOLTA HNC VOLTA HNC VOLTA HNC VOLTA HNC ITM HNC

Accuracy 55.77 55.97 53.48 55.45 55.28 56.70 53.51 56.85 55.62 55.96 57.38 57.73

Table 8: Results on the GQA (Hudson and Manning, 2019) testdev split. Results are statistically significant*.

In strict setting, we only allow sampling from
the look-up tables directly meaning that the ex-
act co-occurrence exists in the ground-truth scene
graphs. This results in a highly strict constraint as
we essentially limit the likely negative candidates to
the ones that co-occur in the dataset. Nonetheless,
by doing so, we minimize the number of nonsensi-
cal captions.

In all our experiments, we used the captions gen-
erated using the clean and strict setting.

Balancing the comparative quantifiers in cap-
tions In order to prevent models from attending
to linguistic signals for a prediction shortcut, com-
parative quantifiers are equally used in the positive
and the negative caption types.

Balancing the existence and nonexistence
in existence-based captions Same as above,
to avoid shortcuts, no and at least one,
i.e., (non)existence of entities, in positive and nega-
tive captions are balanced.

A.3 Qualitative Analysis
A.3.1 Dataset Generation Process
Refinements in sampling methods In our first it-
eration of the sampling implementation, we started
with a single constraint, i.e., the negative value
(object, attribute, relation) must be sampled from
within the scene. This, however, results in a strong
linguistic bias as there is no mechanism that en-
sures the sensibility of the generated caption. This
resulted in captions like the table is sleeping, or the
man is eating a couch which then gave us LM ac-
curacies of approx. 70% on the validation set. This
is highly undesirable as the entailment between an
image and its caption can be predicted simply by
assessing the caption’s sensibility.

In our next iteration of sampling from look-up ta-
bles in the relaxed setting, we were able to reduce
the LM accuracies down to approx. 66%. This
setting helps us avoid creating captions such as the
man is eating a couch as the object eating does
not occur together with couch in the ground-truth
scene graphs. Note that, at this time, we are us-
ing the look-up tables, but we are still sampling

uniformly. This uniform sampling turned out to
be highly problematic as the word distributions be-
tween the positive and the negative captions were
too dissimilar resulting in shortcut predictions. The
reason is that co-occurrences of visual concepts
in the ground-truth GQA scene graphs are highly
imbalanced. For example, to the left of and to
the right of are the most common predicates in
the dataset. When we uniformly sample from the
above-mentioned look-up tables, we create a distri-
butional bias between the positive and the negative
caption sets (see subplots (a) & (b) of Figure 12
for the relation distribution of the captions from
an early iteration.). Thus, we extracted word co-
occurrence statistics from the ground-truth scene
graphs and sampled from the look-up tables follow-
ing these distributions (see subplots (c) & (d) of
Figure 12 for the relation distribution in our final
captions.), which helped us reduce the LM accura-
cies down to approx. 58%.

To reduce the linguistic bias even further, we
implemented strict sampling which we detailed in
Section A.2. With this sampling strategy, we are
able to reduce the LM accuracies down to approx.
57% (see Tab.9).

Table 9 shows the LM accuracies16 on the fi-
nal versions of the HNC validation sets. Ac-
cording to these numbers, some of the cap-
tion types contain more bias than the oth-
ers, e.g., attribute, attribute_relation, re-
lation, relation_attribute, object_count, ob-
ject_compare_count, XOR_logic_relation all
have accuracies ≳ 60%. For example, the model
achieves approx. 65% accuracy on the validation
split in object_count type (approx. 61% in ob-
ject_compare_count). We attribute this to a com-
bination of dataset and world-priors biases which
is common in datasets of real-world images.

Note that LM accuracies are a simple proxy we
use to measure the linguistic bias in the textual
modality without the presence of the visual modal-
ity. Thus, we believe that none of the methods is
ideal, and the choice of the sampling strategy might

16The higher the accuracy, the more biased is the dataset.
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Clean Strict Clean Relaxed Noisy Strict Noisy Relaxed

attribute 62.0 65.2 62.3 65.2
attribute_relation 60.4 63.3 60.3 63.3
relation 58.0 59.6 57.7 60.1
relation_attribute 63.2 64.8 62.9 65.2
object_count 65.5 65.6 65.7 65.4
object_compare_count 61.3 61.4 61.4 60.8
verify_object_attribute 55.5 55.2 55.0 55.3
verify_object_relation 54.1 54.2 54.0 54.0
AND_logic_attribute 55.4 55.2 55.1 55.2
AND_logic_relation 55.0 56.2 54.6 56.3
XOR_logic_attribute 54.3 54.3 53.8 53.0
XOR_logic_relation 60.6 62.7 58.6 63.3
all 57.6 58.6 57.4 58.7

Table 9: Language Model results on HNC validation set. The models are trained and evaluated on data obtained
from the same setting.

Clean Strict Clean Relaxed Noisy Strict Noisy Relaxed

attribute 55.9 60.4 55.4 58.4
attribute_relation 51.0 54.5 52.5 54.0
relation 56.0 55.8 54.3 54.5
relation_attribute 53.5 54.7 55.0 53.5
object_count 55.0 52.5 55.0 54.0
object_compare_count 53.5 55.5 56.5 54.5
verify_object_attribute 51.5 48.5 48.5 51.5
verify_object_relation 54.0 52.5 53.0 53.5
AND_logic_attribute 52.0 51.5 54.0 50.5
AND_logic_relation 50.0 48.5 50.0 48.5
XOR_logic_attribute 48.0 48.5 50.0 48.0
XOR_logic_relation 49.5 52.5 49.5 56.0
all 53.1 53.5 53.3 53.3

Table 10: Language Model results on HNC test set. The models are trained on different settings and evaluated on
the human-annotated test set.
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Dual-Stream Single-Stream

VILBERT LXMERT UNITER VISUALBERT VL-BERT

VOLTA HNC VOLTA HNC VOLTA HNC VOLTA HNC VOLTA HNC

attribute 50.5 57.9 52.0 56.9 54.0 58.4 52.0 54.5 50.0 61.9
attribute_rel 49.5 56.0 52.5 54.5 52.0 53.5 49.5 54.0 50.0 52.5
relation 49.0 54.8 49.3 54.5 49.2 53.0 50.0 54.0 50.0 53.3
relation_attr 50.9 55.5 50.9 56.2 49.6 57.1 49.9 54.7 50.3 57.8
obj_count 49.5 65.0 45.0 46.5 51.0 61.0 51.5 64.0 50.5 58.0
obj_comp_count 50.5 51.5 49.5 53.0 48.0 53.0 50.5 52.5 49.0 53.5
verify_obj_attr 52.5 42.0 51.5 44.5 46.0 46.0 47.5 46.5 50.0 50.0
verify_obj_rel 50.5 54.5 51.0 53.5 50.0 51.0 50.0 53.0 50.0 52.0
AND_logic_attr 51.5 59.0 49.0 50.0 49.5 51.0 51.0 52.0 51.0 57.0
AND_logic_rel 50.0 54.0 48.5 53.5 49.0 52.5 50.0 49.0 50.0 49.5
XOR_logic_attr 49.5 53.0 50.5 49.0 50.5 51.0 49.0 49.5 50.0 50.5
XOR_logic_rel 50.0 57.5 49.5 60.0 49.5 54.0 50.0 57.0 50.0 59.0
all 50.2 55.1 50.0 53.3 50.0 53.8 50.1 53.6 48.1 50.1

Table 11: Binary classification accuracy on HNC test set under blind evaluation.

depend on the use case.

Noisy spatial relations Our qualitative iterative
analysis revealed that, due to the incomplete nature
of the relations in GQA scene graphs, our noisy
setting results in many noisy hard negative cap-
tions in that the values we sample as foils do not
contradict the image (see caption 1 in Figure 3a)
However, this is not detectable simply by looking
at the LM accuracies as the captions are not non-
sensical. Thus, between the clean and the noisy
settings, there does not seem to be a great deal of
difference for the LM which is expected as the sen-
sibility of the captions are not directly affected by
the correctness of objects’ spatial relations in the
visual scene, e.g., a bus driver can be inside or the
next to a bus.

A.3.2 Analysis of the Human-Annotated Test
Set

We evaluated the LM trained on HNC captions
to quantify the pure linguistic bias that might be
present in our human-annotated test set. Ideally,
LM should perform at the random baseline level,
i.e., 50% accuracy. In our clean and strict setting,
the model achieves an average accuracy of 53.1%
which suggests the presence of some bias. This
might be due to the domain size in GQA images.
Thus, no matter if created automatically or anno-
tated by humans, such statistical biases caused by
the domain size are hard to mitigate.

Table 11 contrasts the accuracies of models
trained on HNC image–text pairs17 with the
VOLTA models evaluated on the text-only modality

17The models are trained on the clean-strict version.

of the human-annotated test set (see A.1.5 for the
implementation details). Previously, we discussed
biases in our dataset. With these results, our aim
is to draw attention to the biases in the pretrained
VL models. As also briefly mentioned in Section
7.2, we might violate world-priors in VL models
by creating negative captions that are possible but
might not be probable according to their worldview,
e.g., the leaves might be more likely to be green or
yellow than red or brown, although red or brown
leaves are not impossible. Moreover, due to the size
of the GQA images, it is unlikely that the dataset
is an accurate sample of the world, i.e., although
we might have images showing a man eating pizza
and a woman eating pasta, this does not mean that
the men do not eat pasta or the other way around.

A.3.3 Downstream Tasks
VALSE In Figure 4, we display some examples
where all our models predicted the correct entail-
ment between the image and the caption that were
predicted incorrectly by all the models initialized
from the VOLTA checkpoints. As also indicated by
the quantitative results, we observed significant im-
provement in all the models regarding certain types
of foils, which we discuss briefly in the following.

Our models predict correct entailment in many
counting-based captions that were predicted incor-
rectly by the VOLTA models. Our qualitative analy-
sis revealed that this is especially the case when the
foiled count is small and close to the original count.
Furthermore, in many of our hard negative captions,
we swap grammatical subjects (agent, actant) or ob-
jects (patient, theme, experiencer) of the captions
with a foil. This seems to help models ground the
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(a) (b)

Figure 3: (a) The resulting negative captions do not contradict the image; thus, they are false negatives. Negative
caption 1 contains a noisy spatial relation, negative caption 2 contains an attribute similar to the attribute in the
positive caption but not contradictory to the image. (b) The sampled noun ground with the attribute “scrambled”
creates a nonsensical caption.

Figure 4: Example cases where all the VOLTA models failed while our models predicted the correct entailment.
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correct visual object in the image and not just pre-
dict entailment by assessing the plausibility of the
caption. We also observe improvements in spatial
relation grounding which is expected as our dataset
contains many captions that specifically foil this
information. In some examples, where VALSE
foils the action in the caption, our models perform
better as well. This might mean that the correct
grounding of the subjects and the objects in cap-
tions might have a positive effect on the grounding
of the action in the visual scene. However, since
the GQA scene graphs do not readily provide many
actions, we do not see a big improvement in this
type.

We also observed some failure cases where the
previously correct predictions were predicted incor-
rectly by all our models (see Figure 5). This mainly
occurred in foil types that we do not cover in our
hard negative caption generation, e.g., coreference
(see the left example in Figure 5), plurals and non-
spatial relations. However, lack of coverage is not
the only place where we observe such behavior. For
example, some counting-hard captions that were
predicted correctly by VOLTA models ended up
being predicted incorrectly by all our models (see
the middle example in Figure 5). This might be
due to the imbalanced object counts in the captions.
We chose to follow the ground-truth scene graph
distributions which inherently contain some bias
on a compositional level as discussed in Section
A.3.1. The implication of this is that our posi-
tive (also hard negative) captions might never have
certain combinations of concepts compositionally
co-occur in the same caption, i.e., while we might
have captions that contain one, two, three, or four
elephants; we might never have a caption with five
elephants in the positive captions if such a scene
graph does not exist in the GQA dataset.

Additionally, we found that some of the foiled
instances incorrectly predicted by HNC models are
ambiguous; e.g., in the right example of Figure 5,
the foil (bicycle) for the correct object (car) is also
near the table.

CPT Each instance of CWWVImg consists of
three natural language statements and a correspond-
ing set of retrieved images, Ti = (Q||Ai||Vi),
i = 1, . . . , 3, where Q is the prompt, Ai a candi-
date answer, Vi is a set of retrieved images for the
answer tokens. A model has to determine in a zero-
shot manner which of the three statements is true.
Specifically, it requires a model to perform MLM

on the same masked token of the prompt Q in each
T . The statement that receives the lowest MLM
loss is considered the model’s prediction.

In Figure 6, we showcase several examples
where HNC single-stream models successfully han-
dle noisy visual inputs during the inference stage
(VOLTA single-stream models fail), especially on
similarity, quality, and taxonomic dimension. We
investigate how the visual noisiness in the afore-
mentioned dimensions varies from each other by
looking into respective examples. For similarity,
although the extracted image metaphorically cap-
tures the answer token, buddy, to display a sense
of togetherness, there is no human being, but only
two crocodiles, in the picture, which creates an
entity-level misalignment w.r.t the question token,
brother, in the prompt. A similar issue is observed
for the quality dimension, in which the extracted
image for flying is conceptually correct, but no
bird, but only a plane, can be identified in the im-
age. As for taxonomic dimension, we found that
general concept words like rate could potentially
create a modality misalignment issue w.r.t. the
question token in the prompt, e.g., speed because
rate could also be a unit to measure attractiveness
in this case. These cases exemplify the difficulty
of CPT task that might lead VL models to pick
a wrong prediction in the presence of conceptu-
ally correct, but not-strictly-aligned, visual inputs.
However, since HNC single-stream models are pre-
trained to be aware of fine-grained misalignment,
they bypass the limited information provided by the
visual modality and robustly resort to the textual
modality for performing inference. The effective-
ness does not generalize to other dimensions such
as temporal and spatial as exemplified in Figure 7
and Figure 8 respectively. It is notable that HNC
dual-stream models suffer stronger from a perfor-
mance decrease than the single-stream counterparts.
By inspecting the failure case of temporal made by
HNC dual-stream, it is clear that the wrong predic-
tion could easily occur due to the natural misalign-
ment of the temporal orders between the question
token, buying food, in the prompt and the answer
token, run out of money. Therefore, the resulting
retrieved image is naturally not corresponding. In
the example here, we observe HNC dual-streams
select the choice, get extremely relaxed. The rea-
son behind this could be that there are glasses, hy-
ponyms of food, existing in the relaxed picture.
With respect to the failure case of spatial dimen-
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Figure 5: Example cases where all our models failed while the VOLTA models predicted the correct entailment.

Dim: Quality
A bird can be:
A. [correct & predicted] flying fast
B. one of many firearms
C. coral

Dim: Similarity
brother is a synonym of:
A. first step
B. freezing injunction
C. [correct & predicted] buddy

Dim: Taxonomic
speed is a type of
A. computer chassis
B. hyperreal number
C. [correct & predicted] rate

buddy flying rate

Figure 6: Example cases where our HNC single-stream models succeed under noisy visual input scenarios, i.e., a
modality mismatch between the textual token in the prompt and the image retrieved based on the correct textual
choice, e.g., the word bird and the image flying.

Dim: Temporal
Sometimes buying food causes you to:
A. [correct] run out of money
B. clothes stained
C. [predicted] get extremely relaxed

money relaxed

HNC Dual Stream Incorrect -> VOLTA Dual Stream Correct

Figure 7: A failure case of HNC dual-stream models on the temporal dimension.



386

Dim: Spatial
You are likely to find a ventilation system in:
A. [predicted] carpeting
B. [correct] office building
C. trick or treat bag

carpeting building

Figure 8: A failure case of HNC dual-stream models on the spatial dimension.

sion, again, we see that HNC dual streams are sub-
ject to slight modality non-correspondence. The
image extracted for the correct answer token, build-
ing capture the external view of a building; whereas
the image for the wrongly picked answer token,
carpeting, is photographed inside a house.

A.4 Statistical Test
To determine whether one model significantly out-
performs the other one, we resort to paired stu-
dent’s t-test (Fisher, 1949) with the threshold of p <
0.05 to be significantly outperforming. Since the t-
test assumes a normal distribution, we also test the
normality of model prediction with the method of
Anderson-Darling (Anderson and Darling, 1954).

A.5 Dataset Statistics
Figure 9 contains the distributions for the human
annotated test set. The total number of each cap-

Figure 9: Test set caption type distribution.

tion type as well as the relative percentage values

are displayed. The test set contains exactly 100
annotated images.

Figure 10 contains the caption type distributions
for the training set data w.r.t. the different dataset
variations, and Figure 11 contains the caption type
distributions for the validation set.

Figure 12 displays the relation distributions for
the positive and negative captions. Fig. 12a and
12b contain the distributions from earlier iterations.
It is striking to see that the relation distributions
in the positive and negative captions are very dis-
similar. Our final state of the caption generation
procedure produces similar relation distributions,
as can be found in Fig. 12c and 12d. Most promi-
nent are the relations to the left of and to the right
of. Following different data distributions enables
models to easily distinguish between negative and
positive captions, which is why we mitigated the
gap between iterations.

Table 12 contains the exact numbers for each
dataset split and variation.
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(a) Clean strict. (b) Noisy strict.

(c) Clean relaxed. (d) Noisy relaxed.

Figure 10: Training split variation distributions.

(a) Clean strict. (b) Noisy strict

(c) Clean relaxed. (d) Noisy relaxed.

Figure 11: Validation split variation distributions.
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(a) Negative captions validation split. Early iteration. (b) Positive captions validation split. Early iteration.

(c) Negative captions validation split. Final iteration. (d) Positive captions validation split. Final iteration.

Figure 12: Relations distributions.

Split Variation Total Amount Cpts Avg Cpt Len Avg Cpt Amounts across Types

Valid

Clean Strict 2,314,832 10.28 238.81
Clean Relaxed 2,340,810 10.26 241.49
Noisy Strict 2,354,070 10.27 242.86
Noisy Relaxed 2,365,220 10.25 244.01

Train

Clean Strict 16,416,392 10.29 242.10
Clean Relaxed 16,605,986 10.27 244.90
Noisy Strict 16,702,102 10.29 246.32
Noisy Relaxed 16,768,140 10.27 247.29

Table 12: Statistics of our automatically generated data splits and variations.


