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Abstract
We develop and probe a model for detecting the
boundaries of prosodic chunks in untranscribed
conversational English speech. The model is
obtained by fine-tuning a Transformer-based
speech-to-text (STT) model to integrate the
identification of Intonation Unit (IU) bound-
aries with the STT task. The model shows
robust performance, both on held-out data and
on out-of-distribution data representing differ-
ent dialects and transcription protocols. By
evaluating the model on degraded speech data,
and comparing it with alternatives, we establish
that it relies heavily on lexico-syntactic infor-
mation inferred from audio, and not solely on
acoustic information typically understood to
cue prosodic structure. We release our model1

as both a transcription tool and a baseline for
further improvements in prosodic segmenta-
tion.

1 Introduction

A growing body of research in phonetics, phonol-
ogy, and speech processing focuses on prosody: the
encoding of prominence and phrasal organization
(Pierrehumbert, 1999; Ladd, 2008) through inter-
connected suprasegmental cues (intonation, stress,
rhythm, etc.) (Arvaniti, 2020). One reason for
this focus is that prosodic phrasing groups words
into chunks that can facilitate the generation and
processing of naturalistic running speech for both
speakers and listeners. For example, in English,
the presence of detectable boundaries between
chunks enhances speech intelligibility (Cooper and
Sorensen, 1981; Selkirk, 1984) and helps listeners
correctly discern the syntactic structure of the utter-
ance (Streeter, 1978; Wingfield et al., 1984; Beach,
1991; Crystal, 1986; Warren, 1996).

In this paper, we generate, evaluate, and probe
machine-learned models for detecting the bound-
aries of prosodic chunks in untranscribed conversa-
tional English speech. We focus on boundaries of

1https://github.com/Nathan-Roll1/PSST

the Intonation Unit (IU), which delineate “chunks”
of speech that reflect cognitive and prosodic cohe-
sion (Chafe, 1994; Du Bois et al., 1992). Develop-
ing a robust boundary detector for conversational
speech would have important implications for lin-
guistics. Methodologically, it would open the door
to automated systems for fine-grained discourse
transcription, and theoretically, it would facilitate
exploration of the way that suprasegmentals inter-
act to cue prosodic structure (Du Bois et al., 1992).
Given the utility of prosodic boundaries for human
speech perception, it may also contribute to the ro-
bustness of Automatic Speech Recognition (ASR)
generally for conversational speech. Robust con-
versational ASR is made difficult by the fact that
cues to segmental information are often reduced in
conversation, may be masked by significant inter-
speaker variation, and often do not correspond pre-
cisely to the rigid syntactic structures of written
language, among other challenges.

The detection of prosodic boundaries via auto-
mated methods has a rich history in work that aims
to segment transcriptions of speech. However prior
works have largely taken a pipeline approach: first
creating textual transcriptions (either manually or
via ASR) and subsequently applying boundary de-
tection methods to the generated transcript. In addi-
tion, they have not typically focused on identifying
IU boundaries in everyday conversations. Many
works (e.g., Stolcke and Shriberg, 1996, Wang and
Narayanan, 2004, and Liu et al., 2006) use the
Switchboard corpus to identify syntactically-based
prosodic boundaries in telephone conversations be-
tween strangers, using orthographic inputs and/or
manually crafted acoustic features. Xu et al. (2014)
applies pause, pitch, energy, and duration informa-
tion to a similar task in spoken Mandarin. More
recent work has pursued integrated approaches that
consider Speech-To-Text (STT) transcription and
segmentation simultaneously, but still have not fo-
cused on IU boundaries in conversational speech.

https://github.com/Nathan-Roll1/PSST
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Sarkar et al. (2018) introduced a model to perform
ASR, segmentation, and diarization concurrently
on the LibriSpeech corpus of read speech. Simi-
larly, Hou et al. (2020) detected phone- and word-
level timestamps while performing ASR on the
TIMIT and WSJ corpora of read speech.

Here, we follow this more recent work in taking
an integrated approach, which we use to detect IU
boundaries in everyday conversations. We develop
an end-to-end model that incorporates IU bound-
ary detection into a Transformer-based (Vaswani
et al., 2017) STT task. Specifically, we fine-tune
Whisper (Radford et al., 2023), a highly successful
STT model, to generate IU boundaries as it pro-
cesses audio and generates a transcription. The
incorporation of IU boundary detection into STT
transcription allows for counterfactual considera-
tions of lexico-syntactic probabilities, and allows
our model to recognize the strong correspondences
and interactions between syntax and prosody that
are fundamental to linguistic theory (Bennett and
Elfner, 2019).

Studies on automatic boundary predictions in
the prosodic domain have primarily concentrated
on two key areas: feature engineering and mod-
eling methods. Feature engineering (e.g., Anan-
thakrishnan and Narayanan, 2005) involves identi-
fying and operationalizing acoustic features such as
pitch as pause that correlate with prosodic bound-
aries. Modeling methods involves comparing vari-
ous statistical machine learning frameworks – such
as memory-based learning (Busser et al., 2001),
maximum entropy (Sridhar et al., 2008), and deep
neural networks (Rosenberg et al., 2015) – that use
these features in different ways to identify prosodic
boundaries in unlabeled data.

The Transformer architecture obviates the dis-
tinction between these areas by allowing the model
to discover useful acoustic features itself, based on
self-attention mechanisms applied to positionally-
encoded audio data. The model therefore efficiently
discovers and leverages rich features present in in-
put audio, without enforcing strong assumptions
about what those features are or how they are struc-
tured in the time or frequency domains. In doing
so, it exhibits similarity to human IU boundary
detection by considering a myriad of fine-grained
cues, including those that are difficult to opera-
tionalize with direct feature engineering (Du Bois
et al., 1992). This represents a significant departure
from previous attempts to detect prosodic phrase

boundaries, which have typically used either sim-
ple durational cues and pauses (Yang, 2003; Sa-
lomon et al., 2004) or a combination of other pre-
determined suprasegmental cues (Mandal et al.,
2007; Peters, 2003), and/or have isolated the task
of prosodic boundary detection from that of STT
transcription (Biron et al., 2021; Stehwien and Vu,
2017).

We investigate whether fine-tuning on a small,
high quality dataset can “teach” a pretrained
Transformer-based STT model to segment conver-
sational speech audio into IUs, by detecting IU
boundaries in the course of transcription. We per-
form two experiments, with the following research
objectives:

1. To fine-tune an ASR-optimized Transformer
model to perform reliable IU boundary detec-
tion integrated with STT transcription, and
test its robustness to variation in acoustics and
transcription protocol by evaluating it on out-
of-distribution data.

2. To explore the factors that contribute to the
model’s performance, by evaluating it on de-
graded speech data and comparing it with al-
ternatives that do not integrate IU boundary
detection with STT transcription.

2 Experiment 1: reliable IU detection

In Experiment 1, we fine-tune Whisper (Radford
et al., 2023), a Transformer-based STT model, to
identify IU boundaries as it processes and tran-
scribes audio. Our goal is not to improve the basic
word recognition rate of Whisper, but rather to in-
vestigate whether its capabilities can be leveraged
to recognize intonation unit boundaries, in a gener-
alizable way. The model is fine-tuned on a corpus
of conversational American English, and we es-
tablish its performance on held-out data from the
same corpus. Then, we assess its robustness to
naturalistic acoustic variation and differences in
prosodic transcription protocol, by evaluating it on
out-of-distribution speech data (i.e., non-American
English data not used in the training of the model)
from a corpus of conversational British English that
uses distinct criteria to determine IU boundaries.

2.1 Methods
2.1.1 Data and preprocessing
Our training and within-distribution testing data
come from the Santa Barbara Corpus of Spoken
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American English (SBCSAE) (Du Bois et al., 2000–
2005), which contains 60 prosodically transcribed
naturalistic conversations between 210 speakers,
spanning a total of ∼20 hours. The speakers, who
represent 30 U.S. states, exhibit variation in age,
race/ethnicity, and educational background. The
corpus is roughly gender balanced, with 55% of
speakers identifying as female and 44% as male (1
unknown).

The transcripts include words, IU boundaries,
and a variety of other features, with high inter-
transcriber agreement. Disagreements between
transcribers are resolved by experts2 (Du Bois et al.,
2000–2005).

IU-boundary timestamps are precise to 0.1 sec-
onds. Each conversation is recorded on a single-
channel 22,050 Hz .wav file. Each file contains
the entire conversation, except for personal identi-
fiers and sensitive information, which were masked
using a 400 Hz low-pass filter. We hold out the
first five conversations in the corpus (∼10% of the
overall data, comprised of ∼2 hours of speech) for
testing, and use the remainder for training.

To preprocess the data, we identify contiguous
stretches of non-overlapping speech. We extract
the word tokens for each stretch from the transcript,
including filled pauses and disfluencies (“um”,“uh”,
“unhuh”, etc.), and add a token of a symbol that is
otherwise not used in the corpus to designate each
IU boundary. To meet the input requirements of
Whisper (Radford et al., 2023), we resample the
audio from 22,050 Hz to 16,000 Hz and split it into
30-second chunks, padding with zeros as required.
The model then converts each chunk to a log-Mel
spectrogram with 80 channels, 25 ms windows,
and 10 ms strides, globally rescaled to the interval
[−1, 1].

For out-of-distribution testing, we use the Into-
national Variation in English (IViE) corpus (Grabe
et al., 2001). IViE is different from the SBCSAE
in two key ways: first, it contains conversations
from speakers of different dialects (British English
as opposed to American English); and second, it
is transcribed with a distinct intonational phrase
methodology, adapted from the ToBI framework
(Silverman et al., 1992; Beckman and Ayers Elam,
1997). We use the spontaneous portion of the cor-
pus, preprocessed in the same way as described
above.

2Our version of the corpus presents a single authoritative
transcription per file, with no information about the precise
cases where there was transcriber disagreement.

We chose the SBCSAE and IViE corpus for our
investigation because they are composed of con-
versational speech and have been subjected to de-
tailed transcription that identifies IUs through mul-
tifaceted consideration of prosodic structure. This
is a substantial difference from past work that has
heavily focused on corpora of read speech (e.g.,
TIMIT and WSJ) and corpora that have been seg-
mented shallowly according to syntactic structure,
punctuation, and/or simple phonetic factors such
as silence detection (e.g., Switchboard). Using
prosodically transcribed corpora of conversational
speech lets us investigate the rich structured varia-
tion inherent in natural speech, in which prosody
reflects dynamic discourse and cognitive factors
as well as more stable phonological and syntac-
tic factors. Furthermore, using two corpora that
represent different varieties of the same language,
with generally similar lexico-syntactic systems but
different intonational systems, lets us assess the
extent to which the model’s learning is based on IU
boundary features and not merely the performance
of the ASR system it incorporates.

2.1.2 Model and fine-tuning

Our Prosodic Speech Segmentation with Trans-
formers (PSST) model is fine-tuned from the
largest English-specific version of Whisper, with
764 million parameters and a size of 3.06 GB.3

The architecture of PSST, based on (Radford et al.,
2023), is shown in Figure 1. The fine-tuned model
takes raw audio as input and produces a transcript,
which includes both words and – crucially – IU
boundaries.

We obtained PSST by fine-tuning Whisper in
a supervised fashion4, using manually generated
transcripts as the ground truth. In fine-tuning, the
model was trained using the same hyperparameters
as the original Whisper model, except for batch
size (number of samples per train iteration) and
gradient accumulation steps (number of batches
per effective train iteration), both of which were
changed (from 256 to 32, and from 1 to 2) due to
limitations of computational resources. We trained

3This distribution is trained on a non-public corpus of
audio and accompanying (non-prosodically-annotated) tran-
scripts, where heuristics were used to ascertain that the tran-
scription was human-made. The 480,000-hour English subset
was aggregated from web sources and represents a diverse
range of speakers and situations, according to Radford et al.
(2023).

4Fine-tuning used a single NVIDIA V100 Tensor Core
GPU with 32 GB of VRAM.
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Figure 1: PSST Architecture: Two convolutional layers activated by a Gaussian Error Linear Unit (GELU) convert
a log-Mel spectrogram of each 30-second chunk of input into a linear vector, which is combined with a sinusoidal
positional encoding. The array is passed through a series of encoder and decoder blocks, each composed of
attention and multi-layer perceptron (MLP) components.

the model for 400 steps (2 full passes of the train-
ing data). The learning rate hyperparameter was
depressed for the first 50 steps to avoid early over-
fitting, increasingly linearly to reach 10−5.

The trained model is highly efficient, requiring
only four seconds to process a 30-second input us-
ing a consumer-grade GPU (and just over a minute
using our CPU)5. Conversely, detailed and accurate
manual discourse transcription by humans can take
significantly longer (Du Bois et al., 1992).

2.1.3 Evaluation
The model outputs a transcript consisting of a
stream of words and IU boundaries. We evalu-
ate this output based not on the words it contains,
but rather on the extent to which its boundaries
are located in the correct temporal positions in the
audio stream. To perform this evaluation, we gen-
erate timestamps for the output transcript by force-
aligning it to the audio stream, using the Char-
siu neural forced aligner6 (Zhu et al., 2022). A
generated IU boundary is deemed correct if it is

5An 8-bit integer quantized version of our model is avail-
able as well, with nearly identical performance and a signifi-
cantly faster inference speed.

6Charsiu uses convolutional layers built on top of a speech
audio encoder (from wav2vec) and a phone sequence encoder
(from BERT). It is trained to leverage phone sequence em-
beddings to reconstruct (quantized embeddings of) speech
audio that has been masked through spectral augmentation
in both the temporal and feature domains, based on both a
reconstruction loss and a forward-sum loss. In this way, it
learns a monotonic diagonal attention matrix that uniquely
aligns the embeddings from the speech audio encoder and
the phone sequence encoder in the temporal domain. We use
the pre-trained W2V2-FS-10ms Charsiu model, which provides
alignments for each 10ms window. This model has compa-
rable performance to standard HMM-based forced aligners
(such as the Montreal Forced Aligner and the Penn Forced
Aligner) in the benchmarks reported by Zhu et al. (2022).

force-aligned to within 20ms of the timestamp of
a hand-transcribed boundary in the gold-standard
SBCSAE data. Due to the use of forced alignment,
successful IU boundary detection does not require
perfect ASR performance, as incorrect tokens may
still be placed in the correct location temporally.

Our primary metric for evaluating model per-
formance is F-score, the harmonic mean of preci-
sion and recall. We calculate precision and recall
based on boundary placement in the audio stream:
precision is the proportion of boundaries in the
model output that are force-aligned to within 20ms
of a boundary in the hand-transcribed data, and
recall is the proportion of boundaries in the hand-
transcribed data that are within 20ms of a force-
aligned boundary in the model output.

Generating IU boundaries in the right place is
a difficult task: the model must both determine
that a boundary occurs within a stream of words,
and localize it with temporal precision. Even de-
termining that a boundary occurs, independent of
temporal alignment, is subject to significant ambi-
guity (Moore et al., 2016). Inter-labeler agreement
for detecting intonational phrase boundaries in spe-
cific locations, for example, is 93.4% (Pitrelli et al.,
1994).

Because F-score is based on the temporal place-
ment of boundaries, it is affected by the dual diffi-
culty of the task. To focus in on boundary occur-
rence, minimizing influences of temporal precision,
we also report on word-level accuracy. Accuracy
takes inspiration from word error rate in STT evalu-
ation: it is based on the correct placement of bound-
ary tokens in the transcript, independent of times-
tamps. We calculate it by considering the potential
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Table 1: IU boundary detection performance on held-
out data. PSST outperforms out-of-the-box Whisper
and a baseline model that predicts no boundaries on
the same test data, and seems to also outperform past
models trained/tested on different data.

Method F-Score Acc.

PSST (This Work)∗ 0.87 0.96
Rosenberg (2009) 0.81 0.93
Rosenberg (2010) 0.77 0.89
Hirschberg and Nakatani (1998) 0.70 0.83
Biron et al. (2021)∗ 0.66 0.86
Klejch et al. (2016) 0.63 0.87
Whisper (Radford et al., 2023)∗ 0.48 0.85
Baseline (No Boundaries)∗ 0.00 0.83

∗Evaluated on the SBCSAE.

boundary sites in the output and gold-standard tran-
scripts, which fall between every pair of words in
each transcript. We align the two transcripts to
each other, based on their separate alignments with
the audio, and calculate accuracy as the propor-
tion of aligned potential boundary sites that agree
on whether or not a boundary occurs in that site.
Accuracy is diminished by ASR failures, where a
potential boundary site in one transcript is aligned
to a word in the other transcript, and by boundary
detection failures, where a site is labeled as con-
taining a boundary in one transcript but not in the
other.

2.2 Results

2.2.1 Performance on held-out test data
The results are shown in Table 1. PSST exhibits ex-
cellent IU boundary detection on held-out portions
of the SBCSAE, in terms of both accuracy and F-
score. Its performance is well above the baseline
of a model that predicts no boundaries, and far ex-
ceeds that of out-of-the-box Whisper7 on the same
test set. Its performance also seems to exceed that
of English-based models that have been previously
reported in the literature; however, as these models
all use different training and test data, it is difficult
to make comparisons that are not affected by varia-
tion in aspects such as corpus content (number of
speakers, dialect, scripted or unscripted, etc.) and
transcription protocol.

7Whisper is trained to identify “phrase boundaries” (with-
out a specific explanation of how they are defined). We assess
the correspondence of these phrase boundaries to IU bound-
aries as a baseline of Whisper’s performance on the IU seg-
mentation task.

Figure 2: Distributions of IU length (seconds) based on
actual (blue bars) and model-generated (red dots/line)
IU boundaries. IUs based on model-generated bound-
aries tend to be longer than expected, even though they
typically contain the expected number of words.

In order to get an overview of model outputs,
we compare the distributions of IU length between
the predicted and actual transcripts. When mea-
sured in terms of number of words, the predicted
and actual distributions of IU lengths are highly
similar, and show no significant differences in a
Kolmogorov-Smirnov test (p = 0.72). When mea-
sured in terms of time, the distributions are qualita-
tively similar as seen in Figure 2 but significantly
different (p = 3.2 × 10−9). We believe this ef-
fect to reflect shortcomings of the forced aligner
rather than the transcription system: even when the
model transcribes an IU correctly, the aligner may
not place its boundaries in surrounding regions of
silence in the same way as a human would.

After replacing boundary tokens with new lines,
the PSST output can be compared with the human-
annotated transcript. A successful sample transcrip-
tion is shown in Table 2.

2.2.2 Performance on out-of-distribution data

Even on out-of-distribution data from the IViE cor-
pus, PSST performs well, as shown in Table 3. No-
tably, it sees an improvement in performance rela-
tive to a baseline model that predicts no boundaries,
whereas out-of-the-box Whisper does not. This in-
dicates that the information PSST has learned from
SBCSAE provides generalizable advantages for IU
boundary detection. However, the fact that perfor-
mance on IViE appears worse than performance on
SBCSAE suggests that the reliability of PSST can
be affected by variation in acoustics (e.g., across
speakers of different dialects) and transcription pro-
tocol.
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Table 2: Sample Successful Transcription (SBCSAE04 8:33 to 8:50). Line breaks indicate IU boundaries.

Actual Transcription PSST Transcription

I’m the only teacher who’s not experienced I’m the only teacher who’s not experienced
who’s not certified who’s not certified
who just started teaching who just started teaching
All these other teachers are old hands All these other teachers are old hands
I mean they’ve all been at it for at I mean they’ve all been at it for at
Well Chris is the least experienced besides me Well Chris is the least experienced besides me
but still he’s but still he’s
you know you know
he’s had his certification he’s had his certification
and he’s had a year and stuff and he’s had a year and stuff
he’s real good at it he’s real good at it

Table 3: IU boundary detection performance on out-of-
distribution test data from the IViE Corpus. PSST shows
strong performance despite differences in dialect and
transcription protocol compared to its training set.

Method F-Score Acc.

PSST 0.73 0.93
Baseline 0.00 0.88
Whisper (Radford et al., 2023) 0.35 0.87

Table 4: Confusion matrix for PSST IU boundary detec-
tion on held-out data from the SBCSAE.

Predicted

Actual Boundary No Boundary

Boundary 1,931 371
No Boundary 378 11,241

2.2.3 Error Analysis

At the level of the transcript (i.e., not considering er-
rors in temporal placement), PSST makes very few
errors. As shown in Table 4, these errors include
both false positives (boundaries predicted where
they don’t occur) and false negatives (boundaries
missed). Inspection showed that errors in bound-
ary detection are correlated with errors in word
transcription, but not strongly: boundary errors
also occur when all words are correctly transcribed,
and there are many cases where boundaries are
correctly detected in spite of errors in word tran-
scription. This suggests that errors in PSST have
two main causes: ASR-related inaccuracies and
prosodic inaccuracies.

ASR-related inaccuracies refer to cases where

the STT model either generates too many words,
too few words, or the wrong words. The impli-
cations of ASR-related inaccuracies for joint or
downstream boundary prediction have been well
established in classic work (e.g. Liu et al., 2006). It
is easy to imagine how poor STT transcription may
limit IU boundary detection performance. Gener-
ating too many words can lead to false positives
because the output transcript contains additional
potential boundary sites, while generating too few
words can lead to false negatives because the output
transcript does not contain the required boundary
sites. Generating the wrong words can lead to false
positives or false negatives because the generated
words may not fit in the same syntactic frames as
the actual words, and IUs tend to be syntactically
coherent, as demonstrated by the unsuccessful tran-
scription in Table 5. However, because STT tran-
scription and IU boundary detection are integrated
in PSST, it is not possible to definitively say that
poor transcription limiting boundary detection is
the cause of the correlation between word error rate
and boundary error rate; the reverse is also possible.
We explore this issue further in Section 3.2.

Prosodic inaccuracies refer to cases where the
model’s word-level transcription is correct (or near
enough to be accurately aligned with the gold-
standard transcript), but an IU boundary prediction
is nevertheless incorrect. Listening to such cases in-
dicates that they often exhibit ambiguous prosodic
cues to segmentation. Navigating this ambiguity re-
quires weighting prosodic factors in a specific way;
for human transcription, such weighting is codified
in a transcription protocol. It is likely that PSST’s
weighting of prosodic factors does not precisely
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Table 5: Sample Unsuccessful Transcription (SBCSAE02 14:01 to 14:10). Line breaks indicate IU boundaries, with
additional vertical space added for visual consistency.

Actual Transcription PSST Transcription

cause I’ve heard em for the past three months cause I burned em for the past three months
I didn’t think anything of it I didn’t think anything of it
but then but then
this guy played songs for a whole hour this guy played songs for a whole hour
and it was like and it was like
eighty per cent of those songs I’d eighty percent of those songs out
that band had sung that very night that band

his son
that very night

Mhm mhm

match that of the SBCSAE protocol.

3 Experiment 2: understanding the model

In Experiment 2, we explore factors that contribute
to PSST’s excellent results. In Experiment 2A, we
explore the kind of acoustic features that the model
may be relying upon, by evaluating performance on
acoustically degraded stimuli. In Experiment 2B,
we explore the extent to which the model integrates
acoustic and lexico-syntactic information, by com-
paring its performance with that of alternatives that
have limited integration.

3.1 Experiment 2A: use of acoustic features

As a STT model, PSST uses acoustic features to
infer the identity of words. The error analysis in
Section 2.2.3 suggests that inaccuracies in lexical
inference can cause cascading errors in IU bound-
ary detection, yet also reveals that the model can
still struggle to detect acoustically-cued IU bound-
aries even when word-level inference is correct.
Does this imply that the acoustic features PSST
uses are primarily those that cue lexical identity?

To address this question, we analyze model
performance on acoustically-degraded inputs via
frequency-based filtering. In humans, it has been
shown that vowel formants are particularly impor-
tant for correct lexical inference and intelligibil-
ity in running speech (Kewley-Port et al., 2007;
Fogerty and Humes, 2012), while pitch contours
captured by fundamental frequency (F0) are a
salient cue to prosodic boundaries (Streeter, 1978;
Pierrehumbert, 1980; Jusczyk et al., 1992). If PSST
uses acoustic features primarily to cue lexical iden-
tity, then filtering out frequencies in the range that

represent F1–F3 vowel formants for American En-
glish (∼200–3200Hz) (Peterson and Barney, 1952;
Hillenbrand et al., 1995; Kent and Vorperian, 2018)
should reduce performance to near-baseline lev-
els, while filtering out frequencies in the F0 range
(less than ∼200Hz) should not dramatically impair
performance.8

We applied a series of low-pass and high-pass
Butterworth filters (Figure 3) to the audio in the
held-out test set (Butterworth, 1930). We crossed
the choice of low- or high-pass filter with the choice
of a threshold frequencies of 200 Hz, 400 Hz, 800
Hz, 1.6 kHz, or 3.2 kHz, yielding 10 different ver-
sions of degraded test data. We applied the model
described in Section 2 to each version of the test
set. The model was unable to generate any word
tokens for the 200 Hz low-pass filtered data, so we
do not report its boundary prediction performance
in what follows.

The results are shown in Figure 4. Generally,
PSST’s performance declines as larger acoustic
ranges are filtered out, for both low- and high-pass
filters. When crucial frequencies representing F1–
F3 are removed (400 Hz low-pass and 3.2 kHz
high-pass), performance is notably poor, but still
better than performance of the baseline or out-of-
the-box Whisper model on undegraded test data (cf.
Table 1). Conversely, performance under a 200Hz
high-pass filter that removes F0 but leaves F1–F3
intact shows little change relative to performance

8Other acoustic features such as duration and intensity
have also been identified as relevant to prosodic boundary
detection in humans. We do not explore these features here
because they are less strongly linked to lexical inference than
frequency; however, a more explicit investigation of the impact
of acoustic features on our model is worth considering in a
future study.
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Figure 3: Low-pass (left) and high-pass (right) Butter-
worth filters applied to audio input. These filters have
a soft cut-off, which smoothly attentuates frequencies
above (for low-pass) or below (for high-pass) the thresh-
old frequency.

Figure 4: IU boundary detection performance on
acoustically-degraded audio, by filter. Performance de-
creases as frequencies from the F1–F3 range are filtered
out, but shows little decrease when F0 is filtered out.

on unfiltered data. Taken together, these results sug-
gest that PSST does indeed primarily use acoustic
features to cue lexical identity, and not, for exam-
ple, to track pitch contours. Nevertheless, given
that performance decreases slightly (∼0.8%) when
F0 is filtered out, it remains possible that PSST uses
pitch (and other acoustic features) to a secondary
extent for IU boundary detection.

3.2 Experiment 2B: integration of acoustic
and lexico-syntactic information

The results of Section 3.1 imply that the IU bound-
aries that PSST detects are primarily cued by
lexico-syntactic information, rather than acoustics.
At the same time, however, the results of Sec-
tion 2.2.3 show that PSST can identify boundaries
even when lexical identity is obscured, suggesting
a broader role for acoustics. Does this mean that

Table 6: IU boundary detection on held-out SBCSAE
data: comparison of models from Experiments 1-2. Lex-
ical and Masked models that dissociate IU boundary
detection from STT transcription perform worse than
PSST models that integrate them, even when inputs are
degraded.

Method F-Score Acc.

PSST 0.87 0.96
PSST (1.6 kHz high-pass) 0.79 0.93
Lexical 0.77 0.93
Masked 0.71 0.87
Whiper (Radford et al., 2023) 0.48 0.85
Baseline 0.00 0.83

the success of PSST is affected by its integration
of IU boundary detection with STT transcription,
allowing it to jointly leverage acoustic and lexico-
syntactic information?

To address this question, we construct two al-
ternative models that dissociate STT transcription
from IU boundary detection: a Lexical model and
a Masked model. The Lexical model represents
the best boundary predictions a model could make
without direct access to acoustics. It takes Whisper-
generated text as input and predicts (force-aligned)
IU boundaries in it, based on fine-tuning of the 1.2
billion parameter (5.36 GB) distribution of GPT-
NEO (Black et al., 2021). The Masked model repre-
sents an attempt to downplay lexical identification
in the IU boundary detection task, by replacing all
words in the test and training data with a common
mask token. It is otherwise identical to PSST; thus,
even though it is not required to output distinct lexi-
cal items, it likely maintains latent lexico-syntactic
representations. Both models are trained and tested
using the SBCSAE data described in Section 2.1.1.

The results are shown in Table 6, together with
previously-described models for context. Both the
Lexical and the Masked model perform better than
the baseline and out-of-the-box Whisper models,
indicating that IU boundary detection can draw
upon lexico-syntactic and acoustic information sep-
arately. However, both models perform worse than
PSST, even when the input is substantially acous-
tically degraded. This suggests that at least some
of the success of PSST is due to the interaction of
acoustic and lexico-syntactic information, which
arises due to its integration of IU boundary detec-
tion with STT transcription.
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4 Discussion & Conclusion

This study had two research objectives, as stated
in Section 1. In relation to Objective 1, we suc-
cessfully fine-tuned Whisper (Radford et al., 2023)
to segment conversational speech into IUs. We
achieved F-scores of 0.87 on held-out test data and
0.72 on out-of-distribution data, indicating strong
reliability. Whisper was originally trained on the
simple objective of discerning words from audio,
yet the fact that we were able to repurpose it suc-
cessfully using few-shot learning holds significant
promise for other NLP studies that rely on smaller
datasets.

In relation to Objective 2, we explored the
potential factors influencing the model’s perfor-
mance. Our findings suggest that the model uses
acoustic information primarily for lexical identi-
fication. Interestingly, the model also appears to
benefit from the interactions between acoustic and
lexico-syntactic information that are made possible
through the integration of IU boundary detection
with STT transcription. These results may be sur-
prising from an expectation that prosodic bound-
aries would be reflected primarily by acoustic cues,
but they reinforce the understanding from linguistic
theory that prosody involves complex interactions
between syntax and phonology (Bennett and Elfner,
2019).

Given these results, there are two clear next steps.
First, though our model was able to perform reli-
able IU boundary detection, its performance was
hindered in out-of-distribution contexts involving
different dialects and transcription protocols. Ex-
panding the training set to be more representa-
tive of such variation would further improve its
reliability and adaptability. Second, though we
observed a benefit from integrating acoustic and
lexico-syntactic information, it appears that the
acoustic information was relatively underweighted.
This is likely a reflection of the fact that fine-
tuning the integrated model represents a very small
amount of training relative to training the original
STT model, in which acoustic cues to prosodic
boundaries have limited relevance. Fine-tuning
for longer, or on more data, may help increase the
weight of acoustic cues to prosodic boundaries. In
addition, experiments with acoustically enhanced
rather than degraded stimuli may help to illumi-
nate the circumstances under which acoustic cues
to prosodic boundaries can override biases from
lexico-syntactic information.

Our results suggest that STT transcription and
prosodic boundary identification should not be ap-
proached as independent challenges, but rather as
interacting components of a unified speech process-
ing objective. Simply requiring prosodic features to
be represented in the desired output transcriptions
unlocks a seemingly latent ability for STT models
to identify them. Overall, our results suggest that
such STT models implicitly represent prosodically-
relevant information, given their success in a few-
shot context. Furthermore, the robustness of seg-
mentation performance when exposed to moderate
frequency-based signal tampering, or even com-
plete F0 masking, strengthens the case for prosody-
syntax interplay at the “heart” of high-performance
ASR models. By following a similar process to
what we have shown here, there is strong poten-
tial for STT models to be extended to detect other
speech phenomena as well – such as prosodic ac-
cents, vocal quality changes, or even environmental
contexts – which would put us one step closer to a
fully automated discourse transcription system.
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Our approach to prosodic boundary detection is not
without limitations. Firstly, as with any automatic
evaluation procedure, the challenge of quantify-
ing performance is a significant hurdle. Due to
the strong dependence of the gold-standard hand-
annotated data on human perception and nuanced
transcription protocols, which together raise the
potential for variation and inter-annotator disagree-
ment, our evaluations are only as good as our ability
to create effective and reliable performance met-
rics.

Secondly, our model is designed to operate in
an end-to-end manner: it detects prosodic bound-
aries based on the processing of raw audio data,
without explicitly generating intermediate (human-
accessible) levels of representation. This approach
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obscures the contribution of the specific features
(acoustic and otherwise) that are implicitly learned
by the model as cues to prosodic boundaries. The
inherent lack of interpretability of the model’s de-
cisions makes it challenging to assign importance
to specific prosodic elements. While we work to
tease apart the contributing factors through acous-
tic degradation and lexical/acoustic masking, the
interconnectedness of prosody at times presents ill-
posed problems for such analyses. This both pro-
vides an opportunity for future projects and main-
tains the relevance of the many previous works
which address factors individually.


